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Preface to this edition
paolo mancosu

B
Proofs and Refutations is one of the undeniable classics of the philosophy of
mathematics. Fifty years have passed since the publication of the articles
that make up its central core, but the book has lost neither its freshness nor
its provocative vitality. It takes the form of a classroom dialogue in which
a group of students and their teacher investigate the problem of whether
there is a relation that holds between the number of vertices V, the number
of edges E, and the number of faces F of regular polyhedra (e.g. the five
Platonic solids). At the outset of the dialogues they have arrived at the
formula V – E + F = 2. They conjecture that the result might extend to any
polyhedron (Euler’s conjecture), and this is the starting point of a riveting
development that carries the reader through the rational reconstruction, as
embodied in the class dialogue, of the history of Euler’s conjecture, cul-
minating in Poincaré’s proof. The reconstruction, in strong contrast to a
piece of axiomatic mathematics, features contradictions, monsters, counter-
examples, conjectures, concept-stretchings, hidden lemmas, proofs, and a
wide range of informal moves meant to account for the rationality of
the process leading to concept-formation and conjectures/proofs in math-
ematical practice.

Yet Euler’s conjecture is just a case-study displaying Lakatos’s highly
original approach to the philosophy of mathematics. A starker contrast
with the formalist foundational approach dominant up to the 1960s (and
embodied in philosophies of mathematics of neo-positivist inspiration)
can scarcely be imagined. Whereas the latter, inspired by Euclid’s infallib-
ilist dogmatic style, thought of mathematical theories statically as axio-
matic systems, Lakatos was after an account of informal mathematics as a
fallible dynamic body of knowledge. Rejecting the positivist distinction
between context of discovery and context of justification, he claimed that
mathematical practice and its history are not the domain of the irrational
but rather display an objectivity and rationality that any philosophy of
mathematics worth its name should account for. The tools for addressing
the rationality of mathematical growth could not, however, be those of
formal logic, whose ‘deductivist style’ could only address issues of the
static variety and was thus unable to account for concept-formation and

vii
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the rational dynamics driving the development of informal mathematics.
Rather, Lakatos found inspiration in Polya’s work on mathematical heur-
istics, Hegel’s dialectic, and Popperian conjecture and refutation. This led
to Lakatos’s dialectical methodology, a ‘heuristic style’ that reveals the
struggle and the adventure of mathematical creation.

There will always be disagreements as to whether or to what extent
Lakatos’s case studies are paradigmatic and can be extended to mathemat-
ics as a whole. Scholars will also continue to disagree about the suitability
of the dialectical framework for accounting for mathematical growth and
the role of mathematical logic in the history and philosophy of mathemat-
ics. But the characteristic trait of a classic is its rich and varied legacy.
Proofs and Refutations stands up to this test, for it continues to be a source
of inspiration to many historians, mathematicians, and philosophers who
aspire to develop a philosophy of mathematics that does justice to the
static and dynamic complexity of mathematical practice.

viii preface to this edition
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Editors’ preface

B

Our great friend and teacher Imre Lakatos died unexpectedly on 2 Febru-
ary 1974. At the time he was (as usual) engaged on many intellectual
projects. One of the most important of these was the publication of a
modified and extended version of his brilliant essay ‘Proofs and Refuta-
tions’, which appeared in four parts in The British Journal for the Philosophy
of Science, 14, 1963–4. Lakatos had long had a contract for this book, but
had held back publication in the hope of amending and further improving
the essay, and of adding to it substantial extra material. This work was
considerably delayed by the diversion of his interests to the philosophy of
physical science, but in the summer of 1973 he finally decided to go ahead
with the publication. During that summer we each discussed plans for the
book with him, and we have tried to produce a book which, in the sadly
changed circumstances, is as similar as possible to the one then projected
by Lakatos.

We have thus included three new items in addition to the original
‘Proofs and Refutations’ essay (which appears here as Chapter 1). First
we have added a second part to the main text. This concerns Poincaré’s
vector-algebraic proof of the Descartes–Euler conjecture. It is based on
chapter 2 of Lakatos’s 1961 Cambridge Ph.D. thesis. (The original ‘Proofs
and Refutations’ essay was a much amended and improved version of
chapter 1 of that thesis.) A part of chapter 3 of this thesis becomes here
appendix 1, which contains a further case-study in the method of proofs
and refutations. It is concerned with Cauchy’s proof of the theorem that
the limit of any convergent series of continuous functions is itself continu-
ous. Chapter 2 of the main text and appendix 1 should allay the doubt,
often expressed by mathematicians who have read ‘Proofs and Refuta-
tions’, that, while the method of proof-analysis described by Lakatos may
be applicable to the study of polyhedra, a subject which is ‘near empirical’
and where the counterexamples are easily visualisable, it may be inapplic-
able to ‘real’ mathematics. The third additional item (appendix 2) is also
based on a part of chapter 3 of Lakatos’s thesis. It is about the conse-
quences of his position for the development, presentation and teaching of
mathematics.

ix
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One of the reasons Lakatos delayed publication was his recognition that
some of this extra material, whilst containing many new points and
developments of his position, was in need of further consideration and
further historical research. This is particularly true of the material (in
appendix 1) on Cauchy and Fourier. We also are aware of certain difficul-
ties and ambiguities in this material and of omissions from it. We felt,
however, that we should not change the content of what Lakatos had
written. As for elaborating on, and adding to, the material, neither of us
was in a position to supply the necessary long and detailed historical
research. Faced then with the alternatives of not publishing the material
at all, or publishing it in an unfinished state, we decided on the latter
option. We feel that there is much of interest in it, and hope that it will
stimulate other scholars to extend and correct it if necessary.

In general, we did not think it right to modify the content of Lakatos’s
material, even those parts of it about which we were confident Lakatos
had changed his position. We have therefore restricted ourselves to
pointing out (in notes marked with asterisks) some of those things we
should have tried to persuade Lakatos to change and (which often
amounts to the same thing) some of those points we believe Lakatos
would have changed in publishing this material now. (His intellectual
position had, of course, changed considerably during the thirteen years
between completing the Ph.D. thesis and his death. The major changes in
his general philosophy are explained in his [1970]. We should mention that
Lakatos thought that his methodology of scientific research programmes
had important implications for his philosophy of mathematics.)

Our approach to matters of presentation has been to leave the material
which Lakatos had himself published (i.e. chapter 1 of the main text)
almost entirely unchanged (the only exceptions are a few misprints and
unambiguous minor slips). We have, however, rather substantially modi-
fied the previously unpublished material – though, to repeat, only in form
and not in content. Since this may seem a rather unusual procedure,
perhaps a few words of justification are in order.

Lakatos always took a great deal of care over the presentation of any of
his material which was to be published, and, prior to publication, he
always had such material widely circulated amongst colleagues and
friends, for criticism and suggested improvements. We are sure that the
material here published for the first time would have undergone this
treatment, and that the changes would have been more drastic than those
we have dared to introduce. Our knowledge (through personal experi-
ence) of the pains Lakatos took to present his position as clearly as possible

x editors’ preface
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obliged us to try to improve the presentation of this material as best we
could. It is certain that these new items do not read as well as they would
have done, had Lakatos himself revised the material on which they are
based, but we felt that we were close enough to Lakatos, and involved
enough in some of his previous publications, to make a reasonable attempt
at bringing the material up to somewhere near his own high standards.

We are very pleased to have had the opportunity to produce this edition
of some of Lakatos’s important work in the philosophy of mathematics,
for it allows us to discharge part of the intellectual and personal debt we
both owe him.

john worrall

elie zahar

editors’ preface xi
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Author’s introduction

B
It frequently happens in the history of thought that when a powerful
new method emerges the study of those problems which can be dealt with
by the new method advances rapidly and attracts the limelight, while
the rest tends to be ignored or even forgotten, its study despised.

This situation seems to have arisen in our century in the Philosophy of
Mathematics as a result of the dynamic development of metamathematics.

The subject matter of metamathematics is an abstraction of mathematics
in which mathematical theories are replaced by formal systems, proofs by
certain sequences of well-formed formulae, definitions by ‘abbreviatory
devices’ which are ‘theoretically dispensable’ but ‘typographically conve-
nient’.1 This abstraction was devised by Hilbert to provide a powerful
technique for approaching some of the problems of the methodology
of mathematics. At the same time there are problems which fall outside
the range of metamathematical abstractions. Among these are all prob-
lems relating to informal (inhaltliche) mathematics and to its growth, and
all problems relating to the situational logic of mathematical problem-
solving.

I shall refer to the school of mathematical philosophy which tends to
identify mathematics with its formal axiomatic abstraction (and the philo-
sophy of mathematics with metamathematics) as the ‘formalist’ school.
One of the clearest statements of the formalist position is to be found in
Carnap [1937]. Carnap demands that (a) ‘philosophy is to be replaced
by the logic of science . . .’, (b) ‘the logic of science is nothing other than
the logical syntax of the language of science . . .’, (c) ‘metamathematics is
the syntax of mathematical language’ (pp. xiii and 9). Or: philosophy of
mathematics is to be replaced by metamathematics.

1 Church [1956], I, pp. 76–7. Also cf. Peano [1894], p. 49 and Russell and Whitehead
[1910–13], I, p. 12. This is an integral part of the Euclidean programme as formulated in
Pascal [1659]: cf. Lakatos [1962], p. 158.

1
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Formalism disconnects the history of mathematics from the philosophy
of mathematics, since, according to the formalist concept of mathematics,
there is no history of mathematics proper. Any formalist would basically
agree with Russell’s ‘romantically’ put but seriously meant remark,
according to which Boole’s Laws of Thought (1854) was ‘the first book ever
written on mathematics’.2 Formalism denies the status of mathematics to
most of what has been commonly understood to be mathematics, and can
say nothing about its growth. None of the ‘creative’ periods and hardly
any of the ‘critical’ periods of mathematical theories would be admitted
into the formalist heaven, where mathematical theories dwell like the
seraphim, purged of all the impurities of earthly uncertainty. Formalists,
though, usually leave open a small back door for fallen angels: if it turns
out that for some ‘mixtures of mathematics and something else’ we can
find formal systems ‘which include them in a certain sense’, then they too
may be admitted (Curry [1951], pp. 56–7). On those terms Newton had to
wait four centuries until Peano, Russell, and Quine helped him into
heaven by formalising the Calculus. Dirac is more fortunate: Schwartz
saved his soul during his lifetime. Perhaps we should mention here the
paradoxical plight of the metamathematician: by formalist, or even by
deductivist, standards, he is not an honest mathematician. Dieudonné
talks about ‘the absolute necessity imposed on any mathematician who
cares for intellectual integrity’ (my italics) to present his reasonings in
axiomatic form ([1939], p. 225).

Under the present dominance of formalism, one is tempted to para-
phrase Kant: the history of mathematics, lacking the guidance of philo-
sophy, has become blind, while the philosophy of mathematics, turning
its back on the most intriguing phenomena in the history of mathematics,
has become empty.

‘Formalism’ is a bulwark of logical positivist philosophy. According to
logical positivism, a statement is meaningful only if it is either ‘tauto-
logical’ or empirical. Since informal mathematics is neither ‘tautological’
nor empirical, it must be meaningless, sheer nonsense.3

2 Russell [1901]. The essay was republished as chapter 5 of Russell’s [1918], under the title
‘Mathematics and the Metaphysicians’. In the 1953 Penguin edition the quotation can be
found on p. 74. In the preface of his [1918] Russell says of the essay: ’Its tone is partly
explained by the fact that the editor begged me to make the article “as romantic as
possible’’.’

3 According to Turquette, Gödelian sentences are meaningless ([1950], p. 129). Turquette
argues against Copi, who claims that since they are a priori truths but not analytic, they
refute the analytic theory of a priori ([1949] and [1950]). Neither of them notices that the

2 proofs and refutations
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The dogmas of logical positivism have been detrimental to the history
and philosophy of mathematics.

The purpose of these essays is to approach some problems of the
methodology of mathematics. I use the word ‘methodology’ in a sense akin
to Pólya’s and Bernays’ ‘heuristic’4 and Popper’s ‘logic of discovery’ or
‘situational logic’.5 The recent expropriation of the term ‘methodology of
mathematics’ to serve as a synonym for ‘metamathematics’ has undoubt-
edly a formalist touch. It indicates that in formalist philosophy of math-
ematics there is no proper place for methodology qua logic of discovery.6

peculiar status of Gödelian sentences from this point of view is that these theorems are
theorems of informal mathematics, and that in fact they are discussing the status of
informal mathematics in a particular case.

4 Pólya [1945], especially p. 102, and also [1954], [1962a]; Bernays [1947], esp. p. 187.
5 Popper [1934], then [1945], especially p. 90 (or the fourth edition [1962], p.97); and also

[1957], pp. 147 ff.
6 One can illustrate this, e.g. by Tarski [1930a] and Tarski [1930b]. In the first paper Tarski

uses the term ‘deductive sciences’ explicitly as a shorthand for ‘formalised deductive
sciences’. He says: ‘Formalised deductive disciplines form the field of research of meta-
mathematics roughly in the same sense in which spatial entities form the field of research
in geometry.’ This sensible formulation is given an intriguing imperialist twist in the
second paper: ‘The deductive disciplines constitute the subject-matter of the methodology
of the deductive sciences in much the same sense in which spatial entities constitute the
subject-matter of geometry and animals that of zoology. Naturally not all deductive
disciplines are presented in a form suitable for objects of scientific investigation. Those,
for example, are not suitable which do not rest on a definite logical basis, have no precise
rules of inference, and the theorems of which are formulated in the usually ambiguous
and inexact terms of colloquial language – in a word those which are not formalised.
Metamathematical investigations are confined in consequence to the discussion of formal-
ised deductive disciplines.’ The innovation is that while the first formulation stated that
the subject matter of metamathematics is the formalised deductive disciplines, the second
formulation states that the subject-matter of metamathematics is confined to formalised
deductive disciplines only because non-formalised deductive sciences are not suitable
objects for scientific investigation at all. This implies that the pre-history of a formalised
discipline cannot be the subject-matter of a scientific investigation – unlike the pre-history
of a zoological species, which can be the subject-matter of a very scientific theory of
evolution. Nobody will doubt that some problems about a mathematical theory can only
be approached after it has been formalised, just as some problems about human beings
(say concerning their anatomy) can only be approached after their death. But few will
infer from this that human beings are ‘suitable for scientific investigation’ only when they
are ‘presented in “dead” form’, and that biological investigations are confined in conse-
quence to the discussion of dead human beings – although, I should not be surprised if
some enthusiastic pupil of Vesalius in those glorious days of early anatomy, when the
powerful new method of dissection emerged, had identified biology with the analysis of
dead bodies.
In the preface of his [1941] Tarski enlarges on his negative attitude towards the

possibility of any sort of methodology other than formal systems: ‘A course in the
methodology of empirical sciences . . . must be largely confined to evaluations and

introduction 3
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According to formalists, mathematics is identical with formalisedmathemat-
ics. But what can one discover in a formalised theory? Two sorts of things.
First, one can discover the solution to problems which a suitably pro-
grammed Turing machine could solve in a finite time (such as: is a certain
alleged proof a proof or not?). No mathematician is interested in following
out the dreary mechanical ‘method’ prescribed by such decision procedures.
Secondly, one can discover the solutions to problems (such as: is a certain
formula in a non-decidable theory a theorem or not?), where one can be
guided only by the ‘method’ of ’unregimented insight and good fortune’.

Now this bleak alternative between the rationalism of a machine and the
irrationalism of blind guessing does not hold for live mathematics:7 an
investigation of informal mathematics will yield a rich situational logic for
working mathematicians, a situational logic which is neither mechanical
nor irrational, but which cannot be recognised and still less, stimulated, by
the formalist philosophy.

The history of mathematics and the logic of mathematical discovery, i.e.
the phylogenesis and the ontogenesis of mathematical thought,8 cannot
be developed without the criticism and ultimate rejection of formalism.

But formalist philosophy of mathematics has very deep roots. It is
the latest link in the long chain of dogmatist philosophies of mathematics.
For more than two thousand years there has been an argument between
dogmatists and sceptics. The dogmatists hold that – by the power of our
human intellect and/or senses – we can attain truth and know that we

criticisms of tentative gropings and unsuccessful efforts.’ The reason is that empirical
sciences are unscientific: for Tarski defines a scientific theory ‘as a system of asserted
statements arranged according to certain rules’ (ibid.).

7 One of the most dangerous vagaries of formalist philosophy is the habit of (1) stating
something – rightly – about formal systems; (2) then saying that this applies to ‘math-
ematics‘ – this is again right if we accept the identification of mathematics and formal
systems; (3) subsequently, with a surreptitious shift in meaning, using the term ‘math-
ematics’ in the ordinary sense. So Quine says ([1951], p. 87) that ‘this reflects the charac-
teristic mathematical situation; the mathematician hits upon his proof by unregimented
insight and good fortune, but afterwards other mathematicians can check his proof’. But
often the checking of an ordinary (informal) proof is a very delicate enterprise, and to hit
on a ‘mistake’ requires as much insight and luck as to hit on a proof: the discovery of
’mistakes’ in informal proofs may sometimes take decades – if not centuries.

8 Both H. Poincaré and G. Pólya propose to apply E. Haeckel’s ‘fundamental biogenetic
law’ about ontogeny recapitulating phylogeny to mental development, in particular to
mathematical mental development. (Poincaré [1908], p. 135, and Pólya [1962b].) To quote
Poincaré: ‘Zoologists maintain that the embryonic development of an animal recapitulates
in brief the whole history of its ancestors throughout geologic time. It seems it is the same
in the development of minds . . . For this reason, the history of science should be our first
guide’ (C. B. Halsted’s authorised translation, p. 437).

4 proofs and refutations
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have attained it. The sceptics on the other hand either hold that we cannot
attain the truth at all (unless with the help of mystical experience), or that
we cannot know if we can attain it or that we have attained it. In this great
debate, in which arguments are time and again brought up to date,
mathematics has been the proud fortress of dogmatism. Whenever the
mathematical dogmatism of the day got into a ‘crisis’, a new version once
again provided genuine rigour and ultimate foundations, thereby restor-
ing the image of authoritative, infallible, irrefutable mathematics, ‘the only
Science that it has pleased God hitherto to bestow on mankind’ (Hobbes
[1651], p. 15). Most sceptics resigned themselves to the impregnability of
this stronghold of dogmatist epistemology.9 A challenge is now overdue.

The core of this case-study will challenge mathematical formalism,
but will not challenge directly the ultimate positions of mathematical
dogmatism. Its modest aim is to elaborate the point that informal, quasi-
empirical, mathematics does not grow through a monotonous increase of
the number of indubitably established theorems but through the incessant
improvement of guesses by speculation and criticism, by the logic of
proofs and refutations. Since, however, metamathematics is a paradigm
of informal, quasi-empirical mathematics just now in rapid growth,
the essay, by implication, will also challenge modern mathematical dog-
matism. The student of recent history of metamathematics will recognise
the patterns described here in his own field.

The dialogue form should reflect the dialectic of the story; it is meant to
contain a sort of rationally reconstructed or ‘distilled’ history. The real history
will chime in in the footnotes, most of which are to be taken, therefore, as an
organic part of the essay.

9 For a discussion of the rôle of mathematics in the dogmatist-sceptic controversy, cf.
my [1962].

introduction 5
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Chapter 1

B

1. A problem and a conjecture

The dialogue takes place in an imaginary classroom. The class gets interested
in a PROBLEM: is there a relation between the number of vertices V, the
number of edges E and the number of faces F of polyhedra – particularly of
regular polyhedra – analogous to the trivial relation between the number of
vertices and edges of polygons, namely, that there are as many edges as
vertices: V = E? This latter relation enables us to classify polygons according
to the number of edges (or vertices): triangles, quadrangles, pentagons, etc.
An analogous relation would help to classify polyhedra.

After much trial and error they notice that for all regular polyhedra
V � E + F = 2.1 Somebody guesses that this may apply for any polyhedron

1 First noticed by Euler [1758a]. His original problem was the classification of polyhedra,
the difficulty of which was pointed out in the editorial summary: ‘While in plane
geometry polygons (figurae rectilineae) could be classified very easily according to the
number of their sides, which of course is always equal to the number of their angles, in
stereometry the classification of polyhedra (corpora hedris planis inclusa) represents a much
more difficult problem, since the number of faces alone is insufficient for this purpose.’
The key to Euler’s result was just the invention of the concepts of vertex and edge: it was he

who first pointed out that besides the number of faces the number of points and lines on the
surface of the polyhedron determines its (topological) character. It is interesting that on the
one hand he was eager to stress the novelty of his conceptual framework, and that he had to
invent the term ‘acies’ (edge) instead of the old ‘latus’ (side), since latus was a polygonal
concept while he wanted a polyhedral one, on the other hand he still retained the term
‘angulus solidus’ (solid angle) for his point-like vertices. It has been recently generally
accepted that the priority of the result goes to Descartes. The ground for this claim is a
manuscript of Descartes [c. 1639] copied by Leibniz in Paris from the original in 1675–6, and
rediscovered and published by Foucher de Careil in 1860. The priority should not be
granted to Descartes without a minor qualification. It is true that Descartes states that the
number of plane angles equals 2ϕ +2α-4 where byϕ hemeans the number of faces and by α
the number of solid angles. It is also true that he states that there are twice as many plane
angles as edges (latera). The conjunction of these two statements of course yields the Euler
formula. But Descartes did not see the point of doing so, since he still thought in terms of
angles (plane and solid) and faces, and did not make a conscious revolutionary change to
the concepts of 0-dimensional vertices, 1-dimensional edges and 2-dimensional faces as a
necessary and sufficient basis for the full topological characterisation of polyhedra.
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whatsoever. Others try to falsify this conjecture, try to test it in many
different ways – it holds good. The results corroborate the conjecture, and
suggest that it could be proved. It is at this point – after the stages problem
and conjecture – that we enter the classroom.2 The teacher is just going to
offer a proof.

2. A proof

teacher: In our last lesson we arrived at a conjecture concerning
polyhedra, namely, that for all polyhedra V � E + F = 2, where V is the
number of vertices, E the number of edges and F the number of faces.
We tested it by various methods. But we haven’t yet proved it. Has
anybody found a proof?

pupil sigma: ‘I for one have to admit that I have not yet been able to
devise a strict proof of this theorem . . . As however the truth of it has
been established in so many cases, there can be no doubt that it holds
good for any solid. Thus the proposition seems to be satisfactorily
demonstrated.’3 But if you have a proof, please do present it.

teacher: In fact I have one. It consists of the following thought-
experiment. Step 1: Let us imagine the polyhedron to be hollow, with a
surface made of thin rubber. If we cut out one of the faces, we can
stretch the remaining surface flat on the blackboard, without tearing it.
The faces and edges will be deformed, the edges may become curved,
but V and E will not alter, so that if and only if V � E + F = 2 for the
original polyhedron, V � E + F = 1 for this flat network – remember that
we have removed one face. (Fig. 1 shows the flat network for the case of
a cube.) Step 2:Now we triangulate our map – it does indeed look like a
geographical map. We draw (possibly curvilinear) diagonals in those
(possibly curvilinear) polygons which are not already (possibly
curvilinear) triangles. By drawing each diagonal we increase both E and
F by one, so that the total V � E + F will not be altered (fig. 2).

2 Euler tested the conjecture quite thoroughly for consequences. He checked it for prisms,
pyramids and so on. He could have added that the proposition that there are only five
regular bodies is also a consequence of the conjecture. Another suspected consequence is
the hitherto corroborated proposition that four colours are sufficient to colour a map. The
phase of conjecturing and testing in the case of V � E + F = 2 is discussed in Pólya ([1954],
vol. 1, the first five sections of the third chapter, pp. 35–41). Pólya stopped here, and does
not deal with the phase of proving – though of course he points out the need for a heuristic
of ’problems to prove’ ([1945], p. 144). Our discussion starts where Pólya stops.

3 Euler ([1758a], p. 119 and p. 124). But later ([1758b]) he proposed a proof.
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Step 3: From the triangulated network we now remove the triangles one
by one. To remove a triangle we either remove an edge – upon which one
face and one edge disappear (fig. 3(a)), or we remove two edges and a
vertex-uponwhich one face, two edges and onevertex disappear (fig. 3(b)).
Thus if V � E + F = 1 before a triangle is removed, it remains so after the
triangle is removed. At the end of this procedure we get a single triangle.
For this V � E + F = 1 holds true. Thus we have proved our conjecture.4

Fig. 1.

Fig. 2.

4 This proof-idea stems from Cauchy [1813a].
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pupil delta: You should now call it a theorem. There is nothing
conjectural about it any more.5

pupil alpha: I wonder. I see that this experiment can be performed for a
cube or for a tetrahedron, but how am I to know that it can be
performed for any polyhedron? For instance, are you sure, Sir, that any
polyhedron, after having a face removed, can be stretched flat on the
blackboard? I am dubious about your first step.

pupil beta: Are you sure that in triangulating the map one will always get a
new face for any new edge? I am dubious about your second step.

pupil gamma: Are you sure that there are only two alternatives – the
disappearance of one edge or else of two edges and a vertex – when one drops
the triangles one by one? Are you even sure that one is left with a single
triangle at the end of this process? I am dubious about your third step.6

teacher: Of course I am not sure.
alpha: But then we are worse off than before! Instead of one conjecture

we now have at least three! And this you call a ‘proof’!
teacher: I admit that the traditional name ‘proof’ for this thought-

experiment may rightly be considered a bit misleading. I do not think
that it establishes the truth of the conjecture.

(a) (b)

Fig. 3.

5 Delta’s view that this proof has established the ‘theorem’ beyond doubt was shared by
many mathematicians in the nineteenth century, e.g. Crelle [1826–7], 2, pp. 668–71,
Matthiessen [1863], p. 449, Jonquières [1890a] and [1890b]. To quote a characteristic
passage: ‘After Cauchy’s proof, it became absolutely indubitable that the elegant relation
V + F = E + 2 applies to all sorts of polyhedra, just as Euler stated in 1752. In 1811 all
indecision should have disappeared.’ Jonquières [1890a], pp. 111–12.

6 The class is a rather advanced one. To Cauchy, Poinsot, and to many other excellent
mathematicians of the nineteenth century these questions did not occur.
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delta: What does it do then? What do you think a mathematical proof
proves?

teacher: This is a subtle question which we shall try to answer later. Till
then I propose to retain the time-honoured technical term ‘proof’ for a
thought-experiment – or ‘quasi-experiment’ – which suggests a decomposition
of the original conjecture into subconjectures or lemmas, thus embedding it in
a possibly quite distant body of knowledge. Our ‘proof’, for instance,
has embedded the original conjecture – about crystals, or, say, solids – in
the theory of rubber sheets. Descartes or Euler, the fathers of the original
conjecture, certainly did not even dream of this.7

3. Criticism of the proof by counterexamples which are
local but not global

teacher: This decomposition of the conjecture suggested by the proof
opens new vistas for testing. The decomposition deploys the conjecture

7 Thought-experiment (deiknymi) was the most ancient pattern of mathematical proof. It
prevailed in pre-Euclidean Greek mathematics (cf. Á. Szabó [1958]).
That conjectures (or theorems) precede proofs in the heuristic order was a commonplace

for ancient mathematicians. This followed from the heuristic precedence of ‘analysis’ over
‘synthesis’. (For an excellent discussion see Robinson [1936].) According to Proclus, ‘. . . it
is . . . necessary to knowbeforehandwhat is sought’ (Heath [1925], 1, p. 129). ‘They said that
a theorem is that which is proposed with a view to the demonstration of the very thing
proposed’ – says Pappus (ibid. 1, p. 10). The Greeks did not think much of propositions
which they happened to hit upon in the deductive direction without having previously
guessed them. They called them porisms, corollaries, incidental results springing from the
proof of a theoremor the solution of a problem, results not directly sought but appearing, as
itwere, by chance,without any additional labour, and constituting, as Proclus says, a sort of
windfall (ermaion) or bonus (kerdos) (ibid. 1, p. 278). We read in the editorial summary to
Euler [1756–7] that arithmetical theorems ‘were discovered long before their truth has been
confirmed by rigid demonstrations’. Both the Editor and Euler use for this process of
discovery the modern term ‘induction’ instead of the ancient ‘analysis’ (ibid.). The heuristic
precedence of the result over the argument, of the theorem over the proof, has deep roots in
mathematical folklore. Let us quote some variations on a familiar theme: Chrysippus is said
to have written to Cleanthes: ‘Just send me the theorems, then I shall find the proofs’ (cf.
Diogenes Laertius [c. 200], VII. 179). Gauss is said to have complained: ‘I have had my
results for a long time; but I do not yet know how I am to arrive at them’ (cf. Arber [1945],
p. 47), and Riemann: ‘If only I had the theorems! Then I should find the proofs easily
enough.’ (Cf. Hölder [1924], p. 487.) Pólya stresses: ‘You have to guess a mathematical
theorem before you prove it’ ([1954], vol. 1, p. vi).
The term ’quasi-experiment’ is from the above-mentioned editorial summary to Euler

[1753]. According to the Editor: ‘As we must refer the numbers to the pure intellect alone,
we can hardly understand how observations and quasi-experiments can be of use in
investigating the nature of the numbers. Yet, in fact, as I shall show here with very good
reasons, the properties of the numbers known today have been mostly discovered by
observation . . .’ (Pólya’s translation; in his [1954], 1, p. 3 he mistakenly attributes the
quotation to Euler).
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on a wider front, so that our criticism has more targets. We now have at
least three opportunities for counterexamples instead of one!

gamma: I have already expressed my dislike of your third lemma (viz.
that in removing triangles from the network which resulted from the
stretching and subsequent triangulation, we have only two possibilities:
either we remove an edge or we remove two edges and a vertex).
I suspect that other patterns may emerge when removing a triangle.

teacher: Suspicion is not criticism.
gamma: Then is a counterexample criticism?
teacher: Certainly. Conjectures ignore dislike and suspicion, but they

cannot ignore counterexamples.
theta (aside): Conjectures are obviously very different from those who

represent them.
gamma: I propose a trivial counterexample. Take the triangular

network which results from performing the first two operations on a
cube (fig. 2). Now if I remove a triangle from the inside of this network,
as one might take a piece out of a jigsaw puzzle, I remove one triangle
without removing a single edge or vertex. So the third lemma is
false – and not only in the case of the cube, but for all polyhedra except
the tetrahedron, in the flat network of which all the triangles are
boundary triangles. Your proof thus proves the Euler theorem for the
tetrahedron. But we already knew that V � E + F = 2 for the
tetrahedron, so why prove it?

teacher: You are right. But notice that the cube which is a counter-
example to the third lemma is not also a counterexample to the main
conjecture, since for the cube V � E + F = 2. You have shown the poverty
of the argument – the proof – but not the falsity of our conjecture.

alpha: Will you scrap your proof then?
teacher: No. Criticism is not necessarily destruction. I shall improve my

proof so that it will stand up to the criticism.
gamma: How?
teacher: Before showing how, let me introduce the following

terminology. I shall call a ‘local counterexample’ an example which
refutes a lemma (without necessarily refuting the main conjecture), and
I shall call a ‘global counterexample’ an example which refutes the main
conjecture itself. Thus your counterexample is local but not global.
A local, but not global, counterexample is a criticism of the proof, but
not of the conjecture.

gamma: So, the conjecture may be true, but your proof does not
prove it.

proof and local counterexamples 11
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teacher: But I can easily elaborate, and improve the proof, by replacing
the false lemma by a slightly modified one, which your counterexample
will not refute. I no longer contend that the removal of any triangle follows
one of the two patterns mentioned, but merely that at each stage of the
removing operation the removal of any boundary triangle follows one of these
patterns. Coming back to my thought-experiment, all that I have to do is
to insert a single word in my third step, to wit, that ‘from the
triangulated network we now remove the boundary triangles one by
one’. You will agree that it only needed a trifling observation to put the
proof right.8

gamma: I do not think your observation was so trifling; in fact it was
quite ingenious. To make this clear I shall show that it is false. Take the
flat network of the cube again and remove eight of the ten triangles in
the order given in fig. 4. At the removal of the eighth triangle, which is
certainly by then a boundary triangle, we removed two edges and no
vertex – this changes V � E + F by 1. And we are left with the two
disconnected triangles 9 and 10.

teacher: Well, I might save face by saying that I meant by a boundary
triangle a triangle whose removal does not disconnect the network.

1

4
3

10

7

8

9

6

5

2

Fig. 4.

8 Lhuilier, when correcting in a similar way a proof of Euler, says that he made only a
‘trifling observation’ ([1812–13a], p. 179). Euler himself, however, gave the proof up, since
he noticed the trouble but could not make that ‘trifling observation’.
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But intellectual honesty prevents me from making surreptitious
changes in my position by sentences starting with ‘I meant . . .’ so
I admit that now I must replace the second version of the triangle-
removing operation with a third version: that we remove the triangles
one by one in such a way that V � E + F does not alter.

kappa: I generously agree that the lemma corresponding to this
operation is true: namely, that if we remove the triangles one by one in
such a way that V � E + F does not alter, then V � E + F does not alter.

teacher: No. The lemma is that the triangles in our network can be so
numbered that in removing them in the right order V � E + F will not alter till
we reach the last triangle.

kappa: But how should one construct this right order, if it exists at all?9

Your original thought-experiment gave the instruction: remove the
triangles in any order. Your modified thought-experiment gave the
instruction: remove boundary triangles in any order. Now you say we
should follow a definite order, but you do not say which and whether
that order exists at all. Thus the thought-experiment breaks down. You
improved the proof-analysis, i.e. the list of lemmas; but the thought-
experiment which you called ‘the proof’ has disappeared.

rho: Only the third step has disappeared.
kappa: Moreover, did you improve the lemma? Your first two simple

versions at least looked trivially true before they were refuted; your
lengthy, patched up version does not even look plausible. Can you
really believe that it will escape refutation?

teacher: ‘Plausible’ or even ‘trivially true’ propositions are usually soon
refuted: sophisticated, implausible conjectures, matured in criticism,
might hit on the truth.

omega: And what happens if even your ‘sophisticated conjectures’ are
falsified and if this time you cannot replace them by unfalsified ones?
Or, if you do not succeed in improving the argument further by local
patching? You have succeeded in getting over a local counterexample
which was not global by replacing the refuted lemma. What if you do
not succeed next time?

teacher: Good question – it will be put on the agenda for tomorrow.

9 Cauchy thought that the instruction to find at each stage a triangle which can be removed
either by removing two edges and a vertex or one edge can be trivially carried out for any
polyhedron ([1813a], p. 79). This is connected with his inability to imagine a polyhedron
that is not homeomorphic with the sphere.
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4. Criticism of the conjecture by global counterexamples

alpha: I have a counterexample which will falsify your first lemma – but
this will also be a counterexample to the main conjecture, i.e. this will be
a global counterexample as well.

teacher: Indeed! Interesting. Let us see.
alpha: Imagine a solid bounded by a pair of nested cubes – a pair of

cubes, one of which is inside, but does not touch the other (fig. 5). This
hollow cube falsifies your first lemma, because on removing a face from
the inner cube, the polyhedron will not be stretchable on to a plane. Nor
will it help to remove a face from the outer cube instead. Besides, for
each cube V � E + F = 2, so that for the hollow cube V � E + F = 4.

teacher: Good show. Let us call it Counterexample 1.10 Now what?

(a) Rejection of the conjecture. The method of surrender
gamma: Sir, your composure baffles me. A single counterexample refutes

a conjecture as effectively as ten. The conjecture and its proof have
completely misfired. Hands up! You have to surrender. Scrap the false
conjecture, forget about it and try a radically new approach.

Fig. 5.

10 This Counterexample 1was first noticed by Lhuilier ([1812–13a], p. 194). But Gergonne, the
Editor, added (p. 186) that he himself noticed this long before Lhuilier’s paper. Not so
Cauchy, who published his proof just a year before. And this counterexample was to be
rediscovered twenty years later by Hessel ([1832], p. 16). Both Lhuilier and Hessel were
led to their discovery by mineralogical collections in which they noticed some double
crystals, where the inner crystal is not translucent, but the outer is. Lhuilier acknowledges
the stimulus of the crystal collection of his friend Professor Pictet ([1812–13a], p. 188).
Hessel refers to lead sulphide cubes enclosed in translucent calcium fluoride crystals
([1832], p. 16).
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teacher: I agree with you that the conjecture has received a severe
criticism by Alpha’s counterexample. But it is untrue that the proof has
‘completely misfired’. If, for the time being, you agree to my earlier
proposal to use the word ‘proof’ for a ‘thought-experiment which leads
to decomposition of the original conjecture into subconjectures‘,
instead of using it in the sense of a ‘guarantee of certain truth’, you need
not draw this conclusion. My proof certainly proved Euler’s conjecture
in the first sense, but not necessarily in the second. You are interested
only in proofs which ‘prove’ what they have set out to prove. I am
interested in proofs even if they do not accomplish their intended task.
Columbus did not reach India but he discovered something quite
interesting.

alpha: So according to your philosophy – while a local counterexample
(if it is not global at the same time) is a criticism of the proof, but not of
the conjecture – a global counterexample is a criticism of the conjecture,
but not necessarily of the proof. You agree to surrender as regards the
conjecture, but you defend the proof. But if the conjecture is false, what
on earth does the proof prove?

gamma: Your analogy with Columbus breaks down. Accepting a global
counterexample must mean total surrender.

(b) Rejection of the counterexample. The method of monster-barring
delta: But why accept the counterexample? We proved our conjecture –

now it is a theorem. I admit that it clashes with this so-called
‘counterexample’. One of them has to give way. But why should the
theorem give way, when it has been proved? It is the ‘criticism’ that
should retreat. It is fake criticism. This pair of nested cubes is not a
polyhedron at all. It is a monster, a pathological case, not a
counterexample.

gamma: Why not? A polyhedron is a solid whose surface consists of polygonal
faces. And my counterexample is a solid bounded by polygonal faces.

teacher: Let us call this definition Def. 1.11

delta: Your definition is incorrect. A polyhedron must be a surface: it has
faces, edges, vertices, it can be deformed, stretched out on a blackboard,

11 Definition 1 occurs first in the eighteenth century; e.g.: ‘One gives the name polyhedral solid,
or simply polyhedron, to any solid bounded by planes or plane faces’ (Legendre [1809],
p. 160). A similar definition is given by Euler ([1758a]). Euclid, while defining cube,
octahedron, pyramid, prism, does not define the general term polyhedron, but occasion-
ally uses it (e.g. Book XII, Second Problem, Prop. 17).
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and has nothing to do with the concept of ‘solid’. A polyhedron is a
surface consisting of a system of polygons.

teacher: Call this Def. 2.12

delta: So really you showed us two polyhedra – two surfaces, one
completely inside the other. A woman with a child in her womb
is not a counterexample to the thesis that human beings have
one head.

alpha: So! My counterexample has bred a new concept of polyhedron.
Or do you dare to assert that by polyhedron you always meant a
surface?

teacher: For the moment let us accept Delta’s Def. 2. Can you refute our
conjecture now if by polyhedron we mean a surface?

alpha: Certainly. Take two tetrahedra which have an edge in common
(fig. 6(a)). Or, take two tetrahedra which have a vertex in common
(fig. 6(b)). Both these twins are connected, both constitute one single
surface. And, you may check that for both V � E + F = 3.

(a) (b)

Fig. 6.

12 We find Definition 2 implicitly in one of Jonquières’ papers read to the French Academy
against those who meant to refute Euler’s theorem. These papers are a thesaurus of
monster-barring techniques. He thunders against Lhuilier’s monstrous pair of nested
cubes: ‘Such a system is not really a polyhedron but a pair of distinct polyhedra, each
independent of the other . . . A polyhedron, at least from the classical point of view,
deserves the name only if, before all else, a point can move continuously over its entire
surface; here this is not the case . . . This first exception of Lhuilier can therefore be
discarded’ ([1890b], p. 170). This definition-as opposed to Definition 1 – goes down very
well with analytical topologists who are not interested at all in the theory of polyhedra as
such but only as a handmaiden for the theory of surfaces.
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teacher: Counterexamples 2a and 2b.13

delta: I admire your perverted imagination, but of course I did not mean
that any system of polygons is a polyhedron. By polyhedron I meant a
system of polygons arranged in such a way that (1) exactly two polygons meet
at every edge and (2) it is possible to get from the inside of any polygon to the
inside of any other polygon by a route which never crosses any edge at a vertex.
Your first twins will be excluded by the first criterion in my definition,
your second twins by the second criterion.

teacher: Def. 3.14

alpha: I admire your perverted ingenuity in inventing one definition
after another as barricades against the falsification of your pet ideas.
Why don’t you just define a polyhedron as a system of polygons for
which the equation V � E + F = 2 holds? This Perfect Definition . . .

kappa: Def. P.15

alpha: . . . would settle the dispute for ever. There would be no need to
investigate the subject any further.

delta: But there isn’t a theorem in the world which couldn’t be falsified
by monsters.

teacher: I am sorry to interrupt you. As we have seen, refutation by
counterexamples depends on the meaning of the terms in question. If a
counterexample is to be an objective criticism, we have to agree on the
meaning of our terms. We may achieve such an agreement by defining
the term where communication broke down. I, for one, didn’t define
‘polyhedron’. I assumed familiarity with the concept, i.e. the ability to
distinguish a thing which is a polyhedron from a thing which is not a
polyhedron – what some logicians call knowing the extension of the
concept of polyhedron. It turned out that the extension of the concept
wasn’t at all obvious: definitions are frequently proposed and argued about

13 Counterexamples 2a and 2b were missed by Lhuilier and first discovered only by Hessel
([1832], p. 13).

14 Definition 3 first turns up to keep out twintetrahedra in Möbius ([1865]), p. 32). We find his
cumbersome definition reproduced in some modern textbooks in the usual authoritarian
‘take it or leave it’ way; the story of its monster-barring background – that would at least
explain it – is not told (e.g. Hilbert and Cohn-Vossen [1956], p. 290).

15 Definition P, according to which Eulerianness would be a definitional characteristic of
polyhedra, was in fact suggested by R. Baltzer: ‘Ordinary polyhedra are occasionally
(following Hessel) called Eulerian polyhedra. It would be more appropriate to find a
special name for non-genuine (uneigentliche) polyhedra’ ([1862], vol. 2, p. 207). The
reference to Hessel is unfair: Hessel used the term ‘Eulerian’ simply as an abbreviation
for polyhedra for which Euler’s relation holds in contradistinction to the non-Eulerian
ones ([1832], p. 19). For Def. P see also the Schläfli quotation in footnote 16 below.
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when counterexamples emerge. I suggest that we now consider the rival
definitions together, and leave until later the discussion of the
differences in the results which will follow from choosing different
definitions. Can anybody offer something which even the most
restrictive definition would allow as a real counterexample?

kappa: Including Def. P?
teacher: Excluding Def. P.
gamma: I can. Look at this Counterexample 3: a star-polyhedron – I shall

call it an urchin (fig. 7). This consists of 12 star-pentagons (fig. 8).
It has 12 vertices, 30 edges, and 12 pentagonal faces – you may check it
if you like by counting. Thus the Descartes–Euler thesis is not true at all,
since for this polyhedron V � E + F = �6.16

delta: Why do you think that your ‘urchin’ is a polyhedron?

Fig. 7. Kepler’s star-polyhedron, each face shaded in a different way to show
which triangles belong to the same pentagonal face.

16 The ‘urchin’ was first discussed by Kepler in his cosmological theory ([1619], Lib. II, XIX
and XXVI, on p. 72 and pp. 82–3 and Lib. V, Cap. I, p. 293, Cap. III, p. 299 and Cap. IX,
XLVII). The name ‘urchin’ is Kepler’s (‘cui nomen Echino feci’). Fig. 7 is copied from his
book (p. 79) which contains also another picture on p. 293. Poinsot independently redis-
covered it, and it was he who pointed out that the Euler formula did not apply to it
([1810], p. 48). The now standard term ‘small stellated dodecahedron’ is Cayley’s ([1859],
p. 125). Schläfli admitted star-polyhedra in general, but nevertheless rejected our small
stellated dodecahedron as a monster. According to him ‘this is not a genuine polyhedron,
for it does not satisfy the condition V � E + F = 2’ ([1852], § 34).
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gamma: Do you not see? This is a polyhedron, whose faces are the twelve
star-pentagons. It satisfies your last definition: it is ‘a system of
polygons arranged in such a way that (1) exactly two polygons meet at
every edge, and (2) it is possible to get from every polygon to every
other polygon without ever crossing a vertex of the polyhedron’.

delta: But then you do not even know what a polygon is! A star-
pentagon is certainly not a polygon! A polygon is a system of edges
arranged in such a way that (1) exactly two edges meet at every vertex, and (2)
the edges have no points in common except the vertices.

teacher: Let us call this Def. 4.
gamma: I don’t see why you include the second clause. The correct

definition of the polygon should contain the first clause only.
teacher: Def. 4’.
gamma: The second clause has nothing to do with the essence of a

polygon. Look: if I lift an edge a little, the star-pentagon is already a
polygon even in your sense. You imagine a polygon to be drawn in
chalk on the blackboard, but you should imagine it as a wooden
structure: then it is clear that what you think to be a point in common is
not really one point, but two different points lying one above the other.
You are misled by your embedding the polygon in a plane – you should
let its limbs stretch out in space!17

D

B

E

C

A

Fig. 8.

17 The dispute whether polygon should be defined so as to include star-polygons or not
(Def. 4 or Def. 4’) is a very old one. The argument put forward in our dialogue – that star-
polygons become ordinary polygons when embedded in a space of higher dimensions – is
a modern topological argument, but one can put forward many others. Thus Poinsot
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delta: Would you mind telling me what is the area of a star-pentagon?
Or would you say that some polygons have no area?

gamma: Was it not you yourself who said that a polyhedron has nothing
to do with the idea of solidity? Why now suggest that the idea of
polygon should be linked with the idea of area? We agreed that a
polyhedron is a closed surface with edges and vertices – then why not
agree that a polygon is simply a closed curve with vertices? But if you
stick to your idea I am willing to define the area of a star-polygon.18

teacher: Let us leave this dispute for a moment, and proceed as before.
Consider the last two definitions together – Def. 4 and Def. 4’.
Can anyone give a counterexample to our conjecture that will comply
with both definitions of polygons?

alpha: Here is one. Consider a picture-frame like this (fig. 9).

defending his star-polyhedra argued for the admission of star-polygons with arguments
taken from analytical geometry: ‘. . . all these distinctions (between “ordinary” and “star”-
polygons) are more apparent than real, and they completely disappear in the analytical
treatment, in which the various species of polygons are quite inseparable. To the edge of a
regular polygon there corresponds an equation with real roots, which simultaneously
yields the edges of all the regular polygons of the same order. Thus it is not possible to
obtain the edges of a regular inscribed heptagon, without at the same time finding edges
of heptagons of the second and third species. Conversely, given the edge of a regular
heptagon, one may determine the radius of a circle in which it can be inscribed, but in so
doing, one will find three different circles corresponding to the three species of heptagon
which may be constructed on the given edge; similarly for other polygons. Thus we are
justified in giving the name “polygon” to these new starred figures’ ([1810], p. 26).
Schröder uses the Hankelian argument: ‘The extension to rational fractions of the power
concept originally associated only with the integers has been very fruitful in Algebra; this
suggests that we try to do the same thing in geometry whenever the opportunity presents
itself . . .’ ([1862], p. 56). Then he shows that we may find a geometrical interpretation for
the concept of p/q-sided polygons in the star-polygons.

18 Gamma’s claim that he can define the area for star-polygons is not a bluff. Some of those
who defended the wider concept of polygon solved the problem by putting forward a
wider concept of the area of polygon. There is an especially obvious way to do this in the
case of regular star-polygons. We may take the area of a polygon as the sum of the areas
of the isosceles triangles which join the centre of the inscribed or circumscribed circle to
the sides. In this case, of course, some ‘portions’ of the star-polygon will count more than
once. In the case of irregular polygons where we have not got any one distinguished
point, we may still take any point as origin and treat negatively oriented triangles as
having negative areas (Meister [1771], p. 179). It turns out – and this can certainly be
expected from an ‘area’ – that the area thus defined will not depend on the choice of the
origin (Möbius [1827], p. 218). Of course there is liable to be a dispute with those who
think that one is not justified in calling the number yielded by this calculation an ‘area’;
though the defenders of the Meister–Möbius definition called it ‘the right definition’
which ‘alone is scientifically justified’ (R. Haussner’s notes [1906], pp. 114–15).
Essentialism has been a permanent feature of definitional quarrels.
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This is a polyhedron according to any of the definitions hitherto
proposed. Nonetheless you will find, on counting the vertices, edges
and faces, that V � E + F = 0.

teacher: Counterexample 4.19

beta: So that’s the end of our conjecture. It really is a pity, since it held
good for so many cases. But it seems that we have just wasted our time.

alpha: Delta, I am flabbergasted. You say nothing? Can’t you define this
new counterexample out of existence? I thought there was no
hypothesis in the world which you could not save from falsification
with a suitable linguistic trick. Are you giving up now? Do you agree at
last that there exist non-Eulerian polyhedra? Incredible!

delta: You should really find a more appropriate name for your non-
Eulerian pests and not mislead us all by calling them ‘polyhedra’. But
I am gradually losing interest in your monsters. I turn in disgust from
your lamentable ‘polyhedra’, for which Euler’s beautiful theorem
doesn’t hold.20 I look for order and harmony in mathematics, but you
only propagate anarchy and chaos.21 Our attitudes are irreconcilable.

Fig.9.

19 We find Counterexample 4 too in Lhuilier’s classical [1812–13a], on p. 185 –Gergonne again
added that he knew it. But Grunert did not know it fourteen years later ([1827]) nor did
Poinsot forty-five years later ([1858], p. 67).

20 This is paraphrased from a letter of Hermite’s written to Stieltjes: ‘I turn aside with a
shudder of horror from this lamentable plague of functions which have no derivatives’
([1893]).

21 ‘Researches dealing with . . . functions violating laws which one hoped were universal,
were regarded almost as the propagation of anarchy and chaos where past generations
had sought order and harmony’ (Saks [1933], Preface). Saks refers here to the fierce battles
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alpha: You are a real old-fashioned Tory! You blame the wickedness of
anarchists for the spoiling of your ‘order’ and ‘harmony’, and you
‘solve’ the difficulties by verbal recommendations.

Fig. 10.

(a) (b)

Fig. 11.

between monster-barrers (like Hermite !) and refutationists that characterised in the last
decades of the nineteenth century (and indeed in the beginning of the twentieth) the
development of modern real function theory, ‘the branch of mathematics which deals
with counterexamples’ (Munroe [1953], Preface). The similarly fierce battle that raged
later between the opponents and protagonists of modern mathematical logic and set-
theory was a direct continuation of this. See also footnotes 24 and 25, p. 25.
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teacher: Let us hear the latest rescue-definition.
alpha: Youmean the latest linguistic trick, the latest contractionof the concept

of ’polyhedron’! Delta dissolves real problems, instead of solving them.
delta: I do not contract concepts. It is you who expand them. For instance,

this picture-frame is not a genuine polyhedron at all.
alpha: Why?
delta: Take an arbitrary point in the ‘tunnel’ – the space bounded by the

frame. Lay a plane through this point. You will find that any such plane
has always two different cross-sections with the picture-frame, making
two distinct, completely disconnected polygons! (fig. 10).

alpha: So what?
delta: In the case of a genuine polyhedron, through any arbitrary point in space

there will be at least one plane whose cross-section with the polyhedron will
consist of one single polygon. In the case of convex polyhedra all planes will
comply with this requirement, wherever we take the point. In the case of
ordinary concave polyhedra some planes will have more intersections, but
there will always be some that have only one (fig. 11, (a) and (b)).
In the case of this picture-frame, if we take the point in the tunnel, all the
planes will have two cross-sections. How then can you call this a
polyhedron?

teacher: This looks like another definition, this time an implicit one. Call
it Def. 5.22

alpha: A series of counterexamples, a matching series of definitions,
definitions that are alleged to contain nothing new, but to be merely
new revelations of the richness of that one old concept, which seems to
have as many ‘hidden’ clauses as there are counterexamples. For all
polyhedra V� E + F = 2 seems unshakable, an old and ‘eternal’ truth. It is
strange to think that once upon a time it was a wonderful guess, full of
challenge and excitement. Now, because of your weird shifts of
meaning, it has turned into a poor convention, a despicable piece of
dogma. (He leaves the classroom.)

22 Definition 5 was put forward by the indefatigable monster-barrer E. de Jonquières to get
Lhuilier’s polyhedron with a tunnel (picture-frame) out of the way: ‘Neither is this
polyhedral complex a true polyhedron in the ordinary sense of the word, for if one takes
any plane through an arbitrary point inside one of the tunnels which pass right through
the solid, the resulting cross-section will be composed of two distinct polygons com-
pletely unconnected with each other; this can occur in an ordinary polyhedron for certain
positions of the intersecting plane, namely in the case of some concave polyhedra, but not
for all of them’ ([1890b], pp. 170–1). One wonders whether de Jonquières has noticed that
his Def. 5 excludes also some concave spheroid polyhedra.
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delta: I cannot understand how an able man like Alpha can waste his
talent on mere heckling. He seems engrossed in the production of
monstrosities. But monstrosities never foster growth, either in the world
of nature or in the world of thought. Evolution always follows an
harmonious and orderly pattern.

gamma: Geneticists can easily refute that.Have younot heard thatmutations
producing monstrosities play a considerable role in macro-evolution?
They call such monstrous mutants ‘hopeful monsters’. It seems to me that
Alpha’s counterexamples, though monsters, are ‘hopeful monsters’.23

delta: Anyway, Alpha has given up the struggle. No more
monsters now.

gamma: I have a new one. It complies with all the restrictions in Defs. 1,
2, 3, 4, and 5, but V � E + F = 1. This Counterexample 5 is a simple
cylinder. It has 3 faces (the top, the bottom and the jacket), 2 edges (two
circles) and no vertices. It is a polyhedron according to your definition:
(1) exactly two polygons at every edge and (2) it is possible to get from
the inside of any polygon to the inside of any other polygon by a route
which never crosses any edge at a vertex. And you have to accept the
faces as genuine polygons, as they comply with your requirements:
(1) exactly two edges meet at every vertex and (2) the edges have no
points in common except the vertices.

delta: Alpha stretched concepts, but you tear them! Your ‘edges’ are not
edges! An edge has two vertices!

teacher: Def. 6?
gamma: But why deny the status of ‘edge’ to edges with one or possibly

zero vertices? You used to contract concepts, but now you mutilate
them so that scarcely anything remains!

delta: But don’t you see the futility of these so-called refutations?
‘Hitherto, when a new polyhedron was invented, it was for some
practical end; today they are invented expressly to put at fault the
reasonings of our fathers, and one never will get from them anything
more than that. Our subject is turned into a teratological museum

23 ‘We must not forget that what appears to-day as a monster will be to-morrow the origin
of a line of special adaptations . . . I further emphasized the importance of rare but
extremely consequential mutations affecting rates of decisive embryonic processes which
might give rise to what one might term hopeful monsters, monsters which would start a
new evolutionary line if fitting into some empty environmental niche.’ (Goldschmidt
[1933], pp. 544 and 547). My attention was drawn to this paper by Karl Popper.

24 proofs and refutations

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316286425.004
https:/www.cambridge.org/core


where decent ordinary polyhedra may be happy if they can retain a
very small corner.’24

gamma: I think that if we want to learn about anything really deep, we
have to study it not in its ‘normal’, regular, usual form, but in its critical
state, in fever, in passion. If you want to know the normal healthy body,
study it when it is abnormal, when it is ill. If you want to know
functions, study their singularities. If you want to know ordinary
polyhedra, study their lunatic fringe. This is how one can carry
mathematical analysis into the very heart of the subject.25 But even if
you were basically right, don’t you see the futility of your ad hoc
method? If you want to draw a borderline between counterexamples
and monsters, you cannot do it in fits and starts.

teacher: I think we should refuse to accept Delta’s strategy for dealing
with global counterexamples, althoughwe should congratulate himon his
skilful execution of it. We could aptly label his method the method of
monster-barring.Using this method one can eliminate any counterexample
to the original conjecture by a sometimes deft but always ad hoc
redefinition of the polyhedron, of its defining terms, or of the defining
terms of its defining terms. We should somehow treat counterexamples
with more respect, and not stubbornly exorcise them by dubbing them
monsters. Delta’s main mistake is perhaps his dogmatist bias in the
interpretation of mathematical proof: he thinks that a proof necessarily
proves what it has set out to prove. My interpretation of proof will allow
for a false conjecture to be ‘proved’, i.e. to be decomposed into
subconjectures. If the conjecture is false, I certainly expect at least one
of the subconjectures to be false. But the decomposition might still be

24 Paraphrased from Poincare ([1908], pp. 131–2). The original full text is this: ‘Logic
sometimes makes monsters. Since half a century we have seen arise a crowd of bizarre
functions which seem to try to resemble as little as possible the honest functions which
serve some purpose. No longer continuity, or perhaps continuity, but no derivatives, etc.
Nay more, from the logical point of view, it is these strange functions which are the most
general, those one meets without seeking no longer appear except as particular case.
There remains for them only a very small corner.

‘Heretofore when a new function was invented, it was for some practical end; to-day
they are invented expressly to put at fault the reasonings of our fathers, and one never
will get from them anything more than that.

‘If logic were the sole guide of the teacher, it would be necessary to begin with the most
general functions, that is to say with the most bizarre. It is the beginner that would have
to be set grappling with this teratologic museum . . .’ (G. B. Halsted’s authorised transla-
tion, pp. 435–6). Poincare discusses the problem with respect to the situation in the theory
of real functions – but that does not make any difference.

25 Paraphrased from Denjoy ([1919], p. 21).
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interesting! I am not perturbed at finding a counterexample to a ‘proved’
conjecture; I am even willing to set out to ‘prove’ a false conjecture!

theta: I don’t follow you.
kappa: He just follows the New Testament: ‘Prove all things; hold fast

that which is good’ (1 Thessalonians 5: 21).

(c) Improving the conjecture by exception-barring methods. Piecemeal
exclusions. Strategic withdrawal or playing for safety

beta: I suppose, sir, you are going to explain your puzzling remarks. But,
with all apologies for my impatience, I must get this off my chest.

teacher: Go on.
(alpha re-enters.)
beta: I find some aspects of Delta’s arguments silly, but I have come to

believe that there is a reasonable kernel to them. It now seems tome that no
conjecture is generally valid, but only valid in a certain restricted domain
that excludes the exceptions. I am against dubbing these exceptions
‘monsters’ or ‘pathological cases’. That would amount to the
methodological decision not to consider these as interesting examples in their
own right,worthy of a separate investigation. But I am also against the term
‘counterexample’; it rightly admits them as examples on a par with the
supporting examples, but somehow paints them in war-colours, so that,
like Gamma, one panics when facing them, and is tempted to abandon
beautiful and ingenious proofs altogether. No: they are just exceptions.

sigma: I could not agree more. The term ‘counterexample’ has an
aggressive touch and offends those who have invented the proofs.
‘Exception’ is the right expression. ‘There are three sorts of
mathematical propositions:

‘1. Those which are always true and to which there are neither restrictions
nor exceptions, e.g. the angle sum of all plane triangles is always equal
to two right angles.

‘2. Those which rest on some false principle and so cannot be admitted in any
way.

‘3. Those which, although they hinge on true principles, nevertheless
admit restrictions or exceptions in certain cases . . .’

epsilon: What?
sigma: ‘. . . One should not confuse false theorems with theorems subject

to some restriction.’26 As the proverb says: The exception proves the rule.

26 Berard [1818–19], p. 347 and p. 349.

26 proofs and refutations

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316286425.004
https:/www.cambridge.org/core


epsilon (to kappa): Who is this muddlehead? He should learn
something about logic.

kappa (to epsilon): And about non-Euclidean plane triangles.
delta: I find it embarrassing to have to predict that in this discussion

Alpha and I shall probably be on the same side. We both argued on the
basis of a proposition’s being either true or false and disagreed only on
whether the Euler theorem, in particular, is true or false. But Sigma
wants us to admit a third category of propositions that are ‘in principle’
true but ‘admit exceptions in certain cases’. To agree to a peaceful
coexistence of theorems and exceptions means to yield to confusion and
chaos in mathematics.

alpha: D’accord.
eta: I did not want to interfere with the brilliant argumentation of Delta,

but now I think it may be profitable if I briefly explain the story of my
intellectual development. In my schooldays I became – as you would
put it – a monster-barrer, not as a defence against Alpha-types but as a
defence against Sigma-types. I remember reading in a periodical about
the Euler theorem: ‘Brilliant mathematicians have put forward proofs of
the general validity of the theorem. Nevertheless it suffers exceptions . . .
it is necessary to draw attention to these exceptions since even recent
authors do not always recognise them explicitly.’27 This paper was not
an isolated exercise in diplomacy. ‘Although in geometry textbooks and
lectures it is always pointed out that Euler’s beautiful theorem V + F = E
+ 2 is subject to “restriction” in some cases, or “does not seem to be
valid”, one does not learn the real reason for these exceptions.’28 Now
I looked at the ‘exceptions’ very carefully and I came to the conclusion
that they do not comply with the true definition of the entities in
question. So the proof and the theorem can be reinstated and the chaotic
coexistence of theorems and exceptions vanishes.

27 Hessel [1832], p. 13. Hessel rediscovered Lhuilier’s ‘exceptions’ in 1832. Just after submit-
ting his manuscript he came across Lhuilier’s [1812–13a]. He nevertheless decided not to
withdraw the paper, most of whose results thus turned out to have already been pub-
lished, because he thought that the point should be driven home to the ‘recent authors’
ignoring these exceptions. One of these authors, by the way, happened to be the Editor of
the Journal to which Hessel submitted the paper: A. L. Crelle. In his [1826–7] textbook he
‘proved’ that Euler’s theorem was true for all polyhedra (vol. 2, pp. 668–71).

28 Matthiessen ([1863], p. 449). Matthiessen refers here to Heis and Eschweiler’s Lehrbuch der
Geometrie and to Grunert’s Lehrbuch der Stereometrie. Matthiessen however does not solve
the problem – like Eta – by monster-barring, but – like Rho – by monster-adjustment
(cf. footnote 48, p. 41).
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alpha: Sigma’s chaotic position may serve as an explanation for your
monster-barring, but not as an excuse, let alone a justification. Why not
eliminate the chaos by accepting the credentials of the counterexample
and rejecting the ‘theorem’ and the ‘proof’?

eta: Why should I reject the proof? I cannot see anything wrong with it.
Can you? My monster-barring seems more rational to me than your
proof-barring.

teacher: This debate showed that monster-barring may get a more
sympathetic audience when it stems from Eta’s dilemma. But let us
come back to Beta and Sigma. It was Beta who rechristened the
counterexamples exceptions. Sigma agreed with Beta . . .

beta: I am glad that Sigma agreed with me, but I am afraid that I cannot
agree with him. There are certainly three types of propositions: true
ones, hopelessly false ones and hopefully false ones. This last type can
be improved into true propositions by adding a restrictive clause which
states the exceptions. I never ‘attribute to formulae an undetermined
domain of validity. In reality most of the formulae are true only if
certain conditions are fulfilled. By determining these conditions and, of
course, pinning down precisely the meaning of the terms I use, I make
all uncertainty disappear.’29 So, as you see, I do not advocate any sort of
peaceful coexistence between unimproved formulae and exceptions.
I improve my formulae and turn them into perfect ones, like those in
Sigma’s first class. This means that I accept the method of monster-
barring in so far as it serves for finding the domain of validity of the original
conjecture; I reject it in so far as it functions as a linguistic trick for
rescuing ‘nice’ theorems by restrictive concepts. These two functions of
Delta’s method should be kept separate. I should like to baptise my
method, which is characterised by the first of these functions only, ‘the
exception-barring method’. I shall use it to determine precisely the domain
in which the Euler conjecture holds.

teacher: What is the ‘precisely determined domain’ of Eulerian
polyhedra you promised? What is your ‘perfect formula’?

beta: For all polyhedra that have no cavities (like the pair of nested cubes) and
tunnels (like the picture-frame), V � E + F = 2.

teacher: Are you sure?
beta: Yes, I am sure.
teacher: What about the twintetrahedra?

29 This is from Cauchy’s introduction to his celebrated [1821].
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beta: I am sorry. For all polyhedra that have no cavities, tunnels or ‘multiple
structure’, V � E + F = 2.30

teacher: I see. I agree with your policy of improving the conjecture
instead of just taking or leaving it. I prefer it both to the method of
monster-barring and to that of surrender. However, I have two
objections. First I contend that your claim that your method not only
improves, but ‘perfects’ the conjecture, that it ‘renders it strictly correct’,
that ‘it makes all uncertainties disappear’ is untenable.

beta: Indeed?
teacher: You must admit that each new version of your conjecture is

only an ad hoc elimination of a counterexample which has just cropped
up. When you stumble upon nested cubes you exclude polyhedra with
cavities. When you happen to notice a picture-frame, you exclude
polyhedra with tunnels. I appreciate your open and observant mind; to
take notice of these exceptions is all very well, but I think it would be
worth while to inject some method into your blind groping for
‘exceptions’. It is good to admit that ‘All polyhedra are Eulerian’ is only
a conjecture. But why give ‘All polyhedra without cavities, tunnels and
what not are Eulerian’ the status of a theorem that is not conjectural any
more? How can you be sure that you have enumerated all exceptions?

beta: Can you give one that I did not take into account?
alpha: What about my urchin?
gamma: And my cylinder?
teacher: I do not even need a concrete new ‘exception’ for my

argument. My argument was for the possibility of further exceptions.
beta: You may well be right. One should not just shift one’s position

whenever a new counterexample turns up. One should not say: ‘If no
exception occur from phenomena, the conclusion may be pronounced

30 Lhuilier and Gergonne seem to have been sure that Lhuilier’s list had enumerated all the
exceptions. We read in the introduction to this part of the paper: ‘One will easily be
convinced that Euler’s Theorem is true in general, for all polyhedra, whether they are
convex or not, except for those instances that will be specified . . .’ (Lhuilier [1812–13a],
p. 177). Then we read again in Gergonne’s comment: ‘. . . the specified exceptions which
seem to be the only ones that can occur . . .’ (ibid. p. 188). But in fact Lhuilier missed the
twintetrahedra, which were only noticed twenty years later by Hessel ([1832]). That some
leading mathematicians, even mathematicians with a lively interest in methodology like
Gergonne, could believe that one could rely upon the exception-barring method, is
noteworthy. The belief is analogous to the ‘method of division’ in inductive logic,
according to which there can be a complete enumeration of possible explanations of a
phenomenon, and therefore if we can eliminate all but one by the method of experimentum
crucis, then this last one is proved.
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generally. But if at any time afterwards any exception should occur, it
may then begin to be pronounced with such exceptions as occur.’31 Let
me think. We first guessed that for all polyhedra V � E + F = 2, because
we found it to be true for cubes, octahedra, pyramids, and prisms. We
certainly cannot accept ‘this miserable way of inferring from the special to
the general’.32 No wonder exceptions cropped up; it is rather surprising
that many more were not found much earlier. To my mind this was
because we were mostly occupied with convex polyhedra. As soon as
other polyhedra entered, our generalisations did not work any more.33 So
instead of barring exceptions piecemeal, I shall draw the borderline
modestly, but safely: All convex polyhedra are Eulerian.34 And I hope you
will grant that this has nothing conjectural about it: that it is a theorem.

gamma: What about my cylinder? It is convex!
beta: It is a joke!
teacher: Let us forget about the cylinder for the moment. We can offer

some criticism even without the cylinder. In this new, modified version
of the exception-barring method, which Beta devised so briskly in
answer to my criticism, piecemeal withdrawal has been replaced by a
strategic retreat into a domain hoped to be a stronghold of the

31 I. Newton [1717], p. 380.
32 Abel [1826a]. His criticism seems to be directed against Eulerian inductivism.
33 This too is paraphrased from the quoted letter, in which Abel was concerned to eliminate

the exceptions to general ‘theorems’ about functions and thereby establish absolute
rigour. The original text (including the previous quotation) is this: ‘In Higher Analysis
very few propositions are proved with definitive rigour. One finds everywhere the miserable
way of inferring from the special to the general, and it is a marvel that such procedure leads
only rarely to what are called paradoxes. It is really very interesting to look for the reason.
In my opinion the reason is to be found in the fact that analysts have been mostly occupied
with functions that can be expressed as power series. As soon as other functions enter – which
certainly is rarely the case – one does not get on any more and as soon as one starts drawing
false conclusions, an infinite multitude of mistakes will follow, all supporting each
other . . .’ (my italics). Poinsot discovered that inductive generalisations ‘often’ break
down in the theory of polyhedra, just as in number theory: ‘Most properties are individ-
ual and do not obey any general laws’ ([1810], § 45). The intriguing characteristic of this
caution towards induction is that it puts down its occasional breakdown to the fact that
the universe (of facts, numbers, polyhedra) of course contains miraculous exceptions.

34 This again is very much in keeping with Abel’s method. In the same way Abel restricted
the domain of suspect theorems about functions to power series. In the story of the Euler
conjecture this restriction to convex polyhedra was fairly common. Legendre, for instance,
after giving his rather general definition of polyhedron (cf. footnote 11, p. 15), presents a
proof which on the one hand certainly does not apply to all his general polyhedra, but on
the other hand applies to more than convex ones. Nevertheless, in an additional note, in
fine print (an afterthought after having stumbled on exceptions never stated?), he with-
draws, modestly but safely, to convex polyhedra ([1809], pp. 161, 164, 228).
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conjecture. You are playing for safety. But are you as safe as you claim
to be? You still have no guarantee that there will not be any exceptions
inside your stronghold. Besides, there is the opposite danger. Could you
have withdrawn too radically, leaving lots of Eulerian polyhedra
outside the walls? Our original conjecture might have been an
overstatement, but your ‘perfected’ thesis looks to me very much like an
understatement; yet you still cannot be sure that it is not an
overstatement as well.

But I should also like to put forward my second objection: your
argument forgets about the proof; in guessing the domain of validity of
the conjecture, you do not seem to need the proof at all. Surely you do
not believe that proofs are redundant?

beta: I have never said that.
teacher: No, you did not. But you discovered that our proof did not

prove our original conjecture. Does it prove your improved conjecture?
Tell me.

beta: Well . . .35

eta: Thank you, sir, for this argument. Beta’s embarrassment clearly
displays the superiority of the defamed monster-barring method.
For we say that the proof proveswhat it has set out to prove and our answer
is unequivocal. We do not allow wayward counterexamples to destroy
respectable proofs at liberty, even if they are disguised as meek ‘exceptions’.

beta: I do not find it embarrassing at all that I have to elaborate, improve,
and – excuseme, sir – perfectmymethodology on the stimulus of criticism.

35 Many working mathematicians are puzzled about what proofs are for if they do not
prove. On the one hand they know from experience that proofs are fallible but on the
other hand they know from their dogmatist indoctrination that genuine proofs must be
infallible. Applied mathematicians usually solve this dilemma by a shamefaced but firm
belief that the proofs of the pure mathematicians are ‘complete’, and so really prove. Pure
mathematicians, however, know better – they have such respect only for the ’complete
proofs’ of logicians. If asked what is then the use, the function, of their ‘incomplete proofs’,
most of them are at a loss. For instance, G. H. Hardy had a great respect for the logicians’
demand for formal proofs, but when he wanted to characterise mathematical proof ‘as we
working mathematicians are familiar with it’, he did it in the following way: ‘There is
strictly speaking no such thing as mathematical proof; we can, in the last analysis, do
nothing but point; . . . proofs are what Littlewood and I call gas, rhetorical flourishes
designed to affect psychology, pictures on the board in the lecture, devices to stimulate
the imagination of pupils’ ([1928], p. 18). R. L. Wilder thinks that a proof is ‘only a testing
process that we apply to suggestions of our intuition’ ([1944], p. 318). G. Pólya points out
that proofs, even if incomplete, establish connections between mathematical facts and this
helps us to keep them in our memory: proofs yield a mnemotechnic system ([1945],
pp. 190–1).
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My answer is this. I reject the original conjecture as false because there are
exceptions to it. I also reject the proof because the same exceptions are
exceptions to at least one of the lemmas. (In your terminology this would
be: a global counterexample is necessarily also a local counterexample.)
Alpha would stop at this point since refutations seem to satisfy his
intellectual needs completely. But I go on. By suitably restricting both
conjecture and proof to the proper domain, I perfect the conjecturewhich
will now be true, and perfect the basically sound proofwhich will now be
rigorous andwill obviously contain nomore false lemmas. For instancewe
saw that not all polyhedra can be stretched flat onto a plane after having a
face removed. But all convex polyhedra can. I can rightly call my perfected
and rigorously proved conjecture a theorem. I state it again: ‘All convex
polyhedra are Eulerian.’ For convex polyhedra all the lemmas will be
manifestly true and the proof, which was not rigorous in its false
generality, will be rigorous for the restricted domain of convex polyhedra.
So, sir, I have answered your question.

teacher: So the lemmas, which once looked manifestly true before the
exception was discovered, will again look manifestly true . . . until the
discovery of the next exception. You admit that ‘All polyhedra are
Eulerian’ was guesswork; you admitted just now that ‘All polyhedra
without cavities and tunnels are Eulerian’was also guesswork; why not
admit that ‘All convex polyhedra are Eulerian’ is guesswork once again!

beta: Not ‘guesswork’ this time, but insight!
teacher: I abhor your pretentious ‘insight’. I respect conscious guessing,

because it comes from the best human qualities: courage and modesty.
beta: I proposed a theorem: ‘All convex polyhedra are Eulerian.’

You offered only a sermon against it. Could you offer a counterexample?
teacher: You cannot know that I shall not. You improved the original

conjecture, but you cannot claim to have perfected the conjecture, to have
achieved perfect rigour in your proof.

beta: Can you?
teacher: I cannot either. But I think that my method of improving

conjectures will be an improvement on yours for I shall establish a
unity, a real interaction, between proofs and counterexamples.

beta: I am ready to learn.

(d) The method of monster-adjustment
rho: Sir, may I get a few words in edgeways?
teacher: By all means.
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rho: I agree that we should reject Delta’s monster-barring as a general
methodological approach, for it doesn’t really take ‘monsters’ seriously.
Beta doesn’t take his ‘exceptions’ seriously either, for he merely lists
them and then retreats into a safe domain. Thus both these methods are
interested only in a limited, privileged field. My method does not
practise discrimination. I can show that ‘on closer examination the
exceptions turn out to be only apparent and the Euler theorem retains
its validity even for the alleged exceptions’.36

teacher: Really?
alpha: How can my counterexample 3, the ‘urchin’ (fig. 5), be an

ordinary Eulerian polyhedron? It has 12 star-pentagonal faces . . .
rho: I don’t see any ‘star-pentagons’. Don’t you see that in actual fact this

polyhedron has ordinary triangular faces? There are 60 of them. It also
has 90 edges and 32 vertices. Its ‘Euler characteristic’ is 2.37 The 12
‘star-pentagons’, their 30 ‘edges’ and 12 ‘vertices’, yielding the
‘characteristic’�6, are only your fancy. Monsters don’t exist, only
monstrous interpretations. One has to purge one’s mind from perverted
illusions, one has to learn how to see and how to define correctly what
one sees. My method is therapeutic: where you – erroneously – ‘see’ a
counterexample, I teach you how to recognise – correctly – an example.
I adjust your monstrous vision . . .38

alpha: Sir, please explain your method, before Rho brainwashes us.39

36 Matthiessen [1863].
37 The argument that the ‘urchin’ is ‘really’ an ordinary, prosaic Eulerian polyhedron with

60 triangular faces, 90 edges and 32 vertices – ’un hexacontaèdre sans épithetè’ – was put
forward by the staunch champion of the infallibility of the Euler theorem, E. de Jonquières
([1890a], p. 115). The idea of interpreting non-Eulerian star-polyhedra as triangular
Eulerian polyhedra does not however stem from Jonquières but has a dramatic history
(cf. footnote 39 below).

38 Nothing is more characteristic of a dogmatist epistemology than its theory of error. For if
some truths are manifest, one must explain how anyone can be mistaken about them, in
other words, why the truths are not manifest to everybody. According to its particular
theory of error, each dogmatist epistemology offers its particular therapeutics to purge
minds from error. Cf. Popper [1963a], Introduction.

39 Poinsot certainly was brainwashed some time between 1809 and 1858. It was Poinsot who
rediscovered star-polyhedra, first analysed them from the point of view of Eulerianness
and stated that some of them, like our small stellated dodecahedron, do not comply with
Euler’s formula ([1810]). Now this same Poinsot states categorically in his [1858] that
Euler’s formula ‘is not only true for convex polyhedra, but for any polyhedron whatso-
ever, including star-polyhedra’ (p. 67 – Poinsot uses the term polyèdres d’espèce supérieure
for star-polyhedra). The contradiction is obvious. What is the explanation? What
happened to the star-polyhedral counterexamples? The clue is in the first casual-looking
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teacher: Let him go on.
rho: I have made my point.
gamma: Could you enlarge on your criticism of Delta’s method? Both of

you exorcised ‘monsters’. . .
rho: Delta was taken in by your hallucinations. He agreed that your

‘urchin’ has 12 faces, 30 edges and 12 vertices, and is non-Eulerian. His
thesis was that it is not a polyhedron either. But he erred on both
counts. Your ‘urchin’ is a polyhedron and is Eulerian. But its
star-polyhedral interpretation was a misinterpretation. If you don’t
mind, it is not the imprint of the urchin on a healthy, pure mind, but its
distorted imprint on a sick mind, twisting in pain.40

kappa: But how can you distinguish healthy minds from sick ones,
rational from monstrous interpretations?41

rho: What puzzles me is how you can mix them up!
sigma: Do you really think, Rho, that Alpha never noticed that his

‘urchin’ might be interpreted as a triangular polyhedron? Of course it

sentence of the paper: ‘One can reduce the whole theory of polyhedra to the theory of
polyhedra with triangular faces.’ That is, Poinsot-Alpha was brainwashed and turned into
Poinsot-Rho: now he sees only triangles where he previously saw star-polygons: now he
sees only examples where he previously saw counterexamples. The self-criticism had to
be surreptitious, cryptic, because in scientific tradition there are no patterns available for
articulating such volte-faces. One also wonders, did he ever come across ring-shaped
faces and if so, did he knowingly reinterpret them with his triangular vision?

The change of vision need not always operate in the same direction. For example,
J. C. Becker in his [1869a] – fascinated by the new conceptual framework of simply- and
multiply-connected domains (Riemann [1851]) – allowed for ringshaped polygons but
remained blind to star-polygons (p. 66). Five years after this paper – in which he claimed
to have brought the problem to a ‘definitive’ solution – he broadened his vision and
recognised star-polygonal and star-polyhedral patterns where he previously saw only
triangles and triangular polyhedra ([1874]).

40 This is part of a Stoic theory of error, attributed to Chrysippos (cf. Aetius [c. 150], IV.12.4;
also Sextus Empiricus [c. 190], I. 249). According to the Stoics the ‘urchin’would be part of
external reality, which produces an imprint upon the soul: the phantasia or visum. A wise
man will not give uncritical assent (synkatathesis or adsensus) to a phantasia unless it
matures into a clear and distinct idea (phantasia katalēptikē or comprehensio), which it
cannot do if it is false. The system of clear and distinct ideas forms science (episiēmē). In
our case the imprint of the ‘urchin’ on Alpha’s mind would be the small stellated
dodecahedron, while on Rho’s mind it would be the triangular hexacontaeder. Rho
would claim that Alpha’s star-polyhedral vision cannot possibly mature into a clear
and distinct idea, obviously since it would upset the ‘proved’ Euler formula. Thus the
star-polyhedral interpretation would fail and the ‘only’ alternative to it, namely the
triangular interpretation, would become clear and distinct.

41 This is a standard Sceptic criticism of the Stoic claim that they can distinguish phantasia
from phantasia katalēptikē (e.g. Sextus Empiricus [c. 190], I. 405).
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might. But a closer look reveals that ‘these triangles always lie in fives in
the same plane and surround a regular pentagon hiding – like their
heart – behind a solid angle. Now the five regular triangles together
with the inner heart – the regular pentagon – form a so-called
“pentagramma” that according to Theophrastus Paracelsus was the
sign of health . . .’42

rho: Superstition!
sigma: And so for the healthy mind the secret of the urchin will be

revealed: that it is a new, hitherto undreamt-of regular body, with
regular faces and equal solid angles, the beautiful symmetry of which
might reveal to us the secrets of universal harmony . . .43

alpha: Thank you, Sigma, for your defence which again convinces me
that opponents are less embarrassing than allies. Of course my
polyhedral figure can be interpreted either as a triangular polyhedron
or as a star-polyhedron. I am willing to admit both interpretations on
a par . . .

kappa: Are you?
delta: But surely one of them is the true interpretation!
alpha: I am willing to admit both interpretations on a par, but one of

them will certainly be a global counterexample to Euler’s conjecture.
Why admit only the interpretation that is ‘well-adjusted’ to Rho’s
preconceptions? Anyway, Sir, will you now explain your method?

(e) Improving the conjecture by the method of lemma-incorporation. Proof
generated theorem versus naive conjecture

teacher: Let us return to the picture-frame. I for one recognise it as a
genuine global counterexample to the Euler conjecture, as well as a
genuine local counterexample to the first lemma of my proof.

gamma: Excuse me, Sir – but how does the picture-frame refute the
first lemma?

teacher: First remove a face and then try to stretch it flat on the
blackboard. You will not succeed.

alpha: To help your imagination, I will tell you that those and only those
polyhedra which you can inflate into a sphere have the property that,
after a face is removed, you can stretch the remaining part onto a plane.

42 Kepler [1619], Lib. II. Propositio XXVI. 43 This is a fair exposition of Kepler’s view.
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It is obvious that such a ‘spherical’ polyhedron is stretchable onto a
plane after a face has been cut out; and vice versa it is equally obvious
that, if a polyhedron minus a face is stretchable onto a plane, then you
can bend it into a round vase which you can then cover with the
missing face, thus getting a spherical polyhedron. But our picture-frame
can never be inflated into a sphere; but only into a torus.

teacher: Good. Now, unlike Delta, I accept this picture-frame as a
criticism of the conjecture. I therefore discard the conjecture in its
original form as false, but I immediately put forward a modified,
restricted version, namely this: the Descartes–Euler conjecture holds
good for ‘simple’ polyhedra, i.e. for those which, after having had a face
removed, can be stretched onto a plane. Thus we have rescued some of
the original hypothesis. We have: The Euler characteristic of a simple
polyhedron is 2. This thesis will not be falsified by the nested cube, by the
twintetrahedra, or by star-polyhedra – for none of these is ‘simple’.
So while the exception-barring method restricted both the domain of
the main conjecture and of the guilty lemma to a common domain of
safety, thereby accepting the counterexample as criticism both of the
main conjecture and of the proof, my method of lemma-incorporation
upholds the proof but reduces the domain of the main conjecture to the
very domain of the guilty lemma. Or, while a counterexample which is
both global and local made the exception-barrer revise both the lemmas
and the original conjecture, it makes me revise the original conjecture,
but not the lemmas. Do you understand?

alpha: Yes, I think I do. To show that I understand, I shall refute you.
teacher: My method or my improved conjecture?
alpha: Your improved conjecture.
teacher: Then you may still not understand my method. But let us have

your counterexample.
alpha: Consider a cube with a smaller cube sitting on top of it (fig. 12).

This complies with all our definitions – Def. 1, 2, 3, 4, 4’, 5 – so it is a
genuine polyhedron. And it is ‘simple’, in that it can be stretched on
to the plane. Thus, according to your modified conjecture, its Euler
characteristic should be 2. Nonetheless it has 16 vertices, 24 edges
and 11 faces, and its Euler characteristic is 16 – 24 + 11 = 3. It is a
global counterexample to your improved conjecture and, by the way,
also to Beta’s first ‘exception-barring’ theorem. This polyhedron, in
spite of having no cavities, tunnels or ‘multiple structure’, is not
Eulerian.
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delta: Let us call this crested cube Counterexample 6.44

teacher: You have falsified my improved conjecture, but you have not
destroyed my method of improvement. I shall re-examine the proof,
and see why it broke down over your polyhedron. There must be
another false lemma in the proof.

beta: Of course there is. I have always suspected the second lemma. It
presupposes that in the triangulating process, by drawing a new
diagonal edge, you always increase by one the number of edges and of
faces. This is false. If we look at the plane network of our crested
polyhedron, we shall find a ringshaped face (fig. 13(a)). In this case no
single diagonal edge will increase the number of faces (fig. 13(b)): we

Fig. 12.

44 Counterexample 6 was noticed by Lhuilier ([1812–13a], p. 186); Gergonne for once admits
the novelty of his discovery! But almost fifty years later Poinsot had not heard of it
([1858]) while Matthiessen ([1863]) and, eighty years later, Jonquières ([1890b]) treated it
as a monster. (Cf. footnotes 39, p. 33, 48, p. 41.) Primitive exception-barrers of the
nineteenth century listed it as a curiosity together with other exceptions: ‘As an example
one is usually shown the case of a three sided pyramid attached to a face of a tetrahedron
so that no edges of the former coincide with an edge of the latter. “Oddly enough, in this
case V � E + F = 3” is what is written in my college notebook. And that ended the matter’
(Matthiessen [1863], p. 449). Modern mathematicians tend to forget about ringshaped
faces, which may be irrelevant for the classification of manifolds but can become relevant
in other contexts. H. Steinhaus says in his [1960]: ‘Let us divide the globe into F countries
(we shall consider seas and oceans as land). Then we shall have V + F = E + 2, whatever the
political situation may be’ (p. 273). But one wonders whether Steinhaus would destroy
West Berlin or San Marino simply because their existence refutes Euler’s theorem.
(Though of course he may prevent seas like the Baikal from falling completely in one
country by defining them as lakes, since he has said that only seas and oceans are to be
considered as land.)
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need an increase of two edges to increase the number of faces by one
(fig. 13(c)).

teacher: My congratulations. I certainly must restrict our conjecture
further . . .

beta: I know what you are going to do. You are going to say that
‘Simple polyhedra with triangular faces are Eulerian’. You will take
triangulation for granted; and you will turn this lemma again into a
condition.

teacher: No, you are mistaken. Before I point out your mistake
concretely, let me enlarge upon my comment on your method of
exception-barring. When you restrict your conjecture to a ‘safe’ domain,
you do not examine the proof properly, and, in fact, you do not need to
for your purpose. The casual statement that in your restricted domain
all the lemmas will be true whatever they are, is enough for your
purpose. But this is not enough for mine. I build the very same lemma
which was refuted by the counterexample into the conjecture, so that
I have to spot it and formulate it as precisely as possible, on the basis of a
careful analysis of the proof. The refuted lemmas thus will be
incorporated in my improved conjecture. Your method does not force
you to give a painstaking elaboration of the proof, since the proof does not
appear in your improved conjecture, as it does in mine. Now I return to
your present suggestion. The lemma which was falsified by the
ringshaped face was not – as you seem to think – that ‘all faces are
triangular’ but that ‘any face dissected by a diagonal edge falls into two pieces’.
It is this lemma which I turn into a condition. Calling the faces which
satisfy it ‘simply-connected’, I can offer a second improvement on my
original conjecture: ‘For a simple polyhedron, with all its faces simply-
connected, V� E + F = 2.’ The reason for your rash mis-statement was that

(a) (b) (c)

Fig. 13.
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your method did not teach you careful proof-analysis. Proof-analysis is
sometimes trivial, but sometimes very difficult indeed.

beta: I see your point. I should also add a self-critical note to your
comment, for it seems to me to reveal a whole continuum of exception-
barring attitudes. The worst merely bars some exceptions without
looking at the proof at all. Hence the mystification when we have the
proof on the one hand and the exceptions on the other. In the mind of
such primitive exception-barrers, the proof and the exceptions exist in
two completely separate compartments. Some others may now point
out that the proof will work only in the restricted domain, and thereby
claim to dispel the mystery. But their ‘conditions’will still be extraneous
to the proof-idea.45 Better exception-barrers will glance quickly at the
proof and gain, as I did just now, some inspiration for stating the
conditions which determine a safe domain. The best exception-barrers
do a careful analysis of the proof and, on this basis, give a very fine
delineation of the prohibited area. In fact your method is, in this respect,
a limiting case of the exception-barring method . . .

iota: . . . and it displays the fundamental dialectical unity of proof and
refutations.

teacher: I hope that now all of you see that proofs, even though they
may not prove, certainly do help to improve our conjecture.46 The
exception-barrers improved it too, but improving was independent of proving.
Our method improves by proving. This intrinsic unity between the ‘logic of
discovery’ and the ‘logic of justification’ is the most important aspect of the
method of lemma-incorporation.

beta: And of course I now understand your previous puzzling remarks
about your not being perturbed by a conjecture being both ‘proved’ and
refuted and about your willingness to ‘prove’ even a false conjecture.

kappa [aside]: But why call a ‘proof’ what in fact is an ‘improof’?

45 ‘. . . Lhuilier’s memoir consists of two very distinct parts. In the first the author offers an
original proof of Euler’s theorem. In the second his aim is to point out the exceptions to
which this theorem is subjected.’ (Gergonne’s editorial comment on Lhuilier’s paper in
Lhuilier’s [1812–13a], p. 172, my italics.)

M. Zacharias in his [1914–31] gives an uncritical but faithful description of this com-
partmentalisation: ‘In the 19th century, geometers, besides finding new proofs of the
Euler theorem, were engaged in establishing the exceptions which it suffers under certain
conditions. Such exceptions were stated, e.g. by Poinsot. S. Lhuilier and F. Ch. Hessel
tried to classify the exceptions. . .’ (p. 1052).

46 Hardy, Littlewood, Wilder and Pólya seem to have missed this point (see footnote 35,
p. 31).
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teacher: Mind you, few people will share this willingness. Most
mathematicians, because of ingrained heuristic dogmas, are incapable
of setting out simultaneously to prove and refute a conjecture. They
would either prove it or refute it. Moreover, they are particularly
incapable of improving conjectures by refuting them if the conjectures
happen to be their own. They want to improve their conjectures without
refutations; never by reducing falsehood but by the monotonous increase of
truth; thus they purge the growth of knowledge from the horror of counter-
examples. This is perhaps the background to the approach of the best
sort of exception-barrers: they start by ‘playing for safety’ by devising a
proof for the ‘safe’ domain and continue by submitting it to a thorough
critical investigation, testing whether they have made use of each of the
imposed conditions. If not, they ‘sharpen’ or ‘generalise’ the first
modest version of their theorem, i.e. specify the lemmas on which the
proof hinges, and incorporate them. For instance, after one or two
counterexamples they may formulate the provisional exception-barring
theorem: ‘All convex polyhedra are Eulerian’, postponing non-convex
instances for a cura posterior; next they devise Cauchy’s proof and then,
discovering that convexity was not really ‘used’ in the proof, they build
up the lemma-incorporating theorem!47 There is nothing heuristically
unsound about this procedure which combines provisional exception-
barring with successive proof-analysis and lemma-incorporation.

beta: Of course this procedure does not abolish criticism, it only pushes it
into the background: instead of directly criticising an overstatement,
they criticise an understatement.

teacher: I am delighted, Beta, that I convinced you. Rho and Delta, how
do you feel about it?

rho: I for one certainly think that the problem of ‘ringshaped faces’ is a
pseudoproblem. It stems from a monstrous interpretation of what
constitute the faces and edges of this soldering of two cubes into one –

which you called a ‘crested cube’.
teacher: Explain.
rho: The ‘crested cube’ is a polyhedron consisting of two cubes soldered

to one another. Will you agree?

47 This standard pattern is essentially the one described in the classic of Pólya and Szegö
[1927], p. vii: ‘One should scrutinise each proof to see if one has in fact made use of all the
assumptions; one should try to get the same consequence from fewer assumptions . . . and
one should not be satisfied until counterexamples show that one has arrived at the
boundary of the possibilities.’
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teacher: I don’t mind.
rho: Now you misinterpreted ‘soldering’. ‘Soldering’ consists of edges

connecting the vertices of the bottom square of the small cube to the
corresponding vertices of the top square of the large cube. So there is no
‘ringshaped face’ at all.

beta: The ringshaped face is there! The dissecting edges you are talking
about are not there!

rho: They are just hidden from your untrained eyes.48

beta: Do you expect us to take your argument seriously? What I see is
superstition, but your ‘hidden’ edges are reality?

(a) (b) (c)

Fig. 14. Three versions of the ringshaped face: (a) Jonquières, (b) Matthiessen,
(c) the ‘untrained eye’.

48 This ’soldering’ of the two polyhedra by hidden edges is argued by Jonquières ([1890b],
pp. 171–2), who uses monster-barring against cavities and tunnels but monster-
adjustment against crested cubes and star-polyhedra. The first proponent of using
monster-adjustment in defence of the Euler theorem was Matthiessen [1863]. He uses
monster-adjustment consistently: he succeeds in displaying hidden edges and faces to
explain away everything that is non-Eulerian, including polyhedra with tunnels and
cavities. While Jonquières’ soldering is a complete triangulation of the ringshaped face,
Matthiessen solders with economy, by drawing only the minimal number of edges that
split the face into simply-connected sub-faces (fig. 14).

Matthiessen is remarkably confident about his method of turning revolutionary
counterexamples into well-adjusted bourgeois Eulerian examples. He claims that ‘any
polyhedron can be analysed in such a way that it corroborates Euler’s theorem . . .’ He
enumerates the alleged exceptions noted by the superficial observer and then states:

‘In each such case we can show that the polyhedron has hidden faces and edges, which,
if counted, leave the theoremV� E + F = 2 untarnished even for these seemingly recalcitrant
cases.’

The idea that, by drawing additional edges or faces, some non-Eulerian polyhedra can
be transformed into Eulerian ones, stems however not fromMatthiessen, but from Hessel.
Hessel illustrates this point with three examples using nice figures ([1832], pp. 14–15). But
he did not use this method to ‘adjust’ but, on the contrary, to ‘elucidate the exceptions’ by
showing ‘rather similar polyhedra for which Euler’s law is valid’.
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rho: Look at this salt crystal. Would you say this is a cube?
beta: Certainly.
rho: A cube has 12 edges, hasn’t it?
beta: Yes, it has.
rho: But on this cube there are no edges at all. They are hidden. They

appear only in your rational reconstruction.
beta: I shall think about this. One thing is clear. The Teacher criticised my

conceited view that my method leads to certainty, and also for
forgetting about the proof. These criticisms apply just as much to your
‘monster-adjustment’ as to my ‘exception-barring’.

teacher: Delta, what about you? How would you exorcise the
ringshaped face?

delta: I would not. You have convertedme to yourmethod. I onlywonder
why you don’t make sure and also incorporate the neglected third lemma?
I propose a fourth, and, I hope, final formulation: ‘All polyhedra are
Eulerian, which are (a) simple, (b) have each face simply-connected, and
(c) are such that the triangles in the plane triangular network, resulting
from stretching and triangulating, can be so numbered that, in removing
them in the right order, V � E + Fwill not alter until we reach the last
triangle.’49 I wonder why you did not propose this at once? If you really
took your method seriously, you would have turned all the lemmas
immediately into conditions. Why this ‘piecemeal engineering’?50

alpha: Tory turned into revolutionary! Your suggestion strikes me as
rather Utopian. For there aren’t just three lemmas. Why not add, with
many others, conditions like ‘(4) if 1 + 1 = 2 ‘, and ‘(5) if all triangles
have three vertices and three edges’, since we certainly use these
lemmas? I propose that we turn only those lemmas into conditions for
which a counterexample has been found.

gamma: This seems to me too accidental to be accepted as a
methodological rule. Let us build in all those lemmas against which we
can expect counterexamples, i.e. which are not obviously,
indubitably true.

delta: Well, does our third lemma strike anyone as obvious? Let us turn
it into a third condition.

49 This last lemma is unnecessarily strong. It would be enough for the purpose of the proof
to replace it by the lemma that ‘for the plane triangular network resulting from stretching
and triangulating V � E + F = 1’. Cauchy does not seem to have noticed the difference.

50 The students are obviously quite knowledgeable about recent social philosophy. The term
was coined by K. R. Popper ([1957], p. 64).
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gamma: What if the operations expressed by the lemmas of our proof are
not all independent? If some of the operations can be performed, it may
be that the rest must necessarily be able to be performed. I, for one,
suspect that if a polyhedron is simple then there always exists an order of
deletion of triangles in the resulting flat network such that V � E + F will not
alter. If there is, then incorporating the first lemma into the conjecture
would exempt us from incorporating the third.

delta: You claim that the first condition implies the third. Can you
prove this?

epsilon: I can.51

alpha: The actual proof, however interesting, will not help us in solving
our problem: how far should we go in improving our conjecture? I may
admit that you have the proof you claim to have – but that will only
decompose this third lemma into some new sub-lemmas. Should we
now turn these into conditions? Where should we stop?

kappa: There is an infinite regress in proofs; therefore proofs do not
prove. You should realise that proving is a game, to be played while
you enjoy it and stopped when you get tired of it.

epsilon: No, this is no game but a serious matter. The infinite regress can
be halted by trivially true lemmas, which need not be turned into
conditions.

gamma: This is just what I meant. We do not turn into conditions those
lemmas which can be proved from trivially true principles. Nor do we
incorporate those lemmas which can be proved – possibly with the help
of such trivially true principles – from previously specified lemmas.

alpha: Agreed. We can then stop improving our conjecture after we
have turned the two non-trivial lemmas into conditions. In fact I do
think that this method of improvement, by lemma-incorporation, is
flawless. It seems to me that it not only improves but perfects the
conjecture. And I learned something important from it: that it is wrong
to assert that ‘the aim of a “problem to prove” is to show conclusively
that a certain clearly stated assertion is true, or else to show that it is
false’.52 The real aim of a ‘problem to prove’ should be to improve – in
fact, perfect – the original, ‘naive’ conjecture into a genuine ‘theorem’.

51 Actually, such a proof was first proposed by H. Reichardt ([1941], p. 23). Also cf. B. L. van
der Waerden [1941]. Hilbert and Cohn-Vossen were satisfied that the truth of Gamma’s
assertion is ‘easy to see’ ([1932], English translation, p. 292).

52 Pólya ([1945], p. 142).
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Our naive conjecture was ‘All polyhedra are Eulerian.’
The monster-barring method defends this naive conjecture by

reinterpreting its terms in such a way that at the end we have a monster-
barring theorem: ‘All polyhedra are Eulerian.’ But the identity of the
linguistic expressions of the naive conjecture and the monster-barring
theorem hides, behind surreptitious changes in the meaning of the
terms, an essential improvement.

The exception-barring method introduced an element which is really
extraneous to the argument: convexity. The exception-barring theorem
was: ‘All convex polyhedra are Eulerian.’

The lemma-incorporating method relied on the argument – i.e. on the
proof – and on nothing else. It virtually summed up the proof in the lemma-
incorporating theorem: ‘All simple polyhedra with simply-connected
faces are Eulerian.’

This shows that (now I use the term ‘proving’ in the traditional sense)
one does not prove what one has set out to prove. Therefore no proof should
conclude with the words: ‘Quod erat demonstrandum.’53

beta: Some people say that theorems precede proofs in the order of
discovery: ‘You have to guess a mathematical theorem before you prove
it.’ Others deny this, and claim that discovery proceeds by drawing
conclusions from a specified set of premisses and noting the interesting
ones – if you are lucky enough to find any. Or, to use a delightful
metaphor of a friend of mine, some say that the heuristic ‘zip fastener’
in a deductive structure goes upwards from the bottom – the
conclusion – to the top – the premisses,54 others say that it goes
downwards from the top to the bottom. What is your position?

alpha: That your metaphor is inapplicable to heuristic. Discovery does
not go up or down, but follows a zig-zag path: prodded by
counterexamples, it moves from the naive conjecture to the premisses
and then turns back again to delete the naive conjecture and replace it
by the theorem. Naive conjecture and counterexamples do not appear in
the fully fledged deductive structure: the zig-zag of discovery cannot be
discerned in the end-product.

teacher: Very good. But let us add a note of caution. The theorem does
not always differ from the naive conjecture. We do not necessarily

53 This last sentence is from Alice Ambrose’s interesting paper ([1959], p. 438).
54 Cf. footnote 7. The metaphor of the ‘zip fastener’ was invented by R. B. Braithwaite;

however, he talks only of ’logical’ and ‘epistemological’ zip fasteners, but not of ’heuristic’
ones ([1953], esp. p. 352).
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improve by proving. Proofs improve when the proof-idea discovers
unexpected aspects of the naive conjecture which then appear in the
theorem. But in mature theories this might not be the case. It is certainly
the case in young, growing theories. This intertwining of discovery and
justification, of improving and proving is primarily characteristic of the
latter.

kappa [aside]: Mature theories can be rejuvenated. Discovery always
supersedes justification.

sigma: This classification corresponds to mine! My first type of
propositions was the mature type, the third the growing type. . .

gamma [interrupts him]: The theorem is false! I found a counterexample
to it.

5. Criticism of the proof-analysis by counterexamples which are global
but not local. The problem of rigour

(a) Monster-barring in defence of the theorem
gamma: I have just discovered that my Counterexample 5, the cylinder,

refutes not only the naive conjecture but also the theorem. Although it
satisfies both lemmas, it is not Eulerian.

alpha: Dear Gamma, do not become a crank. The cylinder was a joke,
not a counterexample. No serious mathematician will take the cylinder
for a polyhedron.

gamma: Why didn’t you protest against my Counterexample 3, the
urchin? Was that less ‘crankish’ than my cylinder?55 Then of course you
were criticising the naive conjecture and welcomed refutations.Now you
are defending the theorem and abhor refutations! Then, when a
counterexample emerged, your question was: what is wrong with the
conjecture? Now your question is: what is wrong with the counterexample?

delta: Alpha, you have turned into a monster-barrer! Aren’t you
embarrassed?56

55 The urchin and the cylinder were discussed above, pp. 18 and 33.
56 Monster-barring in defence of the theorem is an important pattern in informal mathemat-

ics: ‘What is wrong with the examples in which Euler’s formula fails? Which geometrical
conditions, rendering more precise the meaning of F, V, and E, would ensure the validity
of Euler’s formula?’ (Pólya [1954], 1, exercise 29). The cylinder is given in exercise 24. The
answer is: ‘. . . an edge . . . should terminate in corners . . .’ (p. 225). Pólya formulates this
generally: ‘The situation, not infrequent in mathematical research is this: A theorem has
been already formulated but we have to give a more precise meaning to the terms in
which it is formulated in order to render it strictly correct’ (p. 55).
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(b) Hidden lemmas
alpha: I am. I may have been a bit rash. Let me think. There are three

possible types of counterexamples. We have already discussed the first,
which is local but not global – it certainly would not refute the theorem.57

The second, which is both global and local, does not require any action: far
from refuting the theorem, it confirms it. Now there may be a third type,
which is global but not local. This would refute the theorem. I did not
think that this was possible. Now Gamma claims that the cylinder is one.
If we do not want to reject it as a monster, we have to admit that it is a
global counterexample: V� E + F = 1. But is it not of the second harmless
type? I bet it does not satisfy at least one of the lemmas.

gamma: Let us check. It certainly satisfies the first lemma: if I remove the
bottom face, I can easily stretch the rest on to the blackboard.

alpha: But if you happen to remove the jacket, the thing falls into two
pieces!

gamma: So what? The first lemma required that the polyhedron be
‘simple’, i.e. ‘after having had a face removed, it can be stretched on to a
plane’. The cylinder satisfies this requirement even if you start by
removing the jacket. What you are claiming is that the cylinder should
satisfy an additional lemma, namely that the resulting plane network also be
connected. But who has ever stated this lemma?

alpha: Everybody has interpreted ‘stretched’ as ‘stretched in one piece’,
‘stretched without tear’ . . . We decided not to incorporate the third
lemma because of Epsilon’s proof that it followed from the first one.58

But just have a look at that proof: it hinges on the assumption that the
result of the stretching is a connected network! Otherwise for the
triangulated network V � E + F would not be 1.

gamma: Why then didn’t you insist on stating it explicitly?
alpha: Because we took it to be stated implicitly.
gamma: You, for one, certainly did not. For you proposed that ‘simple’

stand for ‘pumpable into a ball’.59 The cylinder can be pumped into a
ball – so according to your interpretation it does comply with the
first lemma.

alpha: Well . . . But you have to agree that it does not satisfy the second
lemma, namely, that ‘any face dissected by a diagonal falls into two pieces’.

57 Local but not global counterexamples were discussed on pp. 10–12. 58 See p. 43.
59 See p. 35.
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Howwill you triangulate the circle or the jacket? Are these faces simply-
connected?

gamma: Of course they are.
alpha: But on the cylinder one cannot draw diagonals at all! A diagonal

is an edge that connects two non-adjacent vertices. But your cylinder
has no vertices!

gamma: Don’t get upset. If you want to show that the circle is not simply-
connected, draw a diagonal which does not create a new face.

alpha: Don’t be funny; you know very well that I cannot.
gamma: Then would you admit that ‘there is a diagonal of the circle that

does not create a new face’ is a false statement?
alpha: Yes, I would. What are you up to now?
gamma: Then you are bound to admit that its negation is true, namely,

that ‘all diagonals of the circle create a new face’, or, that ‘the circle is
simply-connected’.

alpha: You cannot give an instance of your lemma that ’all diagonals of
the circle create a new face’ – therefore it is not true, but meaningless.
Your conception of truth is false.

kappa [aside]: First they quarrelled about what is a polyhedron, now
about what is truth!60

gamma: But you already admitted that the negation of the lemma was
false! Or can a proposition A be meaningless while Not-A is meaningful
and false? Your conception of meaning does not make sense!

Mind you, I see your difficulty; but we can overcome it by a slight
reformulation. Let us call a face simply-connected if ‘for all x, if x is a
diagonal then x cuts the face into two’. Neither the circle nor the jacket can
have diagonals, so that in their case, whatever x is, the antecedent will
always be false. Therefore the conditional will be instantiated by any
object, and will be both meaningful and true. Or, both the circle and the
jacket are simply-connected – the cylinder satisfies the second lemma.

alpha: No! If you cannot draw diagonals and thereby triangulate the
faces, you will never arrive at a flat triangular network and you will
never be able to conclude the proof. How can you then claim that the
cylinder satisfies the second lemma? Don’t you see that there must be
an existential clause in the lemma? The correct interpretation of the

60 Gamma’s vacuously true statements were a major innovation of the nineteenth century. Its
problem-background has not yet been unfolded.
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simply-connectedness of a face must be: ‘for all x, if x is a diagonal, then x
cuts the face into two; and there is at least one x that is a diagonal’. Our
original formulation may not have spelt it out but it was there as an
unconsciously made ’hidden assumption’.61 All the faces of the cylinder
fail to meet it; therefore the cylinder is a counterexample which is both
global and local, and it does not refute the theorem.

gamma: First you modified the stretching lemma by introducing
‘connectedness’, now the triangulating lemma by introducing your
existential clause! And all this obscure talk about ‘hidden assumptions’
only hides the fact that my cylinder made you invent these
modifications.

alpha: What obscure talk? We already agreed to omit, that is, ‘hide’,
trivially true lemmas.62 Why then should we state and incorporate
trivially false lemmas – they are just as trivial and just as boring! Keep
them in your mind (en thyme) but do not state them. A hidden lemma is
not an error: it is shrewd shorthand pointing to our background
knowledge.

kappa [aside]: Background knowledge is where we assume that we know
everything but in fact know nothing.63

61 ‘Euclid . . . employs an axiom of which he is wholly unconscious’ (Russell [1903], p. 407).
‘To make [sic] a hidden assumption’ is a common phiase among mathematicians and
scientists. See also Gamow’s discussion of Cauchy’s proof ([1953], p. 56) or Eves and
Newsom on Euclid ([1958], p. 84).

62 See pp. 43–4.
63 Good textbooks in informal mathematics usually specify their ‘shorthand’, i.e. those

lemmas, either true or false, which they regard as so trivial as not to be worth mentioning.
The standard expression for this is ‘we assume familiarity with lemmas of type x’. The
amount of assumed familiarity decreases as criticism turns background knowledge into
knowledge. Cauchy, e.g., did not even notice that his celebrated [1821] presupposed
‘familiarity’ with the theory of real numbers. He would have rejected as a monster any
counterexample which made lemmas about the nature of irrational numbers explicit. Not
so Weierstrass and his school: textbooks of informal mathematics now contain a new
chapter on the theory of real numbers where these lemmas are collected. But in their
introductions ‘familiarity with the theory of rational numbers’ is usnally assumed. (See e.g.
Hardy’s Pure Mathematics from the second edition (1914) onwards – the first edition still
relegated the theory of real numbers to background knowledge; or Rudin [1953].) More
rigorous textbooks narrow down background knowledge even further: Landau, in the
introduction to his famous [1930], assumes familiarity only with ‘logical reasoning and
German language’. It is ironical that at the very same time Tarski showed that the
absolutely trivial lemmas thus omitted may not only be false but inconsistent – German
being a semantically closed language. One wonders when ‘the author confesses ignorance
about the field x’ will replace the authoritarian euphemism ‘the author assumes familiarity
with the field x’: surely only when it is recognised that knowledge has no foundations.
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gamma: If you did make conscious assumptions, they were that (a)
removing a face always leaves a connected network and (b) any non-
triangular face can be dissected into triangles by diagonals. While they
were in your subconscious, they were listed as trivially true – the cylinder
however made them somersault into your conscious list as trivially false.
Before being confronted by the cylinder you could not even conceive
that the two lemmas could be false. If you now say that you did, then
you are rewriting history to purge it from error.64

theta: Not long ago, Alpha, you ridiculed the ‘hidden’ clauses
which cropped up in Delta’s definitions after each refutation. Now it is
you who make up ‘hidden’ clauses in the lemmas after each refutation,
it is you who shift your ground and try to hide it to save face. Aren’t
you embarrassed?

kappa: Nothing amuses me more than the dogmatist at bay. After
donning the militant sceptic’s robe to demolish a lesser brand of
dogmatism, Alpha becomes frantic when he in turn is cornered by the
same sort of sceptical arguments. He now plays fast and loose: trying to
fight off Gamma’s counterexample first with the defence-mechanism he
himself had exposed and forbidden (monster-barring), then by
smuggling a reserve of ’hidden lemmas’ into the proof and
corresponding ‘hidden conditions’ into the theorem. What is the
difference?

teacher: The trouble with Alpha was certainly the dogmatist turn in his
interpretation of lemma-incorporation. He thought that a careful

64 When it is first discovered, the hidden lemma is considered an error. When J. C. Becker
first pointed out a ‘hidden’ (stillschweigend) assumption in Cauchy’s proof (he quoted the
proof second-hand from Baltzer’s [1862]), he called it an ‘error’ ([1869a], pp. 67–8). He
drew attention to the fact that Cauchy thought that all polyhedra were simple: his lemma
was not only hidden but also false. Historians however cannot imagine that great
mathematicians should make such errors. A veritable programme of how to falsify
history can be found in Poincaré’s [1908]: ‘A demonstration which is not rigorous is
nothingness. I think no one will contest this truth. But if it were taken too literally, we
should be led to conclude that before 1820, for example, there was no mathematics: this
would be manifestly excessive; the geometers of that time understood voluntarily what
we explain by prolix discourse. This does not mean that they did not see it at all; but they
passed over it too rapidly, and to see it well would have necessitated taking the pains to
say it’ (p. 374). Becker’s report about Cauchy’s ‘error’ had to be rewritten 1984-wise:
‘doubleplusungood refs unerrors rewrite fullwise’. The rewriting was done by E. Steinitz
who insisted that ‘the fact that the theorem was not generally valid could not possibly
remain unnoticed’ ([1914–31], p. 20). Poincaré himself applied his programme to the
Euler-theorem:’It is known that Euler proved that V � E + F = 2 for convex polyhedra’
([1893]) – Euler of course stated his theorem for all polyhedra.
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inspection of the proof would yield a perfect proof-analysis containing
all the false lemmas (just as Beta thought he could enumerate all the
exceptions). He thought that by incorporating them he could attain not
only an improved theorem, but a perfected theorem,65 without bothering
about counterexamples. The cylinder showed him to be wrong but,
instead of admitting it, he now wants to call a proof-analysis complete if
it contains all the relevant false lemmas.

(c) The method of proof and refutations
gamma: I propose to accept the cylinder as a genuine counterexample to

the theorem. I invent a new lemma (or lemmas) that will be refuted by it
and add the lemma(s) to the original list. This of course is exactly what
Alpha did. But instead of ‘hiding’ them so that they become hidden,
I announce them publicly.

Now the cylinder which was a puzzling, dangerous global but not
local counterexample (the third type) in respect of the old proof-analysis
and of the corresponding old theorem, will be a harmless, global and
local counterexample (the second type) in respect of the new proof-
analysis and the corresponding new theorem.

Alpha thought that his classification of counterexamples was
absolute – but in fact it was relative to his proof-analysis. As proof-
analysis grows, counterexamples of the third type turn into
counterexamples of the second type.

lambda: That is right. A proof-analysis is ‘rigorous’ or ‘valid’ and the
corresponding mathematical theorem true if, and only if, there is no
‘third-type’ counterexample to it. I call this criterion the Principle of
Retransmission of Falsity because it demands that global
counterexamples be also local: falsehood should be retransmitted from
the naive conjecture to the lemmas, from the consequent of the theorem
to its antecedent. If a global but not local counterexample violates this
principle, we restore it by adding a suitable lemma to the proof-
analysis. The Principle of Retransmission of Falsity is therefore a
regulative principle for proof-analysis in statu nascendi, and a global but
not local counterexample is a fermenting agent in the growth of proof-
analysis.

65 See p. 32.
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gamma: Remember, even before finding a single refutation we managed
to pick out three suspicious lemmas and go ahead with the proof-
analysis!

lambda: That is true. Proof-analysis may start not only under the
pressure of global counterexamples but also when people have already
learned to be on guard against ‘convincing’ proofs.66

In the first case all global counterexamples appear as counterexamples
of the third type, and all the lemmas start their careers as ‘hidden
lemmas’. They lead us to a gradual build-up of the proof-analysis and
so turn one by one into counterexamples of the second type.

In the second case – when we are already in a suspicious mood and
look out for refutations – we may arrive at an advanced proof-analysis
without any counterexamples. Then there are two possibilities. The first
possibility is that we succeed in refuting – by local counterexamples – the
lemmas listed in our proof-analysis. We may very well find that these
are also global counterexamples.

alpha: This is how I discovered the picture-frame: looking for a
polyhedron that, after having a face removed, could not be stretched
flat onto a plane.

sigma: Then not only do refutations act as fermenting agents for proof-
analysis, but proof-analysis may act as a fermenting agent for
refutations! What an unholy alliance between seeming enemies!

lambda: That is right. If a conjecture seems very plausible or even self-
evident, one should prove it: one may find that it hinges on very
sophisticated and dubious lemmas. Refuting the lemmas may lead to
some unexpected refutation of the original conjecture.

sigma: To proof-generated refutations!
gamma: Then ‘the virtue of a logical proof is not that it compels belief,

but that it suggests doubts’.67

lambda: But let me come back to the second possibility: when we do not
find any local counterexamples to the suspected lemmas.

66 Our class was a rather advanced one – Alpha, Beta, and Gamma suspected three lemmas
when no global counterexamples turned up. In actual history proof-analysis came many
decades later: for a long period the counterexamples were either hushed up or exorcised
as monsters, or listed as exceptions. The heuristic move from the global counterexample
to proof-analysis – the application of the Principle of Retransmission of Falsity – was
virtually unknown in the informal mathematics of the early nineteenth century.

67 H. G. Forder [1927], p. viii. Or: ‘It is one of the chief merits of proofs that they instil a
certain scepticism as to the result proved.’ (Russell [1903], p. 360. He also gives an
excellent example.)
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sigma: That is, when refutations do not assist proof-analysis! What
would happen then?

lambda: We would be branded cranks. The proof would acquire
absolute respectability and the lemmas would shake off suspicion. Our
proof-analysis would soon be forgotten.68 Without refutations one
cannot sustain suspicion: the searchlight of suspicion soon switches off
if a counterexample does not reinforce it, directing the limelight of
refutation onto a neglected aspect of the proof that had scarcely been
noticed in the twilight of ‘trivial truth’.

68 It is well known that criticism may cast doubt on, and eventually refute, ‘a priori truths’
and so turn proofs into mere explanations. That lack of criticism or of refutation may turn
implausible conjectures into ‘a priori truths’ and so tentative explanations into proofs is
not so well known but just as important. Two major examples of this pattern are the
emergence and fall of Euclid and Newton. The story of their fall is well known, but the
story of their emergence is usually misrepresented.

Euclid’s geometry seems to have been proposed as a cosmological theory (cf. Popper
[1952], pp. 187–9). Both its ‘postulates’ and ‘axioms’ (or ‘common notions’) were proposed
as bold, provocative propositions, challenging Parmenides and Zeno, whose doctrines
entailed not only the falsity, but even the logical falsity, the inconceivability, of these
‘postulates’. Only later were the ‘postulates’ taken to be indubitably true and the bold
anti-Parmenidean ‘axioms’ (such as ‘the whole is greater than the part’) taken to be so
trivial that they were omitted in later proof-analysis and turned into ‘hidden lemmas’.
This process started with Aristotle: he branded Zeno a quarrelsome crank, and his
arguments ‘sophistry’. This story was recently unfolded in exciting detail by Árpád
Szabó ([1960], pp. 65–84). Szabó showed that in Euclid’s time the word ‘axiom’ – like
‘postulate’ – meant a proposition in the critical dialogue (dialectic) put forward to be
tested for consequences without being admitted as true by the discussion-partner. It is the
irony of history that its meaning was turned upside down. The peak of Euclid’s authority
was reached in the Age of Enlightenment. Clairaut urges his colleagues not to ‘obscure
proofs and disgust readers’ by stating evident truths: Euclid did so only in order to
convince ‘obstinate sophists’ ([1741], pp. x and xi).

Again, Newton’s mechanics and theory of gravitation was put forward as a daring guess,
which was ridiculed and called ‘occult’ by Leibniz and suspected even by Newton
himself. But a few decades later – in the absence of refutations – his axioms came to be
taken as indubitably true. Suspicions were forgotten, critics branded ‘eccentric’ if not
‘obscurantist’; some of his most doubtful assumptions came to be regarded as so trivial
that textbooks never even stated them. The debate – from Kant to Poincaré – was no
longer about the truth of Newtonian theory but about the nature of its certainty. (This
volte face in the appraisal of Newtonian theory was first pointed out by Karl Popper – see
his [1963a], passim.)

The analogy between political ideologies and scientific theories is then more far-
reaching than is commonly realised: political ideologies which first may be debated
(and perhaps accepted only under pressure) may turn into unquestioned background
knowledge even in a single generation: the critics are forgotten (and perhaps executed)
until a revolution vindicates their objections.
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All this shows that one cannot put proof and refutations into separate
compartments. This is why I would propose to rechristen our
‘method of lemma-incorporation’ the ‘method of proof and refutations’. Let me
state its main aspects in three heuristic rules:
Rule 1. If you have a conjecture, set out to prove it and to refute it. Inspect the
proof carefully to prepare a list of non-trivial lemmas (proof-analysis); find
counterexamples both to the conjecture (global counterexamples) and to the
suspect lemmas (local counterexamples).
Rule 2. If you have a global counterexample discard your conjecture, add to
your proof-analysis a suitable lemma that will be refuted by the
counterexample, and replace the discarded conjecture by an improved
one that incorporates that lemma as a condition.69 Do not allow a
refutation to be dismissed as a monster.70 Try to make all’ hidden lemmas’
explicit.71

Rule 3. If you have a local counterexample, check to see whether it is not also a
global counterexample. If it is, you can easily apply Rule 2.

(d) Proof versus proof-analysis. The relativisation of the concepts of theorem
and rigour in proof-analysis.

alpha: What did you mean by ‘suitable’ in your Rule 2?
gamma: It is completely redundant. Any lemma which is refuted by the

counterexample in question can be added – for any such lemma will
restore the validity of the proof-analysis.

lambda: What! So a lemma like ‘All polyhedra have at least 17 edges’
would take care of the cylinder! And any other random ad hoc
conjecture would do just as well, so long as it happened to be refuted by
the counterexample.

gamma: Why not?
lambda: We already criticised monster-barrers and exception-barrers for

forgetting about proofs.72 Now you are doing the same, inventing a real
monster: proof-analysis without proof ! The only difference between you

69 This rule seems to have been stated for the first time by P. L. Seidel ([1847], p. 383). See
below, pp. 144–5.

70 ‘I have the right to put forward any example that satisfies the conditions of your
argument and I strongly suspect that what you call bizarre, preposterous examples are
in fact embarrassing examples, prejudicial to your theorem’ (G. Darboux [1874b]).

71 ‘I am terrified by the hoard of implicit lemmas. It will take a lot of work to get rid of them’

(G. Darboux [1883]).
72 See pp. 31 and 39.
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and the monster-barrer is that you would have Delta make his arbitrary
definitions explicit and incorporate them into the theorem as lemmas.
And there is no difference between exception-barring and your proof-
analysing. The only safeguard against such ad hoc methods is to use
suitable lemmas, i.e. lemmas in accordance with the spirit of the
thought-experiment! Or would you drop the beauty of the proofs from
mathematics and replace it by a silly formal game?

gamma: Better than your ‘spirit of the thought-experiment’! I am
defending the objectivity of mathematics against your psychologism.

alpha: Thank you, Lambda, you restated my case: one does not invent a
new lemma out of the blue to cope with a global but not local
counterexample: rather, one inspects the proof with increased care and
discovers the lemma there. So I did not, dear Theta, ‘make up’ hidden
lemmas, and I did not, dear Kappa, ‘smuggle’ them into the proof. The
proof contains all of them – but a mature mathematician understands
the entire proof from a brief outline. We should not confuse infallible
proof with inexact proof-analysis. There is still the irrefutable master-
theorem: ‘All polyhedra on which one can perform the thought-experiment, or
briefly, all Cauchy-polyhedra, are Eulerian.’ My approximate proof-
analysis drew the borderline of the class of Cauchy-polyhedra with a
pencil that – I admit – was not particularly sharp. Now eccentric
counterexamples teach us to sharpen our pencil. But first: no pencil is
absolutely sharp (and if we overdo sharpening it will break); secondly,
pencil-sharpening is not creative mathematics.

gamma: I am lost.What is your position? First you were a champion of
refutations.

alpha: Oh, my growing pains! Mature intuition brushes
controversy aside.

gamma: Your first mature intuition led you to your ‘perfect proof-
analysis’. You thought that your ‘pencil’ was absolutely sharp.

alpha: I forgot about the difficulties of linguistic communication –

especially with pedants and sceptics. But the heart of mathematics is the
thought-experiment – the proof. Its linguistic articulation – the proof-
analysis – is necessary for communication but irrelevant. I am interested
in polyhedra, you in language. Don’t you see the poverty of your
counterexamples? They are linguistic, not polyhedral.

gamma: Then refuting a theorem only betrays our failure to grasp the
hidden lemmas in it? So a ‘theorem’ is meaningless unless we
understand its proof?
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alpha: Since the vagueness of language makes the rigour of proof-analysis
unattainable, and turns theorem-formation into an unending process,
why bother about the theorem? Working mathematicians certainly do
not. If yet another petty ‘counterexample’ is produced they do not
admit that their theorem is refuted, but at most that its ‘domain of
validity’ should be suitably narrowed down.

lambda: So you are not interested either in counterexamples, or in proof-
analysis, or in lemma-incorporation?

alpha: That is right. I reject all your rules. I propose one single rule
instead: Construct rigorous (crystal-clear) proofs.

lambda: You argue that the rigour of proof-analysis is unattainable.
Is the rigour of proof attainable? Cannot ‘crystal-clear’ thought-
experiments lead to paradoxical or even contradictory results?

alpha: Language is vague, but thought can achieve absolute rigour.
lambda: But surely ‘at each stage of evolution our fathers also thought

they had reached it? If they deceived themselves, do we not likewise
cheat ourselves?’73

alpha: ‘Today absolute rigour is attained.’74

[Giggling in the classroom.75]
gamma: This theory of ’crystal-clear’ proof is sheer psychologism!76

alpha: Better than the logico-linguistic pedantry of your proof-analysis!77

73 Poincaré [1905], p. 214.
74 Ibid., p. 216. Changes in the criterion of ‘rigour of the proof’engender major revolutions in

mathematics. Pythagoreans held that rigorous proofs have to be arithmetical. However,
they discovered a rigorous proof that

ffiffiffi
2

p
was ’irrational’. When this scandal eventually

leaked out, the criterion was changed: arithmetical ‘intuition’ was discredited and geo-
metrical intuition took its place. This meant a major and complicated reorganisation of
mathematical knowledge (e.g. the theory of proportions). In the eighteenth century
‘misleading’ figures brought geometrical proofs into disrepute, and the nineteenth cen-
tury saw arithmetical intuition re-enthroned with the help of the cumbersome theory of
real numbers. Today the main dispute is about what is rigorous and what not in set-
theoretical and metamathematical proofs, as shown by the well-known discussions about
the admissibility of Zermelo’s and Gentzen’s thought-experiments.

75 As was already pointed out, the class is very advanced.
76 The term ‘psychologism’ was coined by Husserl ([1900]). For an earlier ‘criticism’ of

psychologism see Frege [1893], pp. xv–xvi. Modern intuitionists (unlike Alpha) openly
embrace psychologism: ‘A mathematical theorem expresses a purely empirical fact,
namely the success of a certain construction . . . mathematics . . . is a study of certain
functions of the human mind’ (Heyting [1956], pp. 8 and 10). How they reconcile
psychologism with certainty is their well-kept secret.

77 That even if we had perfect knowledge we could not perfectly articulate it, was a
commonplace for ancient sceptics (see Sextus Empiricus [c. 190], I. 83–8), but was forgot-
ten in the Enlightenment. It was rediscovered by the intuitionists: they accepted Kant’s
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lambda: Swearwords apart, I too am sceptical about your conception of
mathematics as ‘an essentially languageless activity of the mind’.78

How can an activity be true or false? Only articulated thought can try for
truth. Proof cannot be enough: we also have to state what the proof
proved. The proof is only a stage of the mathematician’s work which
has to be followed by proof-analysis and refutations and concluded by
the rigorous theorem. We have to combine the ‘rigour of proof’ with the
‘rigour of proof-analysis’.

alpha: Are you still hoping that at the end you will arrive at a perfectly
rigorous proof-analysis? If so, tell me why you did not start by
formulating your new theorem ‘stimulated’ by the cylinder? You only
indicated it. Its length and clumsiness would have made us laugh in
despair. And this only after the first of your new counterexamples! You
replaced our original theorem by a succession of ever more precise
theorems – but only in theory. What about the practice of this
relativisation? Ever more eccentric counterexamples will be countered
by ever more trivial lemmas – yielding a ‘vicious infinity’79 of ever
longer and clumsier theorems.80 Criticism was felt to be invigorating
while it seemed to lead to truth. But it is certainly frustrating when it
destroys any truth whatsoever and drives us endlessly without
purpose. I stop this vicious infinity in thought – you will never stop it in
language.

gamma: But I never said that there have to be infinitely many
counterexamples. At a certain point we may reach truth and then the

philosophy of mathematics but pointed out that ‘between the perfection of mathematics
proper and the perfection of mathematical language no clear connection can be seen’
(Brouwer [1952], p. 140). ‘Expression by spoken or written word – though necessary for
communication – is never adequate . . . The task of science is not to study languages, but
to create ideas’ (Heyting [1939], pp. 74–5).

78 Brouwer [1952], p. 141.
79 English has the term ‘infinite regress’, but this is only a special case of ’vicious infinity’

(schlechte Unendlichkeit) and would not apply here; Alpha obviously coined this phrase
with ‘vicious circle’ in mind.

80 Usually mathematicians avoid long theorems by the alternative device of long definitions,
so that in the theorems only the defined terms (e.g. ‘ordinary polyhedron’) appear – this is
more economical since one definition abbreviates many theorems. Even so, the definitions
take up enormous space in ‘rigorous’ expositions, though the monsters which lead to
them are seldommentioned. The definition of an ‘Euler polyhedron’ (with the definitions of
some of the defining terms) takes about 25 lines in Forder [1927] (pp. 67 and 29); the
definition of ‘ordinary polyhedron’ in the 1962 edition of the Encyclopaedia Britannica fills
45 lines.
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flow of refutations will stop. But of course we shall not know when.
Only refutations are conclusive – proofs are a matter of psychology.81

lambda: I still trust that the light of absolute certainty will flash up when
refutations peter out!

kappa: But will they? What if God created polyhedra so that all true
universal statements about them – formulated in human language – are
infinitely long? Is it not blasphemous anthropomorphism to assume
that (divine) true theorems are of finite length?

Be frank: for some reason or other you are all bored with refutations
and piecemeal theorem-formation. Why not call it a day and stop the
game? You already gave up ‘Quod erat demonstrandum’. Why not give
up ‘Quod erat demonstratum’ too? Truth is only for God.

theta [aside]: A religious sceptic is the worst enemy of science!
sigma: Let’s not overdramatise! After all, only a narrow penumbra of

vagueness is at stake. It is simply that, as I said before, not all propositions
are true or false. There is a third class which I would now call ‘more or less
rigorous’.

theta [aside]: Three-valued logic – the end of critical rationality!
sigma: . . . and we state their domain of validity with a rigour that is more

or less adequate.
alpha: Adequate for what?
sigma: Adequate for the solution of the problem which we want to solve.
theta [aside]: Pragmatism! Has everybody lost interest in truth?
kappa: Or adequate for the Zeitgeist! ‘Sufficient unto the day is the rigour

thereof.’82

theta: Historicism! [Faints.]
alpha: Lambda’s rules for ‘rigorous proof-analysis’ deprive mathematics

of its beauty, present us with the hairsplitting pedantry of long, clumsy
theorems filling dull thick books, and will eventually land us in vicious
infinity. Kappa’s escape-route is convention, Sigma’s mathematical
pragmatism. What a choice for a rationalist!

81 ‘Logic makes us reject certain arguments, but it cannot make us believe any argument’
(Lebesgue [1928], p. 328). *Editors’ note: It should be pointed out that Lebesgue’s state-
ment, taken literally, is false. Modern logic has provided us with a precise characterisation
of validity, which, it can be shown, some arguments do satisfy. Thus logic certainly can
make us believe in an argument, though it may not make us believe in the conclusion of a
valid argument – for we may not believe one or more of the premisses.

82 E. H. Moore [1902], p. 411.
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gamma: So a rationalist ought to relish Alpha’s ‘rigorous proofs’,
inarticulate intuition, ‘hidden lemmas’, derision of the Principle of
Retransmission of Falsity, and elimination of refutations? Should
mathematics have no relation to criticism and logic?

beta: Whatever the case, I am fed up with all this inconclusive verbal
quibble. I want to do mathematics and I am not interested in the
philosophical difficulties of justifying its foundations. Even if reason
fails to provide such justification my natural instinct reassures me.83

I understand Omega has an interesting collection of alternative proofs –
I would rather listen to him.

omega: But I shall put them into a ‘philosophical’ framework!
beta: I don’t mind packing if there is something else in the packet.

Note. In this section I have tried to show how the emergence of mathemat-
ical criticism has been the driving force in the search for the ‘foundations’
of mathematics.

The distinction that we made between proof and proof-analysis and the
corresponding distinction between the rigour of proof and the rigour of proof-
analysis seems to be crucial. About 1800 the rigour of proof (crystal-clear
thought-experiment or construction) was contrasted with muddled
argument and inductive generalisation. This was what Euler meant by
‘rigida demonstratio’, and Kant’s idea of infallible mathematics too was based
on this concept (see his paradigm case of a mathematical proof in his [1781],
pp. 716–17). It was also thought that one proves what one has set out
to prove. It did not occur to anybody that the verbal articulation of a
thought-experiment involves any real difficulty. Aristotelian formal logic
andmathematicswere two completely separate disciplines –mathematicians
considered the former as utterly useless. The proof or thought-experiment
carried full conviction without any deductive pattern or ‘logical’ structure.

In the early nineteenth century the flood of counterexamples brought
confusion. Since proofs were crystal-clear, refutations had to be miraculous

83 ‘Nature confutes the sceptics, reason confutes the dogmatists’ (Pascal [1659], pp. 1206–7).
Few mathematicians would confess – like Beta – that reason is too weak to justify itself.
Most of them adopt some brand of dogmatism, historicism or confused pragmatism and
remain curiously blind to its untenability; for example: ‘Mathematical truths are in fact the
prototype of the completely incontestable . . . But the rigor of maths is not absolute; it is
in a process of continual development; the principles of maths have not congealed once and for
all but have a life of their own and may even be the subject of scientific quarrels.’
(A. D. Aleksandrov [1956], p. 7.) (This quotation may remind us that dialectic tries to
account for change without using criticism: truths are ‘in continual development’ but
always ‘completely incontestable’.)
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freaks, to be completely segregated from the indubitable proofs. Cauchy’s
revolution of rigour rested on the heuristic innovation that the mathematician
should not stop at the proof: he should go on and find out what he has
proved by enumerating the exceptions, or rather by stating a safe domain
where the proof is valid. But neither Cauchy – nor Abel – saw any connection
between the two problems. It never occurred to them that if they discover an
exception, they should have another look at the proof. (Others practised
monster-barring, monster-adjustment or even ‘turning a blind eye’ –

but all agreed that the proof was taboo and had nothing to do with the
‘exceptions’.)

The nineteenth-century union of logic and mathematics had two main
sources: Non-Euclidean geometry and the Weierstrassian revolution of
rigour. They brought about the integration of proof (thought-experiment)
and refutations and started to develop proof-analysis, gradually introdu-
cing deductive patterns in the proof-thought-experiment. What we called
the ‘method of proof and refutations’was their heuristic innovation: it united
logic and mathematics for the first time. Weierstrassian rigour triumphed over
its reactionary monster-barring and lemma-hiding opponents who used
slogans like ‘the dullness of rigour’, ‘artificiality versus beauty’, etc. The
rigour of proof-analysis superseded the rigour of proof: but most mathemat-
icians put up with its pedantry only so long as it promised them complete
certainty.

Cantor’s set-theory – with yet another crop of unexpected refutations of
‘rigorous’ theorems – turned many of the Weierstrassian Old Guard into
dogmatists, ever ready to combat the ‘anarchists’ by barring the new
monsters or referring to ‘hidden lemmas’ in their theorems which repre-
sented ‘the last word in rigour’ while still chastising the older type ‘reac-
tionaries’ for like sins.

Then some mathematicians realised that the drive for rigour of proof-
analysis in the method of proofs and refutations leads to vicious infinity.
An ‘intuitionist’ counter-revolution began: the frustrating logico-linguistic
pedantry of proof-analysiswas condemned, and new extremist standards of
rigour were invented for proofs; mathematics and logic were divorced
once more.

Logicists tried to save the marriage and foundered on the paradoxes.
Hilbertian rigour turned mathematics into a cobweb of proof-analyses
and claimed to stop their infinite regresses by crystal-clear consistency
proofs of his intuitionistic metatheory. The ‘foundational layer’, the region
of uncriticisable familiarity, was shifted into the thought-experiments of
metamathematics. (Cf. Lakatos [1962], pp. 179–84.)
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By each ‘revolution of rigour’ proof-analysis penetrated deeper into the
proofs down to the foundational layer of ‘familiar background knowledge’
(also cf. footnote 63, p. 48), where crystal-clear intuition, the rigour of the
proof, reigned supreme and criticism was banned. Thus, dijferent levels
of rigour differ only about where they draw the line between the rigour of proof-
analysis and the rigour of proof, i.e. about where criticism should stop and
justification should start. ‘Certainty is never achieved’; ‘foundations’ are
never found – but the ‘cunning of reason’ turns each increase in rigour
into an increase in content, in the scope of mathematics. But this story is
beyond our present investigation.*

6. Return to criticism of the proof by counterexamples which are local
but not global. The problem of content

(a) Increasing content by deeper proofs
omega: I like Lambda’s method of proof and refutations and I share his

faith that somehow we shall finally arrive at a rigorous proof-analysis
and thereby at a certainly true theorem. But even so, our very method

* Editors’ note. This historical note, we believe, underplays a little the achievements of the
mathematical ‘rigourists’. The drive towards ‘rigour’ in mathematics was, it eventually
transpired, a drive towards two separate goals, only one of which is attainable. These two
goals are, first, rigorously correct arguments or proofs (in which truth is infallibly trans-
mitted from premisses to conclusions) and, secondly, rigorously true axioms, or first
principles (which are to provide the original injection of truth into the system – truth
would then be transmitted to the whole of mathematics via rigorous proofs). The first of
these goals turned out to be attainable (given, of course, certain assumptions), whilst the
second proved unattainable.
Frege and Russell provided systems into which mathematics could be (fallibly) trans-

lated (see below, p. 129), and in which the rules of proof are finite in number and specified
in advance. It also turns out that one can show (it is here that the assumptions just referred
to come in) that any sentence which can be proved using these rules is a valid consequence
of the axioms of the system (i.e. that if these axioms are true, the sentence provedmust also
be true). In these systems there need be no ‘gaps’ in proofs, and whether a string of
sentences is a proof or not can be checked in a finite number of steps. (Of course, if this
checking process shows the sequence of formulae not to be a proof in the system con-
sidered, this does not establish that no genuine proof of the end formula exists within the
system. Thus, in proof checking, there is an asymmetry which operates in favour of
verification and against falsification.) There is no serious sense in which such proofs are
fallible. (It is true that it may be that everyone who ever checked some such proof made
some inexplicable error, but this is not a serious doubt. It is true that the informal (meta-)
theorem that such valid proofs transmit truth may be false – but there is no serious reason
to think it is.) But the axioms of such systems are fallible in a non-trivial sense. The attempt
to derive all of mathematics from ‘self-evident’, ‘logical’ truths, as is well known,
broke down.
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creates a new problem: proof-analysis, when increasing certainty, decreases
content. Each new lemma in the proof-analysis, each corresponding
new condition in the theorem, reduces its domain. Increasing
rigour is applied to a decreasing number of polyhedra. Does lemma-
incorporation not repeat the mistake Beta made in playing for safety?
Could we too ‘have withdrawn too radically, leaving lots of Eulerian
polyhedra outside the walls’?84 In both cases we may throw the baby
out with the bathwater. We should have a counterweight against the
content-decreasing pressure of rigour.

We have already made a few steps in this direction. Let me remind
you of two cases and re-examine them.

One was when we first came across local but not global
counterexamples.85 Gamma refuted the third lemma in our first proof-
analysis (that ‘in removing triangles from the flat triangulated networkwe
have only two possibilities: either we remove an edge or we remove
two edges and a vertex’). He removed a triangle from the middle of the
network without removing a single edge or vertex.

We then had two possibilities.86 The first was to incorporate the false
lemma into the theorem. This would have been a perfectly proper
procedure as far as certainty is concerned, but would have reduced the
domain of the theorem so drastically that it would have applied only for
the tetrahedron. Together with the counterexamples we would have
thrown out all the examples but one.

This was the rationale behind our adoption of the alternative: instead
of narrowing the domain of the theorem by lemma-incorporation, we
widened it by replacing the falsified lemma by an unfalsified one. But
this vital pattern for theorem-formation was soon forgotten and
Lambda did not bother to formulate it as a heuristic rule. It should be:

Rule 4. If you have a counterexample which is local but not global, try to
improve your proof-analysis by replacing the refuted lemma by an
unfalsified one.

Counterexamples of the first type (local but not global) may provide an
opportunity of increasing the content of our theorem which is constantly

84 Above, p. 31. 85 For the discussion of this first case see above, pp. 10–12.
86 Omega seems to ignore a third possibility: Gamma may very well claim that since local

but not global counterexamples do not show up any violation of the principle of
retransmission of falsity, there is no action to be taken.
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being reduced under the pressure of counterexamples of the third type
(global but not local).

gamma: Rule 4 shows up again the weakness of Alpha’s now discarded
‘perfect proof-analysing intuition’.87 He would have listed the
suspicious lemmas, incorporated them immediately and – without
caring for counterexamples – formed near-empty theorems.

teacher: Omega, let us hear the second example you promised.
omega: In Beta’s proof-analysis the second lemma was that ‘all

faces are triangular’.88 This can be falsified by a number of local but
not global counterexamples, e.g. by the cube or the dodecahedron.
Therefore you, Sir, replaced it by a lemma which is not falsified by
them, namely that ‘any face dissected by a diagonal edge falls into two
pieces’. But instead of invoking Rule 4 you rebuked Beta for ‘careless
proof-analysis’. You will admit that Rule 4 is better advice than just
‘be more careful’.

beta: You are right, Gamma, and you also make me understand better
‘the method of the best sort of exception-barrers’.89 They start with a
cautious, ‘safe’ proof-analysis and systematically applying Rule 4 they
gradually build up the theorem without uttering a falsehood. After all,
it is a matter of temperament whether one approaches truth through
ever false overstatements or through ever true understatements.

omega: That may be right. But one can interpret Rule 4 in two ways.
Hitherto we considered only the first, weaker interpretation:
‘one easily elaborates, improves the proof by replacing the false lemma
by a slightly modified one which the counterexample will not refute’;90 all
that one needs for this is a ‘more careful’ inspection of the proof and a
‘trifling observation’.91 On this interpretation Rule 4 is just local
patching within the framework of the original proof.
I allow also for the alternative, radical interpretation: to replace the
lemma – or possibly all the lemmas – not only by trying to squeeze out
the last drop of content from the given proof, but possibly by inventing
a completely different, more embracing, deeper proof.

teacher: For example?
omega: I discussed the Descartes–Euler conjecture earlier with a friend

who immediately offered a proof, as follows: let us imagine the
polyhedron to be hollow, with a surface made of any rigid material, say

87 Cf. above, p. 50. 88 For the discussion of this second case cf. above, pp. 37–8.
89 See above, pp. 39–40. 90 Above, p. 12. 91 Ibid.
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cardboard. The edges must be clearly painted on its inside. Let the
inside be well illuminated, and let one of the faces be the lens of an
ordinary camera – that face from which I can take a snapshot showing
all edges and vertices.

sigma [aside]: A camera in a mathematical proof?
omega: So I get a picture of a plane network, which can be dealt with just

like the plane network in your proof. Also in the same way, I can show
that, if the faces are simply-connected, V � E + F = 1, and adding the
lens-face which is invisible on the photo, I get Euler’s formula. The main
lemma is that there is a face of the polyhedron which, if transformed
into the lens of a camera, photographs the inside of the polyhedron so
that all the edges and all the vertices are on the film. Now I introduce
the following abbreviation: instead of ‘a polyhedron which has at least
one face from which we can photograph all the inside’, I shall say ‘a
quasi-convex polyhedron’.

beta: So your theorem will be: All quasi-convex polyhedra with simply-
connected faces are Eulerian.

omega: For brevity and to give credit to the inventor of this particular
proof-idea I would rather say: ‘All Gergonne-polyhedra are Eulerian’.92

gamma: But there are many simple polyhedra which, although perfectly
Eulerian, are so badly indented that they have no face from which the
whole of the inside can be photographed! Gergonne’s proof is not
deeper than Cauchy’s – it is Cauchy’s that is deeper than Gergonne’s!

omega: Of course! I suppose Teacher knew about Gergonne’s proof,
found out that it was unsatisfactory by some local but not global
counterexample and replaced the optical – photographing – lemma by
the wider topological – stretching – lemma. Thereby, he arrived at the
deeper Cauchy proof, not by a ‘careful proof-analysis’ followed by a
slight alteration, but by a radical, imaginative innovation.

92 Gergonne’s proof is to be found in Lhuilier [1812-13a], pp. 177–9. In the original it could
not of course contain photographic devices. It says: ‘Take a polyhedron, one of its faces
being transparent; and imagine that the eye approaches this face from the outside, so
closely, that it can perceive the inside of all the other faces . . .’ Gergonne points out
modestly that Cauchy’s proof is deeper, it ‘has the valuable advantage that it does not
assume convexity at all’. (It does not occur to him, however, to ask what it does assume.)
Jacob Steiner later rediscovered essentially the same proof ([1826]). His attention was then
called to Gergonne’s priority, so he read Lhuilier’s paper with the list of exceptions but
this did not prevent him from concluding his proof with the ‘theorem’: ‘All polyhedra are
Eulerian’. (It was Steiner’s paper that provoked Hessel – the Lhuilier of the Germans – to
write his [1833].)
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teacher: I accept your example – but I did not know about Gergonne’s
proof. But if you did, why did you not tell us about it?

omega: Because I immediately refuted it by non-Gergonnian polyhedra
that are Eulerian.

gamma: As I have just said, I too found such polyhedra. But is that a
reason for scrapping the proof altogether?

omega: I think so.
teacher: Have you heard of Legendre’s proof? Would you scrap

that too?
omega: I certainly would. It is still less satisfactory: its content is even

poorer than Gergonne’s proof. His thought-experiment started by
mapping the polyhedron with a central projection on to a sphere
containing the polyhedron. The radius of the sphere he chose as 1. He
chose the centre of the projection so that the sphere will be covered
completely, once but only once, by a network of spherical polygons. So
his first lemma was that such a point exists. His second lemma was that
for the polyhedral network on the sphere V � E + F = 2 – but this he
succeeded in decomposing into trivially true lemmas of spherical
trigonometry. But a point from which such a central projection is
possible exists only in convex and a few decent ‘almost-convex’
polyhedra – a class narrower even than that of ‘quasi-convex’
polyhedra. But this theorem: ‘All Legendre-polyhedra are Eulerian’93

differs completely from that of Cauchy, but only for the worse. It is
‘unfortunately incomplete’.94 It is a ‘vain effort which presupposes

93 Legendre’s proof can be found in his [1803], but not the proof-generated theorem, since
proof-analysis and theorem-formation were virtually unknown in the eighteenth century.
Legendre first defines polyhedra as solids whose surface consists of polygonal faces
(p. 161). Then he proves V � E + F = 2 in general (p. 228). But there is an exception-
barring amendment in a note in fine print on p. 164, saying that only convex polyhedra
will be considered. He ignored the almost convex fringe. Poinsot was first, in his [1809], to
notice when commenting on Legendre’s proof, that the Euler formula ‘is valid not only for
ordinary convex solids, namely, for those whose surface is cut by a straight line in no
more than two points: it also holds for polyhedra with re-entrant angles, provided one
can find a point in the interior of the solid which serves as the centre of a sphere on to
which one can project the faces of the polyhedron by lines leading from the centre, so that
the projected faces do not overlap. This applies to an infinity of polyhedra with re-entrant
angles. In fact, Legendre’s proof applies, as it stands, to all these additional polyhedra’
(p. 46).

94 E. de Jonquières goes on, again lifting an argument from Poinsot’s [1858]: ‘In invoking
Legendre, and like high authorities, one only fosters a widely spread prejudice that has
captured even some of the best intellects: that the domain of validity of the Euler theorem
consists only of convex polyhedra’ ([1890a], p. 111).
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conditions on which the Euler theorem does not depend at all. It has to
be scrapped and one has to look for more general principles’.95

beta: Omega is right. ‘Convexity is to a certain extent accidental for
Eulerianness. A convex polyhedron might be transformed, for example
by a dent or by pushing in one or more of the vertices, into a
non-convex polyhedron with the same configurational numbers. Euler’s
relation corresponds to something more fundamental than convexity.’96

And you will never capture that by your ‘almost’ and ‘quasi-’ frills.
omega: I thought Teacher had captured it in the topological principles of

the Cauchy proof in which all the lemmas of Legendre’s proof are
replaced by completely new ones. But then I stumbled upon a polyhedron
that refuted even this proof which is certainly the deepest hitherto.

teacher: Let us hear about it.
omega: You all remember Gamma’s ‘urchin’ (fig. 7). That was of

course non-Eulerian. But not all star-polyhedra are non-Eulerian!
Take for instance the ‘great stellated dodecahedron’ (fig. 15).
It consists, like the ‘small stellated dodecahedron’ of pentagrams, but
differently arranged. It has 12 faces, 30 edges and 20 vertices, so that
V � E + F = 2.97

Fig. 15.

95 This is from Poinsot ([1858], p. 70). 96 D. M. Y. Sommerville ([1929], pp. 143–4).
97 This ‘great stellated dodecahedron’ had already been devised by Kepler ([1619], p. 53),

then independently, by Poinsot ([1810]), who first tested if for Eulerianness. Fig. 15 is
copied from Kepler’s book.
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teacher: Do you then reject our proof?
omega: I do. The satisfactory proof has to explain the Eulerianness also

of the ‘great stellated dodecahedron’.
rho: Why not admit that your ‘great stellated dodecahedron’ is

triangular? Your difficulties are imaginary.
delta: I agree. But they are imaginary for a different reason. I have taken

to star-polyhedra now: they are fascinating. But they are, I am afraid,
essentially different from ordinary polyhedra: therefore one cannot
possibly conceive a proof that would explain the Eulerian character of,
say, the cube, and of the ‘great stellated dodecahedron’ by one
single idea.

omega: Why not? You have no imagination. Would you have insisted
after Gergonne’s and before Cauchy’s proof that concave and convex
polyhedra are essentially different: therefore one cannot possibly
conceive of a proof that would explain the Eulerian character of convex
and concave polyhedra by one single idea? Let me quote from Galileo’s
Dialogues:

sagredo: So as you see, all planets and satellites – let us call them all
‘planets’ – are moving in ellipses.

salviati: I am afraid there are planets moving in parabolas. Look at
this stone. I throw it away: it moves along a parabola.

simplicio: But this stone is not a planet! These are two quite
separate phenomena!

salviati: Of course this stone is a planet, only thrown with a less
mighty hand than that one which launched the Moon.

simplicio: Nonsense! How can you dare to pool under one head
heavenly and earthly phenomena? One has nothing to do with the
other! Of course both may be explained by proofs, but I surely expect
the two explanations to be totally different! I cannot imagine a proof
which should explain the course of a planet in heaven and a projectile
on the earth by one single idea!

salviati: You cannot imagine it but I can devise it . . .98

teacher: Never mind projectiles and planets, Omega, have you
succeeded in finding a proof to embrace both ordinary Eulerian
polyhedra and Eulerian star-polyhedra?

omega: I have not. But I shall.99

98 I was unable to trace this quotation. 99 Cf. footnote 104, p. 69.
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lambda: Say you do –what is the matter with Cauchy’s proof? You must
explain why you reject one proof after the other.

(b) Drive towards final proofs and corresponding sufficient and necessary
conditions

omega: You criticised proof-analyses for the breakdown of the
retransmission of falsity by counterexamples of the third type.100 Now
I criticise them for the breakdown of the transmission of falsity (or what
amounts to the same, the retransmission of truth) by counterexamples
of the second type.101 A proof must explain the phenomenon of
Eulerianness in its entire range.

My quest is not only for certainty but also for finality. The theorem has
to be certain – there must not be any counterexamples within its domain;
but it has also to be final: there must not be any examples outside its
domain. I want to draw a dividing line between examples and
counterexamples, and not just between a safe domain of a few examples
on the one hand and a mixed bag of examples and counterexamples on
the other.

lambda: Or, you want the conditions of the theorem to be not only
sufficient, but also necessary!

kappa: Let us imagine then, for the sake of the argument, that you found
such a master-theorem: ‘All master-polyhedra are Eulerian’. Do you realise
that this theorem will only be ‘final’ if the converse theorem: ‘All
Eulerian polyhedra are master-polyhedra’ is certain?

omega: Of course.
kappa: That is, if certainty gets lost in vicious infinity, so will finality?

You will find at least one Eulerian polyhedron outside the domain of
each of your ever deeper proofs.

omega: Of course I know that I cannot solve the problem of finality
without solving the problem of certainty. I am sure we shall solve both.
We shall stop the infinite spate of counterexamples both of the first and
the third types.

teacher: Your search for increasing content is very important.
But why not accept your second criterion of satisfactoriness – finality –

as a pleasant bonus but not obligatory? Why reject interesting proofs

100 Global, but not local counterexamples.
101 Counterexamples which are both global and local.
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that do not contain both sufficient and necessary conditions? Why
regard them as refuted?

omega: Well . . .102

lambda: Whatever the case, Omega certainly convinced me that a single
proof may not be enough for the critical improvement of a naive
conjecture. Our method should include the radical version of his Rule 4,
and then it should be called the method of ‘proofs and refutations’ instead
of ‘proof and refutations’.

mu: Excuse my butting in, I have just translated the results of your
discussion into quasi-topological terms: The lemma-incorporating
method yielded a contracting sequence of the nested domains of
successive improved theorems; these domains shrank under the continued
attack of global counterexamples in the course of the emergence of
hidden lemmas and converged to a limit: let us call this limit the ‘domain
of the proof-analysis’. If we apply the weaker version of Rule 4, this
domain can be widened under the continued pressure of local
counterexamples. This expanding sequence again will have a limit:
I shall call it the ‘domain of the proof’. The discussion then has shown that
even this limit domain may be too narrow (perhaps even empty). We
may have to devise deeper proofs whose domains will form an expanding
sequence, including more and more recalcitrant Eulerian polyhedra
which were local counterexamples to previous proofs. These domains,
themselves limit-domains, will converge to the double limit of the
‘domain of the naive conjecture’ – which is after all the aim of the inquiry.
The topology of this heuristic space will be a problem for mathematical
philosophy: will the sequences be infinite, will they converge at all,
attain the limit, may the limit be the empty set?

epsilon: I have found a deeper proof than Cauchy’s which explains also
the Eulerianness of Omega’s ‘great stellated dodecahedron’! [Passes a note
to the Teacher.]

102 The answer is in the celebrated Pappian heuristic of antiquity which applied only to the
discovery of ‘final’, ‘ultimate’ truths, i.e. to theorems which contained both necessary
and sufficient conditions. For ‘problems to prove’ the main rule of this heuristic was:
‘If you have a conjecture, derive consequences from it. If you arrive at a consequence
known to be false, the conjecture was false. If you arrive at a consequence known to be
true, reverse the order and, if the conjecture can be thus derived from this true conse-
quence, then it was true.’ (Cf. Heath [1925], 1, pp. 138–9.) The principle ‘causa aequat
effectu’ and the quest for theorems with necessary and sufficient conditions were both in
this tradition. It was only in the seventeenth century – when all the efforts to apply
Pappian heuristic to modern science had failed – that the quest for certainty came to
prevail over the quest for finality.
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omega: The final proof! The true essence of Eulerianness will now be
revealed!

teacher: I am sorry, time is running short: we shall have to discuss
Epsilon’s very sophisticated proof some other time.103 All I do see is that
it will not be final in Omega’s sense. Yes, Beta?

(c) Different proofs yield different theorems
beta: The most interesting point I have learned from this discussion is

that different proofs of the same naive conjecture lead to quite different
theorems. The one Descartes–Euler conjecture is improved by each proof into
a different theorem. Our original proof yielded: ‘All Cauchy-polyhedra are
Eulerian.’ Now we have learned about two completely different
theorems: ‘All Gergonne-polyhedra are Eulerian’ and ‘All Legendre-
polyhedra are Eulerian’. Three proofs, three theorems with one common
ancestor.104 The usual expression ‘different proofs of the Euler theorem’ is
then confusing, for it conceals the vital role of proofs in theorem-
formation.105

103 * Editors’ note: The contents of Epsilon’s note are revealed below, chapter 2.
104 There are many other proofs of the Euler conjecture. For a detailed heuristic discussion of

Euler’s, Jordan’s and Poincaré’s proofs see Lakatos [1961].
105 Poinsot, Lhuilier, Cauchy, Steiner, Crelle all thought that the different proofs prove the

same theorem: the ‘Euler-theorem’. To quote a characteristic sentence from a standard
textbook: ‘The theorem stems from Euler, the first proof from Legendre, the second from
Cauchy’ (Crelle [1827], 2, p. 671).
Poinsot came very near to noticing the difference when he observed that Legendre’s

proof applied to more than just ordinary convex polyhedra. (See footnote 93 on p. 64.) But
when he then compared Legendre’s proof with Euler’s proof (that one which was based
on cutting off pyramidal corners of the polyhedron and arriving at a final tetrahedron
without changing the Euler-characteristic) he gave preference to Legendre’s on the
ground of ‘simplicity’ [1858]. ‘Simplicity’ stands here for the eighteenth-century idea of
rigour: clarity in the thought-experiment. It did not occur to him to compare the two
proofs for content: then Euler’s proof would have turned out to be superior. (As a matter
of fact, there is nothing wrong with Euler’s proof. Legendre applied the subjective
standard of contemporary rigour and neglected the objective one of content.)
Lhuilier – in a surreptitious criticism of this passage (he does not mention Poinsot) –

points out that Legendre’s simplicity is only ‘apparent’, for it presumes considerable
background knowledge in spherical trigonometry ([1812–13a], p. 171). But Lhuilier too
believes that Legendre ‘proved the same theorem’ as Euler (ibid. p. 170).
Jacob Steiner joins him in the appraisal of Legendre’s proof and in assuming that all

proofs prove the same theorem ([1826]). The only difference is that while according to
Steiner all the different proofs prove that ‘all polyhedra are Eulerian’, according to Lhuilier
all the different proofs prove that ‘all polyhedra that have no tunnels, cavities and ringshaped
faces are Eulerian’.
Cauchy wrote his [1813a] on polyhedra when he was in his early twenties, years before

his revolution of rigour, and one cannot take it amiss that he repeats Poinsot’s compari-
son of Euler’s and Legendre’s proofs in the introduction to the second part of his treatise.
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pi: The difference between the different proofs goes much deeper. Only
the naive conjecture is about polyhedra. The theorems are about
Cauchy-objects, Gergonnian objects, Legendrian objects respectively,
but not any more about polyhedra.

beta: Are you trying to be funny?
pi: No, I shall explain my point. But I would do this in a wider context –

I want to discuss concept-formation in general.
zeta: We should rather first discuss content. I found Omega’s

Rule 4 very weak – even in its radical interpretation.106

teacher: Right. Let us then first hear Zeta’s approach to the problem of
content and then wind up our debate with a discussion of concept-
formation.

7. The problem of content revisited

(a) The naiveté of the naive conjecture
zeta: I agree with Omega in deploring the fact that monster-barrers,

exception-barrers and lemma-incorporators all strove for certain truth
at the expense of content. But his Rule 4,107 demanding deeper proofs of
the same naive conjecture, is not enough. Why should our search for
content be delimited by the first naive conjecture we stumble upon?
Why should the aim of our enquiry be the ‘domain of the naive
conjecture’?

omega: I don’t follow you. Surely our problem was to discover the
domain of truth of V � E + F = 2?

zeta: It was not! Our problem was to find out the relation between V, E
and F for any polyhedron whatsoever. It was a sheer accident that we
first got familiar with polyhedra for which V � E + F = 2. But a critical
inquiry into these ‘Eulerian’ polyhedra showed us that there are many
more non-Eulerian than Eulerian polyhedra. Why not look for the
domain of V � E + F = –6, V � E + F = 28 or V � E + F = 0? Aren’t they
equally interesting?

He – like most of his contemporaries – did not grasp the difference in depth of different
proofs and so could not appreciate the real power of his own proof. He thought he had
just given yet another proof of the very same theorem – but he was rather eager to stress that
he had arrived at a rather trivial generalisation of the Euler-formula to certain aggregates
of polyhedra.
Gergonne was the first to appreciate the unrivalled depth of Cauchy’s proof (Lhuilier

[1812–13a], p. 179).
106 See p. 62. 107 Ibid.
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sigma: You are right. We paid so much attention to V � E + F = 2 only
because we originally thought it was true. Now we know it is not – we
have to find a new, deeper naive conjecture . . .

zeta: . . . that will be less naive . . .

sigma: . . . that will be a relation between V, E, and F for any polyhedron.
omega: Why rush? Let us first solve the more modest problem that we

set out to solve: to explain why some polyhedra are Eulerian. Until now
we have arrived only at partial explanations. For instance, none of the
proofs found has explained why a picture-frame with ringshaped faces
both in the front and in the back is Eulerian (fig. 16). It has 16 vertices,
24 edges and 10 faces . . .

theta: It is certainly not a Cauchy-polyhedron: it has a tunnel, it has
ringshaped faces . . .

beta: And yet Eulerian! How irrational! Is a polyhedron guilty of a single
fault – a tunnel without ringshaped faces (fig. 9) – to be cast out among
the goats, yet one which offends in twice as many ways – having also
ringshaped faces (fig. 16) – admitted to the sheep?108

omega: You see, Zeta, we have enough puzzles about Eulerian
polyhedra. Let us solve them before we go on to a more general
problem.

Fig. 16.

108 The problem was noticed by Lhuilier ([1812–13a], p. 189) and, independently, by Hessel
[1832]. In Hessel’s paper the figures of the two picture-frames appear next to each other.
Also cf. footnote 127, p. 85.
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zeta: No, Omega. ‘More questions may be easier to answer than just one
question. A new more ambitious problem may be easier to handle than
the original problem.’109 Indeed, I shall show you that your narrow,
accidental problem can only be solved by solving the wider, essential
problem.

omega: But I want to discover the secret of Eulerianness!
zeta: I understand your resistance. You have fallen in love with the

problem of finding out where God drew the boundary dividing
Eulerian from non-Eulerian polyhedra. But there is no reason to believe
that the term ‘Eulerian’ occurred in God’s blueprint of the universe at
all. What if Eulerianness is merely an accidental property of some
polyhedra? In this case it would be uninteresting or even impossible to
find out the random zig-zags of the demarcation line between Eulerian
and non-Eulerian polyhedra. Such an admission however would leave
rationalism unsullied, for Eulerianness is then not part of the rational
design of the universe. So let us forget about it. One of the main points
about critical rationalism is that one is always prepared to abandon
one’s original problem in the course of the solution and replace it by
another one.

(b) Induction as the basis of the method of proofs and refutations
sigma: Zeta is right. What a disaster!
zeta: Disaster?
sigma: Yes. You now want a new ‘naive conjecture’ about the relation

between V, E and F, for any polyhedron, don’t you? Impossible! Look
at the vast crowd of counterexamples. Polyhedra with cavities,
polyhedra with ringshaped faces, with tunnels, joined together at edges,
vertices . . . V � E + F can take any value whatsoever! You cannot
possibly recognise any order in this chaos! We have left the firm ground
of Eulerian polyhedra for a swamp! We have irretrievably lost a naive
conjecture and have no hope of getting another one!

zeta: But . . .
beta: Why not? Remember the seemingly hopeless chaos in our table of

the numbers of vertices, edges and faces even of the most ordinary
convex polyhedra.110 We failed so many times to fit them into a

109 Pólya calls this the ‘inventor’s paradox’ ([1945], p. 110).
110 * Editors’ note: This table was discussed before we entered the classroom.
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formula.111 But then suddenly the real regularity governing them struck
us: V � E + F = 2.

kappa [aside] : ‘Real regularity’? Funny expression for an utter falsehood.
beta: All that we have to do now is to complete our table with the data

for non-Eulerian polyhedra and look for a new formula: with patient,
diligent observation, and some luck, we shall hit on the right one; then
we can improve it again by applying the method of proofs and
refutations!

zeta: Patient, diligent observation? Trying one formula after the other?
Perhaps you will devise a guessing machine that produces random
formulas and tests them against your table? Is this your idea of how
science progresses?

beta: I don’t understand your scorn. Surely you agree that our first
knowledge, our naive conjectures, can only come from diligent
observation and sudden insight, however much our critical method of
‘proofs and refutations’ takes over once we have found a naive
conjecture? Any deductive method has to start from an inductive basis!

sigma: Your inductive method will never succeed. We only arrived at
V � E + F = 2 because there happened to be no picture-frame or urchin
in our original tables. Now that this historical accident . . .

kappa [aside]: . . . or God’s benevolent guidance . . .

sigma: . . . is no more, you will never ‘induce’ order from chaos. We
started with long observation and lucky insight – and failed. Now you

Polyhedron F V E

I cube 6 8 12
II triangular prism 5 6 9
III pentagonal prism 7 10 15
IV square pyramid 5 5 8
V triangular pyramid 4 4 6
VI pentagonal pyramid 6 6 10
VII octahedron 8 6 12
VIII ‘tower’ 9 9 16
IX ‘truncated cube’ 7 10 15

111 See foomote 116, p. 78. The table has been borrowed from Pólya [1954], vol. 1, p. 36.
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propose to start again with longer observation and luckier insight. Even
if we did arrive at a new naive conjecture – which I doubt – we shall
only end up in the same mess.

beta: Perhaps we should give up research altogether? We have to start
again – first with a new naive conjecture and then going again through
the method of proofs and refutations.

zeta: No, Beta. I agree with Sigma – therefore I shall not start again with
a new naive conjecture.

beta: Then where do you want to start if not with an inductive low-level
generalisation as a naive conjecture? Or have you an alternative method
for starting?

(c) Deductive guessing versus naive guessing
zeta: Start? Why should I start? My mind is not empty when I discover

(or invent) a problem.
teacher: Do not tease, Beta. Here is the problem: ‘Is there a relation

between the number of vertices, edges and faces of polyhedra analogous to the
trivial relation between the number of vertices and edges of polygons, namely
that V = E?’112 How would you set about it?

zeta: First, I have no government grants to conduct an extensive survey
of polyhedra, no army of research assistants counting the numbers of
their vertices, edges and faces and compiling tables from the data. But
even if I had, I should have no patience – or interest – in trying one
formula after the other to test whether it fits.

beta: What then? Will you lie down on your couch, shut your eyes and
forget about the data?

zeta: Exactly. I need an idea to start with, but no data whatsoever.
beta: And where do you get your idea from?
zeta: It is already there in our minds when we formulate the problem: in

fact, it is in the very formulation of the problem.
beta: What idea?
zeta: That for a polygon V = E.
beta: So what?
zeta: A problem never comes out of the blue. It is always related to our

background knowledge. We know that for polygons V = E. Now a

112 See above, p. 6.

74 proofs and refutations

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316286425.004
https:/www.cambridge.org/core


polygon is a system of polygons consisting of one single polygon.
A polyhedron is a system of polygons consisting of more than a
single polygon. But for polyhedra V 6¼ E. At what point did the
relation V = E break down in the transition from monopolygonal
systems to polypolygonal systems? Instead of collecting data
I trace how the problem grew out of our background knowledge;
or, which was the expectation whose refutation presented the
problem?

sigma: Right. Let us follow your recommendation. For any polygon E –V = 0
(fig. 17(a)). What happens if I fit another polygon to it (not necessarily in
the same plane)? The additional polygon has n1 edges and n1 vertices; now
by fitting it to the original one along a chain of n01 edges and n01 + 1 vertices
we shall increase the number of edges by n1�n01 and the number of
vertices by n1�(n01+ 1); that is, in the new 2-polygonal system there will
be an excess in the number of edges over the number of vertices:
E –V = 1 (fig. 17(b); for an unusual but perfectly proper fitting see fig. 17(c)).
‘Fitting’ a new face to the system will always increase this excess by one,
or, for an F-polygonal system constructed in this way E – V = F – 1.

zeta: Or, V � E + F = 1.
lambda: But this is false for most polygonal systems. Take a cube . . .
sigma: But my construction can lead only to ‘open’ polygonal systems –

bounded by a circuit of edges! I can easily extend my thought-
experiment to ‘closed’ polygonal systems, with no such boundary. Such
closure can be accomplished by covering an open vase-like polygonal
system with a polygon-cover: fitting such a covering polygon will
increase F by one without changing V or E . . .

(a) (b) (c)

Fig. 17.
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zeta: Or, for a closed polygonal system – or closed polyhedron –

constructed in this way, V� E + F = 2: a conjecture which now you have
got without ‘observing’ the number of vertices, edges and faces of a
single polyhedron!

lambda: And now you can apply the method of proofs and refutations
without an ‘inductive starting point’.

zeta: With the difference that you do not need to devise a proof – the
proof is already there! You can go on immediately with refutations,
proof-analysis, theorem–formation.

lambda: Then in your method – instead of observations – proof precedes
the naive conjecture!113

zeta: Well, I shouldn’t call a conjecture that has grown out of a proof
‘naive’. In my method there is no place for inductive naiveties.

beta: Objection! You only pushed back the ‘naive’ inductive start:
you start with ‘V = E for polygons’. Don’t you base this on
observations?

zeta: Like most mathematicians, I cannot count. I just tried to count the
edges and vertices of a heptagon: I found first 7 edges and 8 vertices,
and then again 8 edges and 7 vertices . . .

beta: Joking apart, how did you get V = E?
zeta: I was deeply shocked when I first realised that for a triangle V � E =

0. I knew of course very well that in an edge V � E = 1 (fig. 18(a)). I also
knew that fitting new edges will always result in an increase by one, both
in the number of vertices and edges (figs. 18(b) and 18(c)).
Why, in polygonal edge-systems, does V � E = 0? Then I realised that
this is because of the transition from an open system of edges (which is
bounded by two vertices) to a closed system of edges (which has no such

(a) (b) (c)

Fig. 18. Fig. 19.

113 This is an important qualification to footnote 7, p. 10.
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boundary): because we ‘cover’ the open system up by fitting an edge
without adding a new vertex. So I proved, not observed, that V � E = 0
for polygons.

beta: Your ingenuity will not help you. You only pushed back
the inductive starting point further: now to the statement that
V � E = 1 for any edge whatsoever. Did you prove or did you
observe that?

zeta: I proved it. I knew of course that for a single vertex V = 1 (fig. 19).
My problem was to construct an analogous relation . . .

beta [furious]: Didn’t you observe that for a point V = 1?
zeta: Did you? [Aside, to Pi]: Should I tell him that my ‘inductive

starting point’ was empty space? That I began by ‘observing’
nothing?

lambda: Whatever the case, two points have been made. First Sigma
argued that it is due only to historical accidents that one can arrive at naive
inductive conjectures: when one is faced with a real chaos of facts, one
will scarcely be able to fit them into a nice formula. Then Zeta showed
that for the logic of proofs and refutations we need no naive conjecture, no
inductivist starting point at all.

beta: Objection! What about those celebrated conjectures that have not
been preceded (or even followed) by proofs, such as the four-colour
conjecture that says that four colours are enough to colour any map, or
the Goldbach conjecture? It is only by historical accidents that proofs
can precede theorems, that Zeta’s ‘deductive guessing’ can take place:
otherwise naive inductive conjectures come first.

teacher: We certainly have to learn both heuristic patterns: deductive
guessing is best, but naive guessing is better than no guessing at all. But
naive guessing is not induction: there are no such things as inductive
conjectures!

beta: But we found the naive conjecture by induction! ‘That is, it
was suggested by observation, indicated by particular instances . . .

And among the particular cases that we have examined we could
distinguish two groups: those which preceded the formulation of
the conjecture and those which came afterwards. The former
suggested the conjecture, the latter supported it. Both kinds of cases
provide some sort of contact between the conjecture and
“the facts”. . .’114 This double contact is the heart of induction: the

114 Pólya [1954], vol. 1, pp. 5 and 7 (my italics).
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first makes inductive heuristic, the second makes inductive
justification, or inductive logic.

teacher: No! Facts do not suggest conjectures and do not support them
either!

beta: Then what suggested V � E + F = 2 to me, if not the facts, listed in
my table?

teacher: I shall tell you. You yourself said you failed many times to fit
them into a formula.115 Now what happened was this: you had three or
four conjectures which in turn were quickly refuted. Your table was
built up in the process of testing and refuting these conjectures. These
dead and now forgotten conjectures suggested the facts, not the facts
the conjectures. Naive conjectures are not inductive conjectures: we arrive at
them by trial and error, through conjectures and refutations.116 But if you –

wrongly – believe that you arrived at them inductively, from your
tables, if you believe that the longer the table, the more conjectures it
will suggest, and later support, you may waste your time compiling
unnecessary data. Also, being indoctrinated that the path of discovery is
from facts to conjecture, and from conjecture to proof (the myth of
induction), you may completely forget about the heuristic alternative:
deductive guessing.117

Mathematical heuristic is very like scientific heuristic – not because both are
inductive, but because both are characterised by conjectures, proofs, and
refutations. The – important – difference lies in the nature of the respective
conjectures, proofs (or, in science, explanations), and counterexamples.118

beta: I see. Then our naive conjecture was not the first conjecture ever,
‘suggested’ by hard, non-conjectural facts: it was preceded by many

115 See pp. 72–4.
116 These trials and errors are beautifully reconstructed by Pólya. The first conjecture is that F

increases with V. This being refuted, two more conjectures follow: E increases with F; E
increases with V. The fourth is the winning guess: F + V increases with E ([1954]. vol. 1,
pp. 35–7).

117 On the other hand those who, because of the usual deductive presentation of mathemat-
ics, come to believe that the path of discovery is from axioms and/or definitions to proofs
and theorems, may completely forget about the possibility and importance of naive
guessing. In fact in mathematical heuristic it is deductivism which is the greater danger,
while in scientific heuristic it is inductivism.

118 We owe the revival of mathematical heuristic in this century to Pólya. His stress on the
similarities between scientific and mathematical heuristic is one of the main features of
his admirable work. What may be considered his only weakness is connected with this
strength: he never questioned that science is inductive, and because of his correct vision
of deep analogy between scientific and mathematical heuristic he was led to think that
mathematics is also inductive. The same thing happened earlier to Poincaré (see his
[1902], Introduction) and also to Fréchet (see his [1938]).
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‘pre-naive’ conjectures and refutations. The logic of conjectures and
refutations has no starting point – but the logic of proofs and refutations
has: it starts with the first naive conjecture to be followed by a thought-
experiment.

alpha: Perhaps. But then I should not have called it ‘naive’!119

kappa [aside]: Even in heuristic there is no such thing as perfect
naiveté!

beta: The main thing is to get out of the trial-and-error period as soon
as possible, to proceed quickly to thought-experiments without having
too much ‘inductive’ respect for ‘facts’. Such respect may hamper
the growth of knowledge. Imagine that you arrive by trial-and-error
at the conjecture: V � E + F = 2, and that it is immediately refuted
by the observation that V � E + F = 0 for the picture-frame. If you
have too much respect for facts, especially when they refute your
conjectures, you will go on with pre-naive trial-and-error and look
for another conjecture. But if you have a better heuristic, you at
least try to ignore the adverse observational test, and try a test by
thought-experiment: like Cauchy’s proof

sigma: What confusion! Why call Cauchy’s proof a test?
beta: Why call Cauchy’s test a proof? It was a test! Listen. You started

with a naive conjecture: V � E + F = 2 for all polyhedra. Then
you drew consequences from it: ‘if the naive conjecture is true,
after removing a face, for the remaining network V � E + F = 1’;
‘if this consequence is true, V � E + F = 1 even after triangulation’; ‘if
this last consequence is true, V � E + F = 1 will hold while triangles
are removed one by one’; ‘if this is true, V � E + F = 1 for one single
triangle’. . .

Now this last conclusion happens to be known to be true. But what
if we had concluded that for a single triangle V � E + F = 0? We would
immediately have rejected the original conjecture as false. All that
we have done is to test our conjecture: to draw consequences from it.
The test seemed to corroborate the conjecture. But corroboration is
not proof.
sigma: But then our proof proved even less than we thought it did! We

then have to reverse the process and try to construct a thought-
experiment which leads in the opposite direction: from the triangle back
to the polyhedron!

119 See above, p. 44.
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beta: That is right. Only Zeta pointed out that instead of solving our
problem by first devising a naive conjecture through trial and error,
then testing it, then reversing the test into a proof, we can start straight
away with the real proof. Had we realised the possibility of deductive
guessing we might have avoided all this pseudo-inductive fumbling!

kappa [aside]: What a dramatic series of volte-faces! Critical Alpha has
turned into a dogmatist, dogmatist Delta into a refutationist, and now
inductivist Beta into a deductivist!

sigma: But wait. If the test thought-experiment . . .
beta: I shall call it analysis . . .
sigma: . . . can be followed up at all by a proof thought-experiment . . .
beta: I shall call it synthesis . . .120

sigma: . . . will the ‘analytic theorem’ be necessarily identical with the
‘synthetic theorem’? In going in the opposite direction we might use
different lemmas!121

beta: If they are different, then the synthetic theorem should supersede
the analytic one – after all analysis only tests while synthesis proves.

teacher: Your discovery that our ‘proof’ was in fact a test seems to have
shocked the class and diverted their attention from your main
argument: that if we have a conjecture that has already been refuted by
a counterexample, we should push the refutation aside and try to test
the conjecture by a thought-experiment: this way, we might hit on a
proof, leave the phase of trial and error, and switch to the method of
proofs and refutations. But it was exactly this which made me say that
‘I am willing to set out to “prove” a false conjecture’!122 And Lambda
too demanded in his Rule 1: ‘If you have a conjecture set out to prove it
and refute it.’

zeta: That is right. But let me supplement Lambda’s rules and Omega’s
Rule 4 by

Rule 5. If you have counterexamples of any type, try to find, by deductive
guessing, a deeper theorem to which they are counterexamples no longer.

omega: You now stretch my concept of ‘depth’ – and you may be right.
But what about the actual application of your new rule? Until now it
has only given us results that we already knew. It is easy to be wise after

120 According to Pappian heuristic, mathematical discovery starts with a conjecture, which is
followed by analysis and then, provided analysis does not falsify the conjecture, by synthesis.
(Also cf. above, footnote 7, p. 10, and footnote 102, p. 68.) But while our version of
analysis-synthesis improves the conjecture, the Pappian version only proves or disproves it.

121 Cf. Robinson [1936], p. 471. 122 See above, p. 26.
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the event. Your ‘deductive guessing’ is just the synthesis corresponding
to Teacher’s original analysis. But now you should be honest – you must
use your method to find a conjecture which you do not already know
about, with the promised increase in content.

zeta: Right. I start with the theorem generated by my thought-
experiment: ‘All closed normal polyhedra are Eulerian.’

omega: ‘Normal’?
zeta: I don’t want to waste time going through the method of proof and

refutations. I just call ‘normal’ all polyhedra that can be built up from
a ‘perfect’ polygon by fitting to it (a) first F – 2 faces without changing
V � E + F (these will be open normal polyhedra) and (b) then a last
closing face which increases V � E + F by 1 (and turns the open
polyhedron into a closed one).

omega: ‘Perfect polygon’?
zeta: By a ‘perfect’ polygon I mean one that can be built up from one

single vertex by fitting to it first n – 1 edges without changing V � E,
and then a last closing edge which decreases V � E by 1.

omega: Will your closed normal polyhedra coincide with our Cauchy
polyhedra?

zeta: I do not want to go into that now.

(d) Increasing content by deductive guessing
teacher: Enough of preliminaries. Let us see your deduction.
zeta: Yes, Sir. I take two closed normal polyhedra (fig. 20(a)) and paste

them together along a polygonal circuit so that the two faces that meet
disappear (fig. 20(b)).

(a) (b) (c)

Fig. 20.
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Since for the two polyhedra V � E + F = 4, the disappearance of two
faces in the united polyhedron will just restore the Euler formula – no
surprise after Cauchy’s proof since the new polyhedron can also easily
be pumped into a ball.123 So the formula stands up well to this pasting
test. But let us now try a double-pasting test: let us ‘paste’ the two
polyhedra together along two polygonal circuits (fig. 20(c)). Now
4 faces will disappear and for the new polyhedron V � E + F = 0.

gamma: This is Alpha’s Counterexample 4, the picture-frame!
zeta: Now if I ‘double-paste’ to this picture-frame (fig. 20(c)) yet another

normal polyhedron (fig. 21(a)), V � E + F will be �2 (fig. 21(b)) . . .
sigma: For a monospheroid polyhedron V � E + F = 2, for a dispheroid

polyhedron V � E + F = 0, for a trispheroid V � E + F = –2, for an
n-spheroid polyhedron V � E + F = 2 – 2(n � 1) . . .

zeta: . . . which is your new conjecture of unprecedented content,
complete with proof, without having compiled a single table.124

sigma: This is really nice. Not only did you explain the obstinate
picture-frame, but you produced an infinite variety of novel
counterexamples . . .

zeta: Complete with explanation.

(b)(a)

Fig. 21.

123 * Editors’ note: This inference is fallacious, although the conclusion is correct. The pasting
in fact involves the loss of 8 vertices, 12 edges and 6 faces. The Euler characteristic is
therefore, reduced by two. (The assumed exact coincidence of the two shaded faces in
fig. 20(b) involves reversing the bevelling on one of the half frames so that the broader
and the narrower edge are interchanged. Since this operation alters neither V nor E nor F,
the argument still, in fact, goes through.)

124 This was done by Raschig [1891].
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rho: I just arrived at the same result in a different way. Zeta started with
two Eulerian examples and turned them into a counterexample in a
controlled experiment. I start with a counterexample and turn it into an
example. I made the following thought-experiment with a picture-
frame: ‘Let the polyhedron be of some stuff that is easy to cut like soft
clay, let a thread be pulled through the tunnel and then through the
clay. It will not fall apart . . .‘125 But it has become a familiar, simple,
spheroid polyhedron! It is true, we increase the number of faces by 2,
and the numbers of both edges and vertices by m; but since we know
that the Euler characteristic of a simple polyhedron is 2, the original
must have had the characteristic 0. Now if one needs more, say n, such
cuts to reduce the polyhedron to a simple one, its characteristic will
be 2 – 2n.

sigma: This is interesting. Zeta has already shown us that we may not
need a conjecture in order to start proving, that we may immediately
devise a synthesis, i.e. a proof thought-experiment from a related
proposition that is known to be true. Now Rho shows that we may not
need a conjecture even in order to start testing, but we may set out –
pretending that the result is already there – to devise an analysis, i.e. a test
thought-experiment.126

omega: But whichever way you choose, you still leave hordes of
polyhedra unexplained! According to your new theorem for all
polyhedra V � E + F is an even number, less than 2. But we saw quite a
few polyhedra with odd Euler characteristics. Take the crested cube
(fig. 12) with V � E + F = 1 . . .

zeta: I never said that my theorem applies to all polyhedra. It applies
only to all n-spheroid polyhedra built up according to my construction.
My construction as it stands does not lead to ringshaped faces.

omega: So?
sigma: I know! One can also extend it to polyhedra with ringshaped

faces: one may construct a ringshaped polygon by deleting in a suitable
proof-generated system of polygons an edge without reducing the

125 Hoppe [1879], p. 102.
126 This is again part of Pappian heuristic. He calls an analysis starting with a conjecture

‘theoretical’, and an analysis starting with no conjecture ‘problematical’ (Heath [1925],
vol. 1, p. 138). The first refers to problems to prove, the second to problems to solve (or
problems to find). Also cf. Pólya [1945], pp. 129–36 (‘Pappus’) and 197–204 (‘Working
backwards’).
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number of faces (figs. 22(a) and 22(b)). I wonder, perhaps there are also
‘normal’ systems of polygons, constructed in accordance with our
proof, in which we can delete even more than one edge without
reducing the number of faces . . .

gamma: That is true. Look at this ‘normal’ polygonal system (fig. 23(a)).
You can delete two edges without reducing the number of faces (fig. 23(b)).

sigma: Good! Then in general

V � Eþ F ¼ 2� 2ðn� 1Þ þ
XF

k¼1

ek

for n-spheroid – or n-tuply connected – polyhedra with ek edges deleted
without reduction in the number of faces.
beta: This formula explains Alpha’s crested cube (fig. 12), a mono-

spheroid polyhedron (n = 1) with one ringshaped face: ek are zero,

except for e6 which is 1, or
XF

k¼1

ek = 1, consequently V � E + F = 3.

sigma: It also explains your ‘irrational’ Eulerian freak: the cube with two
ringshaped faces and one tunnel (fig. 16). It is a dispheroid

polyhedron (n = 2) with
XF

k¼1

ek ¼ 2. Consequently its characteristic

(a) (b)

Fig. 23.

(a) (b)

Fig. 22.
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isV� E+ F= 2 – 2 + 2 = 2.Moral order is restored to theworld of polyhedra!127

omega: What about polyhedra with cavities?
sigma: I know! For them one has to add up the Euler characteristics of

each disconnected surface:

V � Eþ F ¼
XK

j¼1

n
2� 2ðnj � IÞ þ

XF

k¼1

ekj
o
:

beta: And the twintetrahedra?
sigma: I know! . . .
gamma: What is the use of all this precision? Stop this flood of

pretentious trivialities!128

alpha: Why should he? Or are the twintetrahedra monsters, not genuine
polyhedra? A twintetrahedron is just as good a polyhedron as your
cylinder! But you liked linguistic precision.129 Why do you deride our
new precision? We have to make the theorem cover all polyhedra – by

127 The ‘order’ was restored by Lhuilier with approximately the same formula ([1812–13a].
p. 189); and by Hessel with clumsy ad hoc formulae about different ways of fitting
Eulerian polyhedra together ([1832], pp. 19–20). Cf. footnote 108, p. 71.
Historically Lhuilier – in his [1812–13a] –managed to generalise Euler’s formula by naive

guessing and arrived at the following formula: V � E + F = 2[(C � T + 1) + (p1 + p2 + . . .)],
where C is the number of cavities, T the number of tunnels and pi the number of inner
polygons on the ith face. He also proved it as far as ‘inner polygons’ were concerned, but
tunnels seem to have defeated him. He constructed the formula in an attempt to account for
his three kinds of ‘exceptions’; but his list of exceptions was incomplete. (Cf. above,
footnote 30, p. 29.) Moreover, this incompleteness was not the only reason for the falsity
of his naive conjecture: for he did not notice the possibility that cavities might be multiply-
connected; that one may not be able to determine unambiguously the number of tunnels in
polyhedra with a system of branching tunnels; and that it is not ‘the number of inner
polygons’, but the number of ringshaped faces, that is relevant (his formula breaks down
for two adjacent inner polygons, with an edge in common). For a criticism of Lhuilier’s
‘inductive generalisation’ see Listing [1861], pp. 98–9. Also cf. p. 97, footnote 151.

128 Quite a few mathematicians of the nineteenth century were confused by such trivial
increases in content, and did not really know how to deal with them. Some – like
Möbius – used monster-barring definitions (see above, p. 15); others – like Hoppe –

monster-adjustment. Hoppe’s [1879] is particularly revealing. On the one hand he was
keen – like many of his contemporaries – to have a perfectly complete ‘generalised Euler
formula’ that covers everything. On the other hand he shrank from trivial complexities.
So while he claimed that his formula was ‘complete, all-embracing’, he added confusedly
that ‘special cases can make the enumeration (of constituents) dubitable’ (p. 103). That is,
if an awkward polyhedron still defeats his formula, then its constituents were wrongly
counted, and the monster should be adjusted by correct vision: e.g. the common vertices
and edges of twintetrahedra should be seen and counted twice and each twin recognised
as a separate polyhedron (ibid.). For further examples cf. p. 103, footnote 158.

129 See above, pp. 53–6.
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making it precise we are increasing its content, not decreasing it. This
time precision is a virtue!

kappa: Boring virtues are just as bad as boring vices! Besides, you will
never achieve complete precision. We should stop when it ceases to be
interesting to go on.

alpha: I have a different point. We started from

(1) one vertex is one vertex.
We deduced from this

(2) V = E for all perfect polygons.
We deduced from this

(3) V � E + F = 1 for all normal open polygonal systems.
From this

(4) V � E + F = 2 for all normal closed polygonal systems, i.e. polyhedra.
From this again in turn

(5) V � Eþ F ¼ 2� 2ðn� 1Þ for normal n-spheroid polyhedra.

(6) V � Eþ F ¼ 2� 2ðn� 1Þ þ
XF

k¼1

ek for normal-n-spheroid polyhedra with

multiply-connected faces.

(7) V � Eþ F ¼
XK

j¼1

n
2� 2ðnj � 1Þ þ

XF

k¼1

ekj
o
for normal n-spheroid polyhedra

with multiply-connected faces and with cavities.

Isn’t this a miraculous unfolding of the hidden riches of the trivial starting
point? And since (1) is indubitably true, so is the rest.
rho [aside]: Hidden ‘riches’? The last two only show how cheap

generalisations may become!130

lambda: Do you really think that (1) is the single axiom from which all
the rest follows? That deduction increases content?

alpha: Of course! Isn’t this the miracle of the deductive thought-
experiment? If once you have got hold of a little truth, deduction
expands it infallibly into a tree of knowledge.131 If a deduction does not
increase the content I would not call it deduction, but ‘verification’:

130 Cf. p. 103.
131 Ancient philosophers did not hesitate to deduce a conjecture from a very trivial conse-

quence of it (see, for example, our synthetic proof leading from the triangle to the
polyhedron). Plato thought that ‘a single axiommight suffice to generate a whole system’.
‘Ordinarily he thought of a single hypothesis as fertile by itself, ignoring in his method-
ology the other premisses to which he is allying it’ (Robinson [1953], p. 168). This is
characteristic of ancient informal logic, that is, of the logic of proof or of thought-experiment or of
construction; we regard it as enthymematic only through hindsight: it was only later that an
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‘verification differs from true demonstration precisely because it is
purely analytic and because it is sterile’.132

lambda: But surely deduction cannot increase content! If criticism
reveals that the conclusion is richer than the premiss, we have to
reinforce the premiss by making hidden lemmas explicit.

kappa: And it is these hidden lemmas that contain sophistication and
fallibility and ultimately destroy the myth of infallible deduction.133

teacher: Any other question about Zeta’s method?

(e) Logical versus heuristic counterexamples.
alpha: I like Zeta’s Rule 5134 – as I did Omega’s Rule 4.135 I liked Omega’s

method because it looked out for local but not global counterexamples:
the ones which Lambda’s original three rules136 ignored as logically
harmless, therefore heuristically uninteresting. Omega was stimulated
by them to devise new thought-experiments: real advances in our
knowledge.

Now Zeta is inspired by counterexamples that are both global and
local – perfect corroborations from the logical but not from the heuristic
point of view: although corroborations, they still call for action. Zeta
proposes to extend, sophisticate our original thought-experiment, to
turn logical corroborations into heuristic ones, logically satisfactory
instances into instances that are satisfactory from both the logical and
the heuristic point of view.

Both Omega and Zeta are for new ideas, while Lambda and
especially Gamma are preoccupied with linguistic tricks to deal with
their irrelevant global but not local counterexamples – the only relevant
ones from their crankish point of view.

theta: So the logical point of view is ‘crankish’, is it?

increase in content became a sign, not of the power, but of the weakness, of an inference. This
ancient informal logic was strongly advocated by Descartes, Kant and Poincaré; they all
despised Aristotelian formal logic and dismissed it as sterile and irrelevant – at the same
time extolling the infallibility of fertile informal logic.

132 Poincaré [1902], p. 33.
133 The hunt for hidden lemmas, which started only in mid-nineteenth-century mathematical

criticism, was closely related to the process that later replaced proofs by proof-analyses and
laws of thought by laws of language.Themost important developments in logical theorywere
usually preceded by the development of mathematical criticism. Unfortunately, even the
best historians of logic tend to pay exclusive attention to the changes in logical theory
without noticing their roots in changes in logical practice. Cf. also footnote 172, p. 109.

134 See p. 80. 135 See p. 61. 136 See p. 53.
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alpha: Your logical point of view, yes. But I want to make another
remark. Whether deduction increases content or not – mind you, of
course it does – it certainly seems to guarantee the continuous growth of
knowledge. We start with a vertex and let knowledge grow forcefully
and harmoniously to explain the relation between the number of
vertices, edges and faces of any polyhedron whatsoever: an undramatic
growth without refutations!

theta [to Kappa]: Has Alpha lost all his judgment? One starts with a
problem, not with a vertex!137

alpha: This piecemeal but irresistibly victorious campaign will lead us to
theorems that are ‘not by themselves evident, but only deduced from
true and known principles by the continuous and uninterrupted action
of a mind that has a clear vision of each step in the process’.138 They
could never have been reached by ‘unbiased’ observation and a sudden
flash of insight.

theta: I am doubtful about this final victory. Such growth will never
bring us to the cylinder – for (1) starts with a vertex and the cylinder has
none. Also we may never reach one-sided polyhedra, or many-
dimensional polyhedra. This piecemeal continuous expansion may well
stop at some point and you will have to look for a new, revolutionary
start. And even this ‘peaceful continuity’ is full of refutations, criticism!
Why dowe go on from (4) to (5), from (5) to (6), from (6) to (7) if not under
the continuous pressure of counterexamples which are both global and
local? Lambda accepted as genuine counterexamples only those which
are global but not local: they revealed the falsehood of the theorem.
Omega’s innovation – rightly praised by Alpha – was to regard also
counterexamples which are local but not global as genuine
counterexamples: they revealed the poverty of the truth of the theorem.
Now Zeta tells us to recognise even those counterexamples as genuine
which are both global and local: they too point to the poverty of the truth of
the theorem. For example, picture-frames are both global and local
counterexamples to Cauchy’s theorem: they are of course corroborations
as far as truth alone is concerned – but they are refutations as far as
content is concerned. We may call the first (global but not local)
counterexamples logical, the others heuristic counterexamples. But the
more we recognise refutations – logical or heuristic – the quicker

137 Alpha certainly seems to have slipped into the fallacy of deductive heuristic. Cf. p. 78,
footnote 117.

138 Descartes [1628], Rule III.
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knowledge grows. Alpha regards logical counterexamples as irrelevant
and refuses to call heuristic counterexamples counterexamples at all,
because of his obsession with the idea that growth of mathematical
knowledge is continuous, and criticism plays no role.

alpha: You expand the concept of refutation and the concept of criticism
artificially only to justify your critical theory of the growth of
knowledge. Linguistic tricks as tools for a critical philosopher?

pi: I think a discussion of concept-formation may help us to elucidate the
issue.

gamma: We are all ears.

8. Concept-formation

(a) Refutation by concept-stretching. A reappraisal of monster-barring – and of
the concepts of error and refutation

pi: I would first like to go back to the pre-Zeta, or even pre-Omega period,
to the three main methods of theorem-formation: monster-barring,
exception-barring, and the method of proofs and refutations. Each
started with the same naive conjecture, but ended up with different
theorems and different theoretical terms. Alpha has already outlined some
aspects of these differences,139 but his account is unsatisfactory –

especially in the case of monster-barring and of the method of proofs
and refutations. Alpha thought that the monster-barring theorem ‘hides
behind the identity of the linguistic expression an essential
improvement’ on the naive conjecture: he thought that Delta gradually
contracted the class of ‘naive’ polyhedra into a class purged of non-
Eulerian monsters.

gamma: What is wrong with this account?
pi: That it was not the monster-barrers who contracted concepts – it was

the refutationists who expanded them.
delta: Hear, hear!
pi: Let us go back to the time of the first explorers of our subject. They

were fascinated by the beautiful symmetry of regular polyhedra: they
thought that the five regular bodies held the secret of the Cosmos.
By the time the Descartes–Euler conjecture was put forward, the
concept of polyhedron included all sorts of convex polyhedra and even
some concave polyhedra. But it certainly did not include polyhedra
which were not simple, or polyhedra with ringshaped faces. For the

139 See pp. 43–4.
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polyhedra that they had in mind, the conjecture was true as it stood and
the proof was flawless.140

Then came the refutationists. In their critical zeal they stretched the
concept of polyhedron, to cover objects that were alien to the intended
interpretation. The conjecture was true in its intended interpretation, it
was only false in an unintended interpretation smuggled in by the
refutationists. Their ‘refutation’ revealed no error in the original
conjecture, no mistake in the original proof: it revealed the falsehood of a
new conjecture which nobody had stated or thought of before.

Poor Delta! He valiantly defended the original interpretation of
polyhedron. He countered each counterexample with a new clause to
safeguard the original concept . . .

gamma: But wasn’t it Delta who shifted his position each time?
Whenever we produced a new counterexample, he changed his
definition for a longer one which displayed another of his ‘hidden’
clauses!

pi: What a monstrous appraisal of monster-barring! He only seemed to
shift his position. You wrongly accused him of using surreptitious
terminological epicycles in the stubborn defence of an idea. His
misfortune was that portentous Definition 1: ‘A polyhedron is a solid
whose surface consists of polygonal faces’, which the refutationists
seized upon immediately. But Legendre meant it to cover only his naive
polyhedra; that it covered far more was entirely unrealised and
unintended by its proposer. The mathematical public was willing to
stomach the monstrous content which slowly emerged from this

140 Fig. 6 in Euler’s [1758a] is the first concave polyhedron ever to appear in a geometrical
text. Legendre talks about convex and concave polyhedra in his [1809]. But before
Lhuilier nobody mentioned concave polyhedra that were not simple.
However, one interesting qualification might be added. The first class of polyhedra

ever investigated consisted partly of the five ordinary regular polyhedra and quasi-
regular polyhedra like prisms and pyramids (cf. Euclid). This class was extended after
the Renaissance in two directions. One is indicated in the text: to include all convex and
some mildly indented simple polyhedra. The other was Kepler’s: he widened the class of
regular polyhedra by his invention of regular star-polyhedra. But Kepler’s innovation
was forgotten, only to be made again by Poinsot (cf. above, pp. 17–18). Euler surely did
not dream of star-polyhedra. Cauchy knew of them, but his mind was strangely com-
partmentalised: when he had an interesting idea about star-polyhedra he published it;
but he ignored star-polyhedra when presenting counterexamples to his general theorems
about polyhedra. Not so the young Poinsot ([1810]) – but later he changed his mind
(cf. above, p. 33). Thus Pi’s statement, although heuristically correct (i.e. true in a rational
history of mathematics), is historically false. (This should not worry us: actual history is
frequently a caricature of its rational reconstructions.)
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plausible, innocent-looking definition. This is why Delta had to stutter
time and time again, ‘I meant . . .’, and had to keep making his endless
‘tacit’ clauses explicit: all because the naive concept had never been
pinned down, and a simple, but monstrous, unintended definition had
superseded it. But imagine a different situation, where the definition
fixed the intended interpretation of ‘polyhedron’ properly. Then it
would have been up to the refutationists to devise ever longer monster-
including definitions for, say, ‘complex polyhedra’: ‘A complex
polyhedron is an aggregate of (real) polyhedra such that each two of
them are soldered by congruent faces.’ ‘The faces of complex polyhedra
can be complex polygons that are aggregates of (real) polygons such
that each two of them are soldered by congruent edges.’ This complex
polyhedron would then correspond to Alpha’s and Gamma’s refutation-
generated concept of polyhedron – the first definition allowing also for
polyhedra that are not simple, the second also for faces that are not
simply-connected. So devising new definitions is not necessarily the
task of monster-barrers or concept-preservers – it can also be that of
monster-includers or concept-stretchers.141

sigma: Concepts and definitions – that is, intended concepts and
unintended definitions – can then play funny tricks on each other!
I never dreamt that concept-formation might lag behind an
unintendedly wide definition!

pi: It might. Monster-barrers only keep to the original concept, while
concept-stretchers widen it; the curious thing is that concept-stretching
goes on surreptitiously: nobody is aware of it, and since everybody’s
‘coordinate-system’ expands with the widening concept, they fall prey
to the heuristic delusion that monster-barring narrows concepts, while in
fact it keeps them invariant.

delta: Now who was intellectually dishonest? Who made surreptitious
changes in his position?

gamma: I admit we were wrong in indicting Delta for surreptitious
contractions of his concept of polyhedron: all his six definitions denoted
the same good old concept of polyhedron he inherited from his
forefathers. He defined the very same poor concept in increasingly rich
theoretical frames of reference, or languages: monster-barring does not form
concepts but only translates definitions. The monster-barring theorem is no
improvement on the naive conjecture.

141 An interesting example of monster-including definition is Poinsot’s redefinition of
convexity, which brings star-polyhedra into the respectable class of convex regular
bodies [1810].
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delta: Do you mean that all my definitions were logically equivalent?
gamma: That depends on your logical theory – according to mine they

certainly are not.
delta: This was not a very helpful answer, you will admit. But tell me,

did you refute the naive conjecture? You refuted it only by
surreptitiously perverting its original interpretation!

gamma: Well, we refuted it in a more imaginative and interesting
interpretation than you ever dreamt of. This is what makes the
difference between refutations which only reveal a silly mistake and
refutations which are major events in the growth of knowledge. If you had
found that ‘for all polyhedra V � E + F = 1 ‘because of inept counting,
and I had corrected you, I wouldn’t call that a ‘refutation’.

beta: Gamma is right. After Pi’s revelation we might hesitate to call our
‘counterexamples’ logical counterexamples, since they are after all not
inconsistent with the conjecture in its intended interpretation; but they
are certainly heuristic counterexamples since they spur the growth of
knowledge. If we were to accept Delta’s narrow logic, knowledge
would not grow. Just suppose that somebody with the narrow
conceptual framework discovers the Cauchy proof of the Euler
conjecture. He finds that all the steps of this thought-experiment can
easily be performed on any polyhedron. He takes the ‘fact’ that all
polyhedra are simple and that all faces are simply-connected as obvious,
as indubitable. It never occurs to him to turn his ‘obvious’ lemmas into
conditions in an improved conjecture and so to build up a theorem –

because the stimulus of counterexamples, in showing up some ‘trivially
true’ lemmas as false, is missing. Thus he thinks that the ‘proof’
indubitably establishes the truth of the naive conjecture, that its certainty
is beyond doubt. But his ‘certainty’ is far from being a sign of success,
it is only a symptom of lack of imagination, of conceptual poverty.
It produces smug satisfaction and prevents the growth of knowledge.142

142 This is in fact Cauchy’s case. It is likely that had Cauchy already discovered his revolu-
tionary exception-barring method (cf. above, pp. 58-60), he would have searched for and
found some exceptions. But he probably came across the problem of exceptions only later,
when he decided to clear up the chaos in analysis. (It was Lhuilier who seems to have first
noticed, and faced, the fact that such ‘chaos’ was not confined to analysis.)
Historians, e.g. Steinitz in his [1914–31], usually say that Cauchy, noticing that his

theoremwas not universally valid, stated it for convex polyhedra only. It is true that in his
proof he uses the expression ‘the convex surface of a polyhedron’ ([1813a], p. 81), and in
his [1813b] he restates Euler’s theorem under the general head: ‘Theorems on solid angles
and convex polyhedra’. But probably to counteract this title, he gives particular stress to the
universal validity of Euler’s theorem for any polyhedron (Theorem XI, p. 94), while stating
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(b) Proof–generated versus naive concepts. Theoretical versus naive
classification

pi: Let me return to the proof-generated theorem: ‘All simple polyhedra
with simply-connected faces are Eulerian’. This formulation is
misleading. It should read: ‘All simple objects with simply-connected
faces are Eulerian.’

gamma: Why?
pi: The first formulation suggests that the class of simple polyhedra that

occurs in the theorem is a subclass of the class of ‘polyhedra’ of the
naive conjecture.

sigma: Of course the class of simple polyhedra is a subclass of polyhedra!
The concept of ‘simple polyhedron’ contracts the original wide class of

three other theorems (Theorem XIII and its two corollaries) explicitly for convex poly-
hedra (pp. 96 and 98).
Why Cauchy’s sloppy terminology? Cauchy’s concept of polyhedron almost coincided

with the concept of convex polyhedron. But it did not coincide exactly: Cauchy knew
about concave polyhedra, which can be obtained by slightly pushing in the side of convex
polyhedra, but he did not discuss what seemed to be irrelevant further corroborations – not
refutations – of his theorem. (Corroborations never compare with counterexamples, or even
‘exceptions’, as catalysts for the growth of concepts.) This is the reason for Cauchy’s casual use
of ‘convex’: it was a failure to realise that concave polyhedra might give counterexamples,
not a conscious effort to eliminate these counterexamples. In the very same paragraph, he
argues that Euler’s theorem is an ‘immediate consequence’ of the lemma that V � E + F = 1
for flat polygonal networks, and states that ‘for the validity of the theorem V � E + F = 1 it
has no significance whatever whether the polygons lie in the same plane or in different
planes, since the theorem is concerned only with the number of polygons and the
number of their constituents’ (p. 81). This argument is perfectly correct within Cauchy’s
narrow conceptual framework, but incorrect in a wider one, in which ‘polyhedron’ refers
also to, say, picture-frames. The argument was frequently repeated in the first half of
the nineteenth century (e.g. Olivier [1826], p. 230, or Grunert [1827], p. 367, or R. Baltzer
[1860–62], vol. 2, p. 207). It was criticised by J. C. Becker ([1869a], p. 68).
Often, as soon as concept-stretching refutes a proposition, the refuted proposition seems such an

elementary mistake that one cannot imagine that great mathematicians could have made it. This
important characteristic of concept-stretching refutation explains why respectful histor-
ians, because they do not understand that concepts grow, create for themselves a maze of
problems. After saving Cauchy by claiming that he ‘could not possibly miss’ polyhedra
which are not simple and that therefore he ‘categorically’ (!) restricted the theorem to the
domain of convex polyhedra, the respectful historian now has to explain why Cauchy’s
borderline was ‘unnecessarily’ narrow. Why did he ignore non-convex Eulerian poly-
hedra? Steinitz’s explanation is this: the correct formulation of the Euler-formula is in
terms of connectivity of surfaces. Since in Cauchy’s period this concept was not yet
‘clearly grasped’, ‘the simplest way out’ was to assume convexity (p. 20). So Steinitz
explains away a mistake that Cauchy never made.
Other historians proceed in a different way. They say that before the point where the

correct conceptual framework (i.e. the one they know) was reached there was only a ‘dark
age’with ‘seldom, if ever, sound’ results. This point in the theory of polyhedra is Jordan’s
[1866a] proof according to Lebesgue ([1923], pp. 59–60); it is Poincaré’s [1895] according
to Bell ([1945], p. 460).

concept-formation 93

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316286425.004
https:/www.cambridge.org/core


polyhedra by restricting them to those on which the first lemma of our
proof is performable. The concept of ‘simple polyhedron with simply-
connected faces’ indicates a further contraction of the original class . . .

pi: No! The original class of polyhedra contained only polyhedra that
were simple and whose faces were simply-connected. Omega was
wrong when he said that lemma-incorporation reduces content.143

omega: But doesn’t each incorporation of lemmas rule out a
counterexample?

pi: Of course it does: but a counterexample that was produced by
concept-stretching.

omega: So lemma-incorporation conserves content, just like monster-
barring?

pi: No. Lemma-incorporation increases content: monster-barring does not.
omega: What? Do you really want to convince me not only that lemma-

incorporation does not reduce content, but also that it increases it? That
instead of contracting concepts it stretches them?

pi: Exactly. Just listen. Was a globe, with a political map drawn on it, an
element of the original class of polyhedra?

omega: Certainly not.
pi: But it became one after Cauchy’s proof. For you can perform Cauchy’s

proof on it without the slightest difficulty – if only there are no
ringshaped countries or seas on it.144

gamma: That is right! Pumping the polyhedron up into a ball and
distorting edges and faces will not perturb us in the least in performing
the proof – so long as the distortion does not alter the number of vertices,
edges and faces.

sigma: I see your point. Then the proof-generated ‘simple polyhedron’ is
not just a contraction, a specification, but also a generalisation, an
expansion of the naive ‘polyhedron’.145 The idea of generalising the

143 See above, pp. 60–1. 144 Cf. p. 37, footnote 44.
145 Darboux, in his [1874a], came close to this idea. Later it was clearly formulated by

Poincaré: ‘. . . mathematics is the art of giving the same name to different things . . . When
the language is well chosen, we are astonished to learn that all the proofs made for a
certain object apply immediately to many new objects; there is nothing to change, not
even the words, since the names have become the same’ ([1908], p. 375). Fréchet calls this
‘an extremely useful principle of generalisation’, and formulates it as follows: ‘When the
set of properties of a mathematical entity used in the proof of a proposition about this
entity does not determine this entity, the proposition can be extended to apply to a more
general entity’ ([1928], p. 18). He points out that such generalisations are not trivial and
‘may require very great efforts’ (ibid.).
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concept of polyhedron so that it should include crumpled, curvilinear
‘polyhedra’ with curved faces could hardly have occurred to anybody
before Cauchy’s proof; even if it had, it would have been dismissed as
crankish. But now it is a natural generalisation, since the operations of
our proof can be interpreted for them just as well as for ordinary naive
polyhedra with straight edges and flat faces.146

pi: Good. But you have to make one more step. Proof-generated concepts
are neither ‘specifications’, nor ‘generalisations’ of naive concepts.
The impact of proofs and refutations on naive concepts is much
more revolutionary than that: they erase the crucial naive concepts
completely and replace them by proof-generated concepts.147 The naive
term ‘polyhedron’, even after being stretched by refutationists, denoted
something that was crystal-like, a solid with ‘plane’ faces, straight
edges. The proof-ideas swallowed this naive concept and fully digested
it. In the different proof-generated theorems we have nothing of
the naive concept. That disappeared without trace. Instead each
proof yields its characteristic proof-generated concepts, which refer
to stretchability, pumpability, photographability, projectability
and the like. The old problem disappeared, new ones emerged.

146 Cauchy did not notice this. His proof differed from the one given by the Teacher in one
important respect: Cauchy in his [1813a] and [1813b] did not imagine the polyhedron to
be made of rubber. The novelty of his proof-idea was to imagine the polyhedron as a
surface, and not as a solid, as Euclid, Euler and Legendre did. But he imagined it as a solid
surface. When he removed one face and mapped the remaining spatial polygonal net-
work into a flat polygonal network, he did not conceive his mapping as a stretching that
might bend faces or edges. The first mathematician to notice that Cauchy’s proof could be
performed on polyhedra with bent faces was Crelle ([1826–7], pp. 671–2), but he still
carefully stuck to straight edges. For Cayley however it seemed recognisable ‘at first sight’
that ‘the theory would not be materially altered by allowing the edges to be curved lines’
([1861], p. 425). The same remark was made independently in Germany by Listing
([1861], p. 99) and in France by Jordan ([1866a], p. 39).

147 This theory of concept-formation weds concept-formation to proofs and refutations. Pólya wed it
to observations: ‘When the physicists started to talk about “electricity”, or the physcians
about “contagion”, these terms were vague, obscure, muddled. The terms that the
scientists use today, such as “electric charge”, “electric current”, “fungus infection”,
“virus infection”, are incomparably clearer and more definite. Yet what a tremendous
amount of observation, how many ingenious experiments lie between the two terminolo-
gies, and some great discoveries too. Induction changed the terminology, clarified the
concepts. We can illustrate also this aspect of the process, the inductive clarification of
concepts, by suitable mathematical examples.’ ([1954], vol. 1, p. 55.) But even this
mistaken inductivist theory of concept-formation is preferable to the attempt to make
concept-formation autonomous, to make ‘clarification’ or ‘explication’ of concepts a prelimin-
ary to any scientific discussion.

concept-formation 95

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316286425.004
https:/www.cambridge.org/core


After Columbus one should not be surprised if one does not solve the
problem one has set out to solve.

sigma: So the ‘theory of solids’, the original ‘naive’ realm of the Euler
conjecture, dissolves, and the remodelled conjecture reappears in
projective geometry if proved by Gergonne, in analytical topology if
proved by Cauchy, in algebraic topology if proved by Poincaré . . .

pi: Quite right. And now you will understand why I formulated the
theorems not, like Alpha or Beta, as: ‘All Gergonne-polyhedra are
Eulerian’, ‘All Cauchy-polyhedra are Eulerian’, and so on, but rather as:
‘All Gergonnian objects are Eulerian’, ‘All Cauchy objects are Eulerian’,
and so on.148 So I find it uninteresting to quarrel not only about the exactness
of naive concepts but also about the truth or falsehood of naive conjectures.

beta: But surely we can retain the term ‘polyhedron’ for our favourite
proof-generated term, say, ‘Cauchy-objects’?

pi: If you like, but remember that your term no longer denotes what it set out to
denote: that its naive meaning has disappeared and that now it is used . . .

beta: . . . for a more general, improved concept!
theta: No! For a totally different, novel concept.
sigma: I think your views are paradoxical!
pi: If you mean by paradoxical ‘an opinion not yet generally received’,149

and possibly inconsistent with some of your ingrained naive ideas,
never mind: you only have to replace your naive ideas with the
paradoxical ones. This may be a way to ‘solve’ paradoxes. But what
particular view of mine do you have in mind?

sigma: You remember, we found that some star-polyhedra are Eulerian
while some others are not. We were looking for a proof that would be
deep enough to explain the Eulerianness both of ordinary and star-
polyhedra . . .

epsilon: I have it.150

sigma: I know. But just for the sake of argument let us imagine that there
is no such proof, but that somebody offers, in addition to Cauchy’s
proof for Eulerian ‘ordinary’ polyhedra, a corresponding but altogether
different proof for Eulerian star-polyhedra. Would you then, Pi, because
of these two different proofs, propose to split into two what we
formerly classified as one? And would you have two completely

148 See above, p. 70.
149 Hobbes [1656], Animadversions upon the Bishop’s Reply No. xxi.
150 See above, p. 69, footnote 104.
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different things united under one name just because somebody finds a
common explanation for some of their properties?

pi: Of course I would. I certainly wouldn’t call a whale a fish, a radio a
noisy box (as aborigines may do), and I am not upset when a physicist
refers to glass as a liquid. Progress indeed replaces naive classification by
theoretical classification, that is, by theory-generated (proof-generated, or
if you like, explanation-generated) classification. Conjectures and
concepts both have to pass through the purgatory of proofs and
refutations. Naive conjectures and naive concepts are superseded by improved
conjectures (theorems) and concepts (proof-generated or theoretical concepts)
growing out of the method of proofs and refutations. And as theoretical ideas
and concepts supersede naive ideas and concepts, theoretical language
supersedes naive language.151

151 It is interesting to follow the gradual changes from the rather naive classification of
polyhedra to the highly theoretical one. The first naive classification which covers not
only simple polyhedra comes from Lhuilier: a classification according to the number of
cavities, tunnels and ‘inner polygons’ (see p. 85, footnote 127).

(a) Cavities. Euler’s first proof and, incidentally, Lhuilier’s own ([1812–13a], pp. 174–7),
rested on the decomposition of the solid, either by cutting off its corners one by one, or
by decomposing it into pyramids from one or more points in the inside. Cauchy’s
proof-idea however – Lhuilier did not know about it – rested on the decomposition of
the polyhedral surface. When the theory of polyhedral surfaces finally superseded the
theory of polyhedral solids, cavities became uninteresting: one ‘polyhedron with
cavities’ turns into a whole class of polyhedra. Thus our old monster-barring
Definition 2 (p. 16) became a proof-generated, theoretical definition, and the
taxonomical concept of ‘cavity’ disappeared from the mainstream of growth.

(b) Tunnels. Already Listing pointed to the unsatisfactoriness of this concept (see p. 85,
footnote 127). The replacement came not from any ‘explication’ of the ‘vague’ concept
of tunnel, as a Carnapian might be tempted to expect, but from trying to prove and
refute Lhuilier’s naive conjecture about the Euler-characteristic of polyhedra with
tunnels. In the course of this process the concept of polyhedron with n tunnels
disappeared and proof-generated ‘multiply-connectedness’ (what we called ‘n-
spheroidness‘) took its place. In some papers we find the naive term retained for the
new proof-generated concept: Hoppe defines the number of ‘tunnels’ by the number
of cuts that leave the polyhedron connected ([1879], p. 102). For Ernst Steinitz the
concept of tunnel is already so theory-impregnated that he is unable to find any
‘essential’ difference between Lhuilier’s naive classification according to the number
of tunnels and the proof-generated classification according to multiply-
connectedness; therefore he regards Listing’s criticism of Lhuilier’s classification as
‘largely unjustified’ ([1914–31], p. 22).

(c) ‘Inner polygons.’ This naive concept too was soon replaced first by ringshaped, then by
multiply-connected, faces (also cf. p. 85, footnote 127), (replaced, not ‘explicated’, for
‘ringshaped face’ is surely not an explication of ‘inner polygon’). When, however, the
theory of polyhedral surfaces was superseded on the one hand by the topological theory
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omega: In the end we shall arrive from naive, accidental, merely nominal
classification to the final true, real, classification, to perfect language!152

(c) Logical and heuristic refutations revisited
pi: Let me take up again some of the issues which have arisen in

connection with deductive guessing. First let us take the problem of
heuristic versus logical counterexamples as raised in the discussion
between Alpha and Theta.

My exposition has shown, I think, that even the so-called ‘logical’
counterexamples were heuristic. In the originally intended
interpretation there is no inconsistency between: (a) all polyhedra are
Eulerian, and (b) the picture-frame is not Eulerian.

If we keep to the tacit semantical rules of our original language our
counterexamples are not counterexamples. They are turned into logical
counterexamples only by changing the rules of the language by
concept-stretching.

gamma: Do you mean that all interesting refutations are heuristic?
pi: Exactly. You cannot separate refutations and proofs on the one hand

and changes in the conceptual, taxonomical, linguistic framework on
the other. Usually, when a ʻcounterexample’ is presented, you have a
choice: either you refuse to bother with it, since it is not a
counterexample at all in your given language L1, or you agree to change
your language by concept-stretching and accept the counterexample in
your new language L2 . . .

zeta: . . . and explain it in L3!
pi: According to traditional static rationality you would have to make the

first choice. Science teaches you to make the second.
gamma: That is, we may have two statements that are consistent in L1,

but we switch to L2 in which they are inconsistent. Or, we may have

of surfaces, and on the other hand by graph-theory, the problem of how multiply-
connected faces influence the Euler-characteristic of a polyhedron lost all its interest.

Thus, out of the three key concepts of the first naive classification, only one was ‘left’, and
even that in a hardly recognisable form – the generalised Euler formulawas, for themoment,
reduced to V � E + F = 2 – 2n. (For further developments cf. p. 95, footnote 146.)

152 As far as naive classification is concerned, nominalists are close to the truth when
claiming that the only thing that polyhedra have in common is their name. But after a
few centuries of proofs and refutations, as the theory of polyhedra develops, and theor-
etical classification replaces naive classification, the balance changes in favour of the
realist. The problem of universals ought to be reconsidered in view of the fact that, as
knowledge grows, languages change.
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two statements that are inconsistent in L1 but we switch to L2 in
which they are consistent. As knowledge grows, languages change.
‘Every period of creation is at the same time a period in which the
language changes.’153 The growth of knowledge cannot be modelled in
any given language.

pi: That is right. Heuristic is concerned with language-dynamics, while
logic is concerned with language-statics.

(d) Theoretical versus naive concept-stretching. Continuous versus
critical growth

gamma: You promised to come back to the question of whether or not
deductive guessing offers us a continuous pattern of the growth of
knowledge.

pi: Let me first sketch some of the many historical forms which this
heuristic pattern can take.
The first main pattern is when naive concept-stretching outstrips theory
by far and produces a vast chaos of counterexamples: our naive
concepts are loosened but no theoretical concepts replace them. In this
case deductive guessing may catch up – piecemeal –with the backlog of
counterexamples. This is, if you like, a continuous ʻgeneralising’
pattern – but do not forget that it starts with refutations, that its
continuity is the piecemeal explanation by a growing theory of the
heuristic refutations of its first version.

gamma: Or, ‘continuous’ growth only indicates that refutations are miles
ahead!

pi: That is right. But it may happen that each single refutation or
expansion of naive concepts is immediately followed by an expansion of
the theory (and theoretical concepts) which explains the
counterexample; ‘continuity’ then gives place to an exciting alternation

153 Félix [1957], p. 10. According to logical positivists, the exclusive task of philosophy is to
construct ‘formalised’ languages in which artificially congealed states of science are
expressed (see our quotation from Carnap above, p. 1). But such investigations scarcely
get under way before the rapid growth of science discards the old ‘language system’.
Science teaches us not to respect any given conceptual-linguistic framework lest it should
turn into a conceptual prison – language analysts have a vested interest in at least slowing
down this process, in order to justify their linguistic therapeutics, that is, to show that
they have an all-important feedback to, and value for, science, that they are not degener-
ating into ‘fairly dried-up petty-foggery’ (Einstein [1953]). Similar criticisms of logical
positivism have been made by Popper: see e.g. his [1959], p. 128, footnote *3.
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of concept-stretching refutations and ever more powerful theories, of
naive concept-stretching and explanatory theoretical concept-stretching.

sigma: Two accidental historical variations on the same heuristic theme!
pi: Well, there is not really much difference between them. In both of

them the power of the theory lies in its capacity to explain its refutations in the
course of its growth. But there is a second main pattern of deductive
guessing . . .

sigma: Yet another accidental variation?
pi: Yes, if you like. In this variation however the growing theory not only

explains but produces its refutations.
sigma: What?
pi: In this case theoretical growth overtakes – and, indeed, eliminates –

naive concept-stretching. For example, one starts with, say, Cauchy’s
theorem, without a single counterexample on the horizon. Then one
tests the theorem by transforming the polyhedron in all possible ways:
cutting it into two, cutting off pyramidal corners, bending it, distorting
it, pumping it up . . . Some of these test-ideas will lead to proof-ideas154

(by arriving at something known to be true and then turning back, that
is, by following the Pappian analysis-synthesis pattern), but some – like
Zeta’s ‘double-pasting test’ – will lead us, not back to something
already known, but to real novelty, to some heuristic refutation of the
tested proposition – not by extending a naive concept, but by extending the
theoretical framework. This sort of refutation is self-explanatory . . .

iota: How dialectical! Tests turning into proofs, counterexamples that
become examples by the very method of their construction . . .

pi: Why dialectical? The test of one proposition turns into the proof of
another, deeper proposition, counterexamples of the first into examples of
the second.Why call confusion dialectic? But letme come back tomy point:
I do not think that my second main pattern of deductive guessing could be
regarded – as Alpha would have it – as continuous growth of knowledge.

alpha: Of course it can. Compare our method with Omega’s idea of
replacing one proof-idea with a radically different, deeper one. Both
methods increase content, but while in Omega’s method one replaces
operations of the proof that are applicable in a narrow domain
by operations which are applicable in a wider domain, or, more
radically, replaces the whole proof by one that is applicable in a wider

154 Pólya discriminates between ‘simple’ and ‘severe’ tests. ‘Severe’ tests may give ‘the first
hint of a proof’ ([1954], vol. 1, pp. 34–40).
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domain – deductive guessing extends the given proof by adding
operations which widen its applicability. Is this not continuity?

sigma: That is right! We deduce from the theorem a chain of ever wider
theorems! From the special case ever more general cases! Generalisation
by deduction!155

pi: But full of counterexamples, once you recognise that any increase of
content, any deeper proof follows or generates heuristic refutations of
the previous poorer theorems . . .

alpha: Theta expanded ‘counterexample’ to cover heuristic
counterexamples. You now expand it to cover heuristic
counterexamples that never actually exist. Your claim that your ‘second
pattern’ is full of counterexamples is based on the expansion of the
concept of counterexample to counterexamples with zero life-time,
whose discovery coincides with their explanation! But why should all
intellectual activity, every struggle for increased content in a unified
theoretical framework, be ‘critical’? Your dogmatic ‘critical attitude’ is
obscuring the issue!

teacher: The issue between you and Pi is certainly obscure – for your
‘continuous growth’ and Pi’s ‘critical growth’ are perfectly consistent.
I am more interested in the limitations, if any, of deductive guessing, or
‘continuous criticism’.

(e) The limits of the increase in content. Theoretical versus naive refutations
pi: I think that sooner or later ‘continuous’ growth is bound to reach a

dead-end, a saturation point of the theory.
gamma: But surely I can always stretch some of the concepts!
pi: Of course. Naive concept-stretching may go on – but theoretical

concept-stretching has limits! Refutations by naive concept-stretching
are only gadflies that prod us to catch up by theoretical concept-
stretching. So there are two sorts of refutations. We stumble on the first
sort by coincidence or good fortune, or by an arbitrary expansion of
some concept. They are like miracles, their ‘anomalous’ behaviour is
unexplained; we accept them as bona fide counterexamples only because
we are used to accepting concept-stretching criticism. I shall call
these naive counterexamples or freaks. Then there are the theoretical

155 In informal logic there is nothing wrong with the ‘fact, so usual in mathematics and still so
surprising to the beginner, or to the philosopher who takes himself for advanced, that the
general case can be logically equivalent to a special case’ (Pólya [1954], vol. 1, p. 17). Also
cf. Poincaré [1902], pp. 31–3.

concept-formation 101

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316286425.004
https:/www.cambridge.org/core


counterexamples: these are either originally produced by proof-stretching
or, alternatively, they are freaks which are reached by stretched proofs,
explained by them, and thereby raised to the status of theoretical
counterexamples. Freaks have to be looked upon with great suspicion:
they may not be genuine counterexamples, but instances of a quite
different theory – if not outright mistakes.

sigma: But what shall we do when we get stuck? When we cannot turn
our naive counterexamples into theoretical ones by expanding our
original proof?

pi: We may probe again and again whether or not our theory still has
some hidden capacity for growth. Sometimes, however, we have good
reason to give up. For instance, as Theta rightly pointed out, if our
deductive guessing starts from a vertex we cannot very well ever expect
it to explain the vertexless cylinder.

alpha: So after all, the cylinder was not a monster, but a freak!
theta: But freaks should not be played down! They are the real

refutations: they cannot be fitted into a pattern of continuous
‘generalisations’, and may actually force us to revolutionise our
theoretical framework . . .156

omega: Good! One may get to a relative saturation point of a particular
chain of deductive guessing – but then one finds a revolutionary, new,
deeper proof-idea that has more explanatory power. At the end one still
gets to a final proof – without limit, without saturation point, without
freaks to refute it!

pi: What? A single unified theory to explain all the phenomena of the
universe? Never! Sooner or later we shall approach something like an
absolute saturation point.

gamma: I don’t really mind whether we do or not. If a counterexample
can be explained by a cheap, trivial extension of the proof, I would
already regard it as a freak. I repeat: I really do not see any point in
generalising ‘polyhedron’ to include a polyhedron with cavities: this is

156 Cayley [1861] and Listing [1861] took the stretching of the basic concepts of the theory of
polyhedra seriously. Cayley defined edge as ‘the path from a summit to itself, or to any
other summit’ but allowed edges to degenerate into vertexless closed curves, which he
called ‘contours’ (p. 426). Listing had one term for edges, whether with two, one, or no
vertices: ‘lines’ (p. 104). Both realised that a completely new theory was needed to explain
the ‘freaks’ which they naturalised with their liberal conceptual framework – Cayley
invented the ‘Theory of Partitions of a Close’, Listing, one of the great pioneers of modern
topology, the ‘Census of Spatial Complexes’.
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not one polyhedron, but a class of polyhedra. I would also forget about
‘multiply-connected faces’ –why not draw the missing diagonals? As to
the generalisation that includes twintetrahedra, I would reach for my
gun: it serves only for making up complicated, pretentious formulas for
nothing.

rho: At last you rediscover my method of monster-adjustment!157

It relieves you of shallow generalisation. Omega should not have called
content ‘depth’; not every increase in content is also an increase in depth:
think of (6) and (7)!158

alpha: So you would stop at (5) in my series?
gamma: Yes. (6) and (7) are not growth, but degeneration! Instead of

going on to (6) and (7), I would rather find and explain some exciting
new counterexample!159

alpha: You may be right after all. But who decides where to stop?
Depth is only a matter of taste.

157 See above, pp. 32–5 and 40–2.
158 Quite a few mathematicians cannot distinguish the trivial from the non-trivial. This is

especially awkward when a lack of feeling for relevance is coupled with the illusion that
one can construct a perfectly complete formula that covers all conceivable cases (cf. p. 85,
footnote 128). Such mathematicians may work for years on the ‘ultimate’ generalisation
of a formula, and end up by extending it with a few trivial corrections. The excellent
mathematician, J. C. Becker, provides an amusing example: after many years’ work he
produced the formula V � E + F = 4 � 2n + qwhere n is the number of cuts that is needed
to divide the polyhedral surface into simply-connected surfaces for which V � E + F = 1,
and q is the number of diagonals that one has to add to reduce all the faces to simply-
connected ones ([1869a], p. 72). He was very proud of his achievement, which – he
claimed – shed ‘completely new light’, and even ‘brought to a conclusion’ ‘a subject in
which people like Descartes, Euler, Cauchy, Gergonne, Legendre, Grunert, and von
Staudt, took interest’ before him (p. 65). But three names were missing from his reading
list: Lhuilier, Jordan and Listing. When he was told about Lhuilier, he published a sad
note, admitting that Lhuilier knew all this more than fifty years before. As for Jordan, he
was not interested in ringshaped faces, but happened to take an interest in open poly-
hedra with boundaries, so that in his formula m, the number of boundaries, figures in
addition to n ([1866b], p. 86). So Becker – in a new paper [1896b] – combined Lhuilier’s
and Jordan’s formulas into V � E + F = 2 – 2n + q + m (p. 343). But in his embarrassment
he was too hasty, and had not digested Listing’s long paper. So he sadly concluded his
[1869b] with ‘Listing’s generalisation is still wider’. (By the way, he later tried to extend
his formula also to star-polyhedra ([1874]; cf. above, p. 33, footnote 39.)

159 Some people may entertain philistine ideas about a law of diminishing returns in refutations.
Gamma, for one, certainly does not. We shall not now discuss one-sided polyhedra
(Möbius, [1865]) or n-dimensional polyhedra (Schläfli, [1852]). These would confirm
Gamma’s expectation that totally unexpected concept-stretching refutations may always
give the whole theory a new – possibly revolutionary – push.
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gamma: Why not have mathematical critics just as you have literary
critics, to develop mathematical taste by public criticism? We may
even stem the tide of pretentious trivialities in mathematical
literature.160

sigma: If you stop at (5) and turn the theory of polyhedra into a theory of
triangulated spheres with n handles, how can you, if the need arises,
deal with trivial anomalies like those explained in (6) and (7)?

mu: Child’s play!
theta: Right. Then we stop at (5) for the moment. But can we stop?

Concept-stretching may refute (5)! We may ignore the stretching
of a concept if it yields a counterexample that shows up the
poverty of the content of our theorem. But if the stretching yields
a counterexample that shows up its plain falsehood, what then?
We may refuse to apply our content-increasing Rule 4 or Rule 5 to
explain a freak, but we have to apply our content-preserving Rule 2
to ward off refutation by a freak.

gamma: That is it! We may dismiss cheap ‘generalisations’, but we can
hardly dismiss ‘cheap’ refutations.

sigma: Why not build up a monster-barring definition of ‘polyhedron’,
adding a new clause for each freak?

theta: In both cases our old nightmare, vicious infinity, is back again.
alpha: While you are increaing content, youdevelop ideas, domathematics;

after it you clarify concepts, do linguistics. Why not stop altogether
when one stops increasing content?Why be trapped in vicious infinities?

mu: Not mathematics versus linguistics again! Knowledge never profits
from such disputes.

gamma: The term ‘never’ soon turns into ‘soon’. I am all for taking up
our old discussion again.

160 Pólya points out that shallow, cheap, generalisation is ‘more fashionable nowadays than
it was formerly. It dilutes a little idea with a big terminology. The author usually prefers
to take even that little idea from somebody else, refrains from adding any original
observation, and avoids solving any problem except a few problems arising from the
difficulties of his own terminology. It would be very easy to quote examples, but I don’t
want to antagonize people’ ([1954], vol. 1, p. 30). Another of the greatest mathematicians
of our century, John von Neumann, also warned against this ‘danger of degeneration’,
but thought it would not be so bad ‘if the discipline is under the influence of men with an
exceptionally well-developed taste’ ([1947], p. 196). One wonders, though, whether the
‘influence of men with an exceptionally well-developed taste’ will be enough to save
mathematics in our ‘publish or perish’ age.
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mu: But we already ended up in a deadlock! Or docs anybody have
anything new to say?

kappa: I think I have.

9. How criticism may turn mathematical truth into logical truth

(a) Unlimited concept-stretching destroys meaning and truth
kappa: Alpha already said that our ‘old method’ leads to vicious

infinity.161 Gamma and Lambda answered with the hope that the
stream of refutations might peter out:162 but now that we understand
the mechanism of refutational success – concept-stretching – we know
that theirs was a vain hope. For any proposition there is always some
sufficiently narrow interpretation of its terms, such that it turns out true,
and some sufficiently wide interpretation such that it turns out false.
Which interpretation is intended and which unintended depends of
course on our intentions. The first interpretation may be called the
dogmatist, verificationist or justificationist interpretation, the second the
sceptical, critical or refutationist interpretation Alpha called the first a
conventionalist stratagem163 – but now we see that the second is one
too. You all ridiculed Delta’s dogmatist interpretations of the naive
conjecture164 and thenAlpha’s dogmatist interpretation of the theorem.165

But concept-stretching will refute any statement, and will leave no true
statement whatsoever.

gamma: Wait. True, we stretched ‘polyhedron’ – then tore it up and
threw it away: as Pi pointed out, the naive concept ‘polyhedron’ does
not figure in the theorem any more.

kappa: But then you will start stretching a term in the theorem –

a theoretical term, won’t you? You yourself chose to stretch ‘simply-
connected face’ to include the circle and the jacket of the
cylinder.166 You implied that it was a matter of intellectual honesty to
stick one’s neck out, to achieve the respectable status of refutability, i.e. to
make the refutationist interpretation possible. But because of concept-
stretching, refutability means refutation. So you slide on to the infinite
slope, refuting each theorem and replacing it by amore ‘rigorous’ one – by
one whose falsehood has not been ‘exposed’ yet! But you never get out of
falsehood.

161 See above, p. 56. 162 See above, pp. 56–7.
163 Alpha in fact did not use this Popperian term explicitly; see above, p. 23.
164 See above, §4(b) 165 See above, §5. 166 See above, pp. 45–50.
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sigma: What if we stop at a certain point, adopt justificationist
interpretations, and don’t budge either from the truth or from the
particular linguistic form in which that truth was expressed?

kappa: Then you will have to ward off concept-stretching counter-
examples with monster-barring definitions. Thus you will slide on to
another infinite slope: you will be forced to admit of each ‘particular
linguistic form’ of your true theorem that it was not precise enough, and
you will be forced to incorporate in it more and more ‘rigorous’
definitions couched in terms whose vagueness has not been exposed
yet! But you never get out of vagueness.167

theta [aside]: What is wrong with a heuristic where vagueness is the
price we pay for growth?

alpha: I told you: precise concepts and unshakable truths do not dwell
in language, but only in thought!

gamma: Letme challenge you,Kappa. Take the theoremas it stood, afterwe
took account of the cylinder: ‘For all simple objects with simply-connected
faces such that the edges of the faces terminate in vertices, V � E + F = 2.’
How would you refute this by the method of concept-stretching?

kappa: First I go back to the defining terms and spell out the proposition
in full. Then I decide which concept to stretch. For instance, ‘simple’
stands for ‘stretchable onto a plane after having had a face removed’.
I shall stretch ‘stretching’. Take the already discussed twintetrahedra –

the pair with an edge in common (fig. 6(a)). It is simple, its faces are
simply-connected, but V � E + F = 3. So our theorem is false.

gamma: But this twintetrahedron is not simple!
kappa: Of course it is simple. Removing any face, I can stretch it

on to a plane. I just have to be careful, when I get to the critical edge,
that I do not tear anything there when opening the second tetrahedron
along that edge.

gamma: But this is not stretching! You tear – or split – the edge into two
edges! You certainly cannot map one point onto two: stretching is a
bicontinuous one-one mapping!

167 * Editors’ note: Kappa’s claim that vagueness is inescapable is correct (some terms are
bound to be primitive). But he is wrong to think that this means that one can always
produce counterexamples by ‘concept-stretching’. By definition, a valid proof is one in
which, no matter how one interprets the descriptive terms, one never produces a counter-
example – i.e. its validity does not depend on the meaning of the descriptive terms, which
can thus be stretched however one likes. This is pointed out by Lakatos himself below,
p. 109 and (more clearly), chapter 2, p. 132.
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kappa: Def. 7? I am afraid this narrow, dogmatist interpretation of
‘stretching’ does not appeal to my common sense. For instance, I can
well imagine stretching a square (fig. 24(a)) into two nested squares by
stretching the boundary lines (fig. 24(b)). Would you call this stretch a
tear or a split, just because it is not a ‘bicontinuous one-one mapping’?
By the way, I wonder why you did not define stretching as a
transformation that leaves V, E and F unaltered, and have done with it?

gamma: Right, you win again. I either have to agree to your refutationist
interpretation of ‘stretching’ and expand my proof, or find a deeper one,
or incorporate a lemma – or I have to introduce a new monster-barring
definition. Yet in any of these cases I shall always make my defining
terms clearer and clearer. Why should I not arrive at a point where the
meanings of the terms will be so crystal clear that there will only be one
single interpretation, as is the case with 2 + 2 = 4? There is nothing elastic
about the meaning of these terms and nothing refutable about the truth
of this proposition, which shines for ever in the natural light of reason.

kappa: Dim light!
gamma: Stretch, if you can.
kappa: But this is child’s play! In certain cases two and two make five.

Suppose we ask for the delivery of two articles each weighing two
pounds; they are delivered in a box weighing one pound; then in this
package two pounds and two pounds will make five pounds!

gamma: But you get five pounds by adding three weights, 2 and 2 and 1!
kappa: True, our operation ‘2 and 2 make 5’ is not an addition in the

originally intended sense. But we can make the result hold true by a
simple stretching of the meaning of addition. Naive addition is a very
special case of packing where the weight of the covering material is
zero. We have to build this lemma into the conjecture as a condition:

(a) (b)

Fig. 24.
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our improved conjecture will be: ‘2 + 2 = 4 for “weightless” addition’.168

The whole story of algebra is a series of such concept- and proof-
stretchings.

gamma: I think you take ‘stretching’ a bit far. Next time you will
interpret ‘plus’ as ‘times’ and consider it a refutation! Or you will
interpret ‘all’ as ‘no’ in ‘All polyhedra are polyhedra’! You stretch the
concept of concept-stretching! We have to demarcate refutation by
rational stretching from ‘refutation’ by irrational stretching. We cannot
allow you to stretch any term you like just as you like.

We must pin down the concept of counterexample in crystal-clear
terms!

delta: Even Gamma has turned into a monster-barrer: now he wants a
monster-barring definition of concept-stretching refutation. Rationality,
after all, depends on inelastic, exact, concepts!169

kappa: But there are no such concepts! Why not accept that our ability to specify
what we mean is nil, therefore our ability to prove is nil? If you want
mathematics to be meaningful, you must resign of certainty. If you want
certainty, get rid of meaning. You cannot have both. Gibberish is safe from
refutations, meaningful propositions are refutable by concept-stretching.

gamma: Then your last statements can also be refuted – and you know it.
‘Sceptics are not a sect of people who are persuaded of what they say,
but a sect of liars.’170

kappa: Swear-words: the last resort of reason!

(b) Mitigated concept-stretching may turn mathematical truth into
logical truth

theta: I think Gamma is right about the need for demarcating rational
from irrational concept-stretching. For concept-stretching has come a
long way, and has changed from a mild, rational activity to a radical,
irrational one.

Originally, criticism concentrates exclusively on the slight stretching
of one particular concept. It has to be slight, so that we do not notice it;
if its real – stretching – nature were discovered, it might not be accepted
as legitimate criticism. It concentrates on one particular concept, as in the

168 Cf. Félix [1957], p. 9.
169 Gamma’s demand for a crystal-clear definition of ‘counterexample’ amounts to a demand

for crystal-clear, inelastic concepts in the metalanguage as a condition of rational discussion.
170 Arnauld and Nicole [1724], pp. xx–xxi.
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case of our rather unsophisticated universal propositions: ‘All A’s are B’s’.
Criticism then means finding a slightly stretched A (in our case
polyhedron) that is not B (in our case Eulerian).

But Kappa sharpened this in two directions. First, to submit more than
one constituent of the proposition under attack to concept-stretching
criticism. Second, to turn concept-stretching from a surreptitious and
rather modest activity into open deformation of the concept, like the
deformation of ‘all’ into ‘no’. Here any meaningful translation of the
terms under attack that renders the theorem false is accepted as
refutation. I would then say that if a proposition cannot be refuted with
respect to the constituents a, b, . . . , then it is logically true with respect to
these constituents.171 Such a proposition is the end-result of a long
critical-speculative process in the course of which the meaning-load of
some terms is completely transferred to the remaining terms and to the
form of the theorem.

Now all that Kappa says is that there are no propositions which are
logically true with respect to all their constituents. But there may be
logically true propositions with respect to some constituents, so that the
stream of refutations can only be opened up again if new stretchable
constituents are added. If we go the whole hog, we end up in
irrationalism – but we need not. Now where should we draw the
borderline? We may very well allow concept-stretching only for a
distinguished subset of constituents which become the prime targets of
criticism. Logical truth will not depend on their meaning.

sigma: So after all we took Kappa’s point: we made truth independent of
the meaning of at least some of the terms!

theta: That is right. But if we want to defeat Kappa’s scepticism, and
escape his vicious infinities, we certainly have to stop concept-
stretching at the point where it ceases to be a tool of growth and
becomes a tool of destruction: we may have to find out which are those
terms whose meaning can be stretched only at the cost of destroying the
basic principles of rationality.172

171 This is a slightly paraphrased version of Bolzano’s definition of logical truth [1837], §147).
Why Bolzano, in the 1830s, proposed his definition, is a puzzling question, especially
since his work anticipates the concept of model, one of the greatest innovations in
nineteenth-century mathematical philosophy.

172 Nineteenth-century mathematical criticism stretched more and more concepts, and
shifted the meaning-load of more and more terms onto the logical form of the propositions
and onto the meaning of the few (as yet) unstretched terms. In the 1930s this process
seemed to slow down and the demarcation line between unstretchable (‘logical’) terms
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kappa: Can we stretch the concepts in your theory of critical rationality?
Or will that be manifestly true, formulated in unstretchable, exact terms
which do not need to be defined? Will your theory of criticism end in a
‘retreat to commitment’: is everything criticisable except for your theory
of criticism, your ‘meta theory’?173

omega [to Epsilon]: I do not like this shift from Truth to rationality.
Whose rationality? I sense conventionalist infiltration.

beta: What are you talking about? I understand Theta’s ‘mild pattern’ of
concept-stretching. I also understand that concept-stretching may
attack more than one term: we saw this when Kappa stretched
‘stretching ‘or when Gamma stretched ‘all’ . . .

sigma: Surely Gamma stretched ‘simply-connected’!
beta: But no. ‘Simply-connected’ is an abbreviation – he only stretched

the term ‘all’ that occurred among the defining terms.174

theta: Come back to the point. You are unhappy about ‘open’, radical
concept-stretching?

beta: Yes. Nobody would accept this last brand as genuine refutation!
I quite see that the mild concept-stretching trend of heuristic criticism
that Pi uncovered is a most important vehicle of mathematical growth.
But mathematicians will never accept this last, wild form of refutation!

teacher: You are wrong, Beta. They did accept it, and their acceptance
was a turning point in the history of mathematics. This revolution in
mathematical criticism changed the concept of mathematical truth, changed

and stretchable (‘descriptive’) terms seemed to become stable. A list, containing a small
number of logical terms, came to be widely agreed upon, so that a general definition of
logical truth became possible; logical truth was no longer ‘with respect to’ an ad hoc list of
constituents. (Cf. Tarski [1935].) Tarski was, however, puzzled about this demarcation
and wondered whether, after all, he would have to return to a relativised concept of
counterexample, and consequently, of logical truth (p. 420) – like Bolzano’s, of which, by
the way, Tarski did not know. The most interesting result in this direction was Popper’s
[1947–8] from which it follows that one cannot give up further logical constants without
giving up some basic principles of rational discussion.

173 ‘Retreat to commitment’ is Bartley’s expression [1962]. He investigates the problem of
whether a rational defence of critical rationalism is possible mainly with respect to
religious knowledge – but the problem-patterns are very much the same with respect to
mathematical knowledge.

174 See above, pp. 45–50. Gamma did, in fact, want to remove some meaning-load from ‘all’,
so that it no longer applied only to non-empty classes. The modest stretching of ‘all’ by
removing ‘existential import’ from its meaning and thereby turning the empty set from a
monster into an ordinary bourgeois set was an important event – connected not only with
the Boolean set-theoretical re-interpretation of Aristotelian logic, but also with the emer-
gence of the concept of vacuous satisfaction in mathematical discussion.
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the standards of mathematical proof, changed the patterns of mathematical
growth!175 But now let us close our discussion for the time being: we
shall discuss this new stage some other time.

sigma: But then nothing is settled. We can’t stop now.
teacher: I sympathise. This latest stage will have important feedbacks

to our discussion.176 But a scientific inquiry ‘begins and ends with
problems’.177 [Leaves the classroom.]

beta: But I had no problems at the beginning! And now I have nothing
but problems!

175 The concepts of criticism, counterexample, consequence, truth, and proof are in-
separable; when they change, the primary change occurs in the concept of criticism and
changes in the others follow.

176 Cf. Lakatos [1962]. 177 Popper [1963b], p. 968.
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Chapter 2

B

Editors’ introduction

Poincare’s proof of the Descartes–Euler conjecture is referred to above.1

In his doctoral thesis Lakatos introduced detailed consideration of this
proof by a discussion of the arguments for and against the ‘Euclidean’
approach to mathematics. Parts of this discussion were incorporated
by Lakatos into chapter 1 (see, e.g., pp. 53–60) and others were rewritten
as parts of ‘Infinite Regress and the Foundations of Mathematics’ (Lakatos
[1962]). We therefore omit this introductory discussion here.

The advocate of the Euclidean programme – the attempt to supply
mathematics with indubitably true axioms couched in perfectly clear
terms – has been Epsilon. Epsilon’s philosophy is challenged, but the
Teacher remarks that the most obvious and direct way to challenge Epsi-
lon is to ask him to produce a proof of the Descartes–Euler conjecture
which satisfies Euclidean standards. Epsilon takes up the challenge.

1. Translation of the conjecture into the ‘perfectly known’ terms
of vector algebra. The problem of translation

epsilon: I accept the challenge. I shall prove that all simply-connected
polyhedra with simply-connected faces are Eulerian.

teacher: Yes, I stated this theorem in a previous lesson.2

epsilon: As I have pointed out, I first have to find the truth in order to
prove it. Now I have nothing against using your method of proofs and
refutations as a method of discovering the truth, but where you stop,
I start. Where you stop improving, I start proving.3

1 See pp. 69 and 96. 2 See above, p. 38.
3 Epsilon is probably the first-ever Euclidean to appreciate the heuristic value of the proof-

procedure. Until the seventeenth century, Euclideans approved the Platonic method of
analysis as the method of heuristic; later they replaced it by the stroke of luck and/or
genius.
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alpha: But this long theorem is full of stretchable concepts. I do not think
we shall find it difficult to refute it.

epsilon: You will find it impossible to refute it. I shall pin down the
meaning of each single term.

teacher: Go on.
epsilon: First I shall use only the clearest possible concepts. Maybe

sometime we shall be able to extend our perfect knowledge to cover
optical cameras, paper and scissors, rubber balls and pumps, but now
we should forget these things. Finality certainly cannot be reached by
using all these various tools. Our previous failures, in my view, are
rooted in the fact that we used methods which are alien to the simple,
naked nature of polyhedra. The exuberant imagination which mobilised
all these tools is completely mis-directed. It adduced external, alien,
contingent elements which do not pertain to the essence of polyhedra
and so no wonder it fails for some polyhedra. In order to get a perfect
proof one has to restrict the range of tools used.4 This is because this
exuberant imagination makes certainty too difficult to attain. The truth
of lemmas which hinge on the properties of rubber, lenses and so on, is
difficult to guarantee. We should abandon scissors, pumps, cameras
and the like, because ‘for the understanding of a question we must
abstract it from all that is superfluous, rendering it as simple as
possible’.5 I purge my theorem6 and my proof of all these, and restrict
them to the simplest and easiest things:7 namely to vertices, edges and
faces. I shall not define these terms as there cannot possibly be a
disagreement about their meaning. I shall define any term which is in
the least obscure in perfectly known ‘primitive’ terms.8

Now it is clear that none of the specific lemmas in any of the proofs
was evidently true; they were just conjectures such as ‘All polyhedra are
pumpable into a ball’ and so on. But now ‘I require that no conjectures

4 In proof-analysis there is no limitation on the ‘tools’. We can use any lemma, any concept.
This is true of any growing, informal theory, where problem-solving is a catch-as-catch-
can affair. In a formalised theory the tools are completely prescribed in the syntax of the
theory. In the ideal case (where there is a decision procedure) problem-solving here
is a ritual.

5 These are Descartes’s words in his [1628], Rule XIII.
6 One should not forget that while proof-analysis concludes with a theorem, the Euclidean

proof starts with it. In the Euclidean methodology there are no conjectures, only theorems.
7 Descartes [1628], Rule IX.
8 Pascal’s rules for definitions ([1659], pp. 596–7): ‘Not to define any given term which is

perfectly known. Not to allow without definition any term in the least obscure or equivocal.
To employ in the definition of terms only perfectly known or already explained words.’
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of any kind be allowed into the judgments we pass on the truth of
things’.9 I shall decompose the conjecture into lemmas which are not
conjectures any longer but ‘intuitions’, that is, ‘nondubious
apprehensions of a pure and attentive mind which are born in the sole
light of reason’.10 Examples of these ‘intuitions’ are: all polyhedra have
faces; all faces have edges; all edges have vertices. I shall not raise such
questions as whether a polyhedron is a solid or a surface. These are
vague notions and anyway superfluous for our purpose. For me a
polyhedron consists of three sets: the set of V vertices (I shall call them
P0
1, P

0
2, . . . , P

0
V), the set of E edges (I shall call them P1

1, P
1
2, . . . , P

1
E), and

the set of F faces (I shall call them P2
1, P

2
2, . . . , P

2
F). In order to characterise

a polyhedron we also need some sort of table that tells us which vertices
belong to which edges, and which edges belong to which faces. I shall
call these tables ‘incidence matrices’.

gamma: I am a bit puzzled by your definition of polyhedra. In the first
place, as you bother to define the notion of a polyhedron at all, I conclude
that you do not consider it to be perfectly well known. But thenwhere do
you take your definition from? You defined the obscure concept of
polyhedron in terms of the ‘perfectly known’ concepts of faces, edges and
vertices. But your definition – namely that the polyhedron is a set of
vertices, plus a set of edges, plus a set of faces, plus an incidence matrix,
obviously fails to capture the intuitive notion of a polyhedron. It implies,
for instance, that any polygon is a polyhedron, as is, say, a polygonwith a
free edge standing out of it. Now youmust choose between two courses.
You may say that ‘the mathematician is not concerned with the current
meaning of his technical terms . . . The mathematical definition creates
the mathematical meaning’.11 In this case to define the notion of a
polyhedron is to drop the old notion altogether and to replace it by a new
concept. But then any resemblance between your ‘polyhedron’ and any
genuine polyhedron is entirely accidental, and you will not get any
certain knowledge about genuine polyhedra by studying your mock-
polyhedra. The other course is to stick to the idea that definition is
clarification, that it makes essential features explicit, that it is a
translation or a meaning-preserving transformation of a term into a
clearer language. In this case your definitions are conjectures, they may
be true, they may be false. How can you have a certainly true translation
of a vague term into precise ones?

9 Descartes [1628], notes to Rule III. 10 Ibid. 11 Pólya [1945], pp. 81–2.
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epsilon: I admit you have taken me by surprise by this criticism.
I thought you might doubt the absolute truth of my axioms, I thought
you might ask how such a priori synthetic judgments are possible, and
I prepared some counter-arguments, but I did not expect an attack on
the line of definitions. But I suppose my answer is: I get my definitions,
just as I get my axioms, by intuition. They are really of equal standing:
you can take my definitions as additional axioms12 or you can take my
axioms as implicit definitions.13 They give the essence of the terms in
questions.

teacher: Enough of philosophy! Let us see the proof I do not like your
philosophy, but I still may like your proof

epsilon: All right. I shall first translate the theorem to be proved into my
perfectly simple and clear conceptual framework. My specific undefined
terms will be: vertices, edges, faces and polyhedra. I shall sometimes refer
to them as zero, one, two, and three dimensional polytopes,14 or briefly,
0-polytopes, 1-polytopes, 2-polytopes and 3-polytopes.

alpha: But only ten minutes ago you defined polyhedra in terms of
vertices, edges and faces!

epsilon: I was wrong. That ‘definition’ was a stupid anticipation.
I jumped to my judgment in a silly rush. True intuition, true
interpretation, ripens slowly, and purging one’s soul of conjectures
takes time.15

beta: You mentioned a moment ago some of your axioms, like: faces have
edges, or to each face belong edges – ‘belong to’: is this another
primitive term?

epsilon: No. I register only terms specific to the theory in question, in this
case the theory of polyhedra, but not the logical, set-theoretical,
arithmetical ones of the underlying theory, with which I assume perfect
familiarity. But let me now go on to the term ‘simply-connected’, which
is certainly not absolutely clear. I shall define first simply-connectedness

12 ‘Definition as an undemonstrable statement of essential nature’ (Aristotle, Analytica
Posteriora, 94a).

13 Gergonne [1818].
14 That these terms can be subsumed under one single general abstract term was discovered

by Schläfli ([1852]). He called them ‘polyschemes’. Listing [1861] calls them ‘Curian’. But
it was Schläfli who extended the generalisation to more than three dimensions.

15 ‘The conclusions of human reason as ordinarily applied in matters of nature, I call for the
sake of distinction, Anticipations of Nature (as a thing rash or premature). That which
reason elicited from the facts by a just and methodical process, I call Interpretation of
Nature (Bacon [1620], XXVI).
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of polyhedra and then simply-connectedness of faces. I take simply-
connectedness of polyhedra first. It is in fact the abbreviation of a long
expression: a polyhedron is said to be simply connected, (1) if all closed
loopless systems of edges have an inside and outside, and (2) if there is
only one closed loopless system of faces – that which separates the
inside from the outside of the polyhedron. Now this is full of rather
vague terms, like ‘closed’, ‘inside’, ‘outside’ and so on. But I shall define
all of them in perfectly known terms.

gamma: You have exorcised mechanical terms – like pumping, cutting –

as unreliable; now you jettison geometrical terms – like closedness.
I think you are overdoing your purging zeal. ‘A closed system of edges’
is a perfectly clear concept, it need not be defined.

epsilon: No, you are wrong. Would you call a star-polygon a closed
system of edges? Maybe you would, because it has no loose end. But it
does not ‘enclose’ any well defined area, and some may mean by a
‘closed system of edges’ a system of edges which does. So you have to
make up your mind in one way or the other, and say in which way you
have decided.

gamma: A star-polygon may not be bounded, but it is obviously closed.
epsilon: I think that it is closed and that it is bounded too. The

disagreement is already telling, but I shall produce some further
evidence. I wonder whether or not you would say that the heptahedron
is a closed system of faces and that it is bounded?

gamma: I have never heard of your heptahedron.
epsnon: It is a rather interesting sort of polyhedron, as it is one-sided.

There is no geometrical solid which it encloses, it does not separate the
space into two parts, into an inside and an outside. Alpha, for instance,
guided by his ‘clear’ geometrical intuition, said earlier that a closed
system of faces bounds ‘if it is the boundary between the inside of the
polyhedron and the outside of the polyhedron’. I wonder whether he
would say that the surface of the heptahedron does not bound? Or will
getting acquainted with the heptahedron change his concept of
‘bounding’ systems? In this case I most humbly ask you: can perfectly
known concepts be changed by experience? They cannot. Therefore
‘closed’, ‘bounded’ are not perfectly well known. Therefore I am going
to define them.

theta: Draw that heptahedron. I wonder what is it like?
epsilon: All right. I start first with an ordinary familiar octahedron

(see fig. 25).
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Now I add three squares in the planes spanned by the diagonals, for
instance ABCD (fig. 26).

delta: I should expect from a decent polyhedron that at the edges only
two faces should meet. Here we have three.

epsnon: Wait. I remove now four triangles in order to comply with this
requirement: from the first half of the figure I remove the upper left-
hand triangle and the lower right-hand triangle. From the part at the
rear of the figure I remove the lower left-hand triangle and the upper

A

D

B

C

Fig. 25.

B

C

D

A

Fig. 26.
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right-hand triangle. Then only the four triangles shaded in the diagram
remain (fig. 27). Thus we have obtained a figure consisting of
four triangles and three squares.16 This is the heptahedron.17 Its edges
and vertices are the original edges and vertices of the octahedron. The
diagonals of the octahedron are not edges of our figure but are lines in
which it intersects itself I do not attach much importance to geometrical
intuition, I am not very interested in the fact that my polyhedron
happens to be so uncomfortably embedded into three-dimensional
space. This fact is not displayed by the incidence-matrices of my
heptahedron. (By the way, the heptahedron can be embedded nicely
without self-intersection into five-dimensional space.)18

Now does the surface of the heptahedron bound? The answer is ‘no’
if you define a surface as ‘bounding’ if and only if it is the boundary of
the polyhedron in the sense that it separates the inside and the outside
of the polyhedron in question. On the other hand, the answer is ‘yes’
if you define a surface as ‘bounding’ if and only if it is the boundary of
the polyhedron in the sense that it contains all its faces. You see, you
have to define ‘bound’, you have to define ‘boundary’. These concepts
may seem to have a touch of familiarity before one starts investigating

C

D

A

B

Fig. 27.

16 Figure 27 is redrawn from Hilbert and Cohn-Vossen [1932].
17 Discovered by C. Reinhardt (see his [1885], p. 114).
18 That one-sidedness or two-sidedness is dependent on the number of the dimensions of

the space was first noticed by W. Dyck. See his [1888], p. 474.
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the richness of polyhedral forms, but during such an investigation
the original rough concepts split up and display a fine structure, and so
you have to define your concepts carefully so that it is clear in which
sense you are using them.

kappa: And then you have to put a veto on further investigation in order
to avoid further splittings!

teacher: Epsilon, do not listen to Kappa. Refutations, inconsistencies,
criticism in general are very important, but only if they lead to
improvement. A mere refutation is no victory. If mere criticism, even
though correct, had authority, Berkeley would have stopped the
development of mathematics and Dirac could not have found an editor
for his papers.

epsilon: Do not worry, I dismissed Kappa’s pointless heckling at once.
I am now going on to define my terms, to translate everything into my
few specific primitive terms – polytopes and incidence-matrices. I shall
start by defining ‘boundary’. The boundary of a k-polytope is the sum of
the (k � 1) polytopes which belong to it according to the incidence-
matrices. I shall call a sum of k-polytopes a k-chain. For instance the
‘surface’ of a polyhedron (or any part of it) is essentially a 2-chain.
I define the boundary of a k-chain as the sum of the (k � 1) polytopes
which belong to the k-chain, but instead of ordinary sum I take the sum
modulo 2. This means that the following will hold:

0þ 0 ¼ 0, 1þ 0 ¼ 1, 0þ 1 ¼ 1, 1þ 1 ¼ 0:

You have to see that this is the true definition of the boundary of a
k-chain.

beta: Stop for a moment. I cannot easily follow your k-dimensional
definitions. Let me think loudly about an example.19 For instance the
boundary of a face is, according to your definition, the set of edges
which belong to it. Now when I join two faces, the common boundary
will not contain the edges which they both contain. So when adding the
edges I shall omit those which occur in couples. For instance I take two
triangles (fig. 28). The boundary of the first is c + d + e, the boundary of the
second, a + b + e, the boundary of their join a + b + e + c + d + e = a + b + c + d.
I see now why you introduced the mod 2 sums in your definition. Please
carry on.

19 * Editors’ note: ‘Thinking loudly’ was a technical term of Lakatosian English.
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epsilon: After having defined ‘boundary’ in perfectly known specific
terms I shall now define ‘closedness’. Hitherto either you had to rely on
a vague insight, or you had to define closedness in each case separately:
first the closedness of systems of edges, then the closedness of systems
of faces. Now I show you that there is a general concept of closedness,
applicable to any k-chain, independently of k. I shall call a k-chain a
closed k-chain, or briefly, a k-circuit, if and only if its boundary is zero.

beta: Stop for a moment. Let me see: an ordinary polygon is intuitively
closed, and it is in fact closed according to your definition since its
boundary is zero, as each vertex occurs twice in the boundary, and that
makes zero in your mod 2 algebra. An ordinary simple polyhedron is
closed, and again its boundary is zero, as in its boundary each edge
occurs twice.

kappa [aside]: Beta certainly has to struggle to verify Epsilon’s ‘obvious
and immediate insights’!

epsilon: The next term to be elucidated is ‘bound’. I shall say that a
k-circuit bounds, if it is the boundary of a (k + 1)-chain. For instance, the
’equator’ of a spheroid polyhedron bounds, but the ‘equator’ of a toroid
polyhedron does not. In this latter case the alternative idea, namely that
it bounds the ‘whole’ of the polyhedron, is now ruled out, as the
boundary of the whole of the polyhedron is empty. Now it is absolutely
clear that for instance the heptahedron bounds.

beta: You are a bit quick, but you seem to be right.
gamma: Can you prove that any bounding k-chain is a circuit? You

defined ‘bounding’ only for circuits – you could have done it in general
for chains. I suppose the reason for your restricted definition is this
latent theorem.

a

b

c

d e

II

I

Fig. 28.
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epsilon: That is right. I can prove that.
gamma: Another query. Some chains are circuits, some circuits bound.

This seems to me to be in order. But I think that the boundary of a
decent k-chain should be closed. For instance I could not possibly accept
as a polyhedron a cube with the top missing; and I could not possibly
accept as a polygon a square with an edge missing. Can you prove that
the boundary of any k-chain is closed?

epsilon: Can I prove that the boundary of the boundary of any k-chain
is zero?

gamma: That is it.
epsilon: No, I cannot. This is indubitably true. It is an axiom. There is no

need to prove it.
teacher: Go on, go on! I assume now you can translate our theorem into

your perfectly known terms.
epsilon: Yes. In brief, the translated theorem is: ‘All polyhedra, all of whose

circuits bound, are Eulerian’. The specific term ‘polyhedron’ is undefined;
I have already defined ‘circuit’ and ‘bound’ in perfectly known terms.

gamma: You have forgotten about the simply-connectedness of the faces.
You have translated only the simply-connectedness of the polyhedron.

epsilon: You are wrong. I demand that all the circuits should bound:
even the 0-circuits. I have translated ‘simply-connectedness of a
polyhedron’ into ‘all 1-circuits and 2-circuits bound’; and ‘simply-
connectedness of the faces’ into ‘all 0-circuits bound’.

gamma: I do not follow you. What is a 0-circuit?
epsilon: A 0-chain is any sum of vertices. A 0-circuit any sum of vertices

whose boundary is zero.
gamma: But what is the boundary of a vertex? There are no minus

1-dimensional polytopes!
epsilon: Of course there are. Or, rather, there is one: the empty set.
gamma: You are mad!
alpha: He may not be mad. He is introducing a convention. I do not

mind what conceptual tools he adopts. Let us see his results.
epsilon: I do not use conventions, and my concepts are not ‘tools’. The

empty set is the minus 1-dimensional polytope. Its existence for me is
certainly more obvious than the existence of, say, your dog.

teacher: No Platonic propaganda! Show how your ‘bounding 0-circuits’
translate ‘simply-connected faces’.

epsilon: If you once realise that the boundary of any vertex is the empty
set, the rest is nothing. According to my earlier definition, the boundary
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of one vertex is the empty set, but the boundary of two vertices is zero,
because of the mod 2 algebra. The boundary of three vertices is again the
empty set, and so on. So even numbers of vertices are circuits, odd
numbers of vertices are not.

gamma: So the point of your requirement that 0-circuits should bound
amounts to the requirement that any two vertices must bound a 1-
chain, or in ordinary language to the requirement that any two vertices
must be connected by some system of edges. This of course rules out
ring-shaped faces. This is indeed the requirement which we used to call
the ‘simply-connectedness of faces taken separately’.

epsilon: You can scarcely deny that my language, which is the natural
language reflecting the essence of polyhedra, shows for the first time the
deeply rooted essential identity of formerly disconnected, isolated, ad
hoc criteria!

gamma [aside]: What I can scarcely deny is that I am puzzled! That the
way to this ‘natural simplicity’ should be littered with such
complications really is rather strange.

alpha: Let me check that I understand. Do you say that all vertices have
the same boundary: the empty set?

epsilon: That is right.
alpha: And for you ‘all vertices have the empty set’ is an axiom,

I assume; just as ‘all faces have edges’ or ‘all edges have vertices’.
epsilon: That is right.
alpha: But these axioms cannot possibly have an equal standing!

The first is a convention, the last two are necessarily true!
teacher: The theorem has been translated. I want to see the proof.
epsilon: Anon, Sir. Allow me a slight reformulation of the theorem to:

‘All polyhedra in which circuits and bounding circuits coincide, are Eulerian’.
teacher: Prove it.
epsilon: Anon, Sir. I restate it.20

beta: But why? You have already translated all your terms which were a
bit obscure into terms which are perfectly known!

epsilon: That is true. But the translation I am about to produce is a very
different one. I shall translate the set of my primitive terms into another
set of primitive terms, which are still more basic.

20 ‘Could you restate the problem? Could you restate it differently?’ (Pólya [1945],
inside cover).
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beta: So some of your perfectly known terms are better known than
others!

teacher: Beta, do not constantly heckle Epsilon! Fix your attention on
what he is doing and not on how he interprets what he is doing. Go on,
Epsilon.

epsilon: If we look more closely at my last formulation of the
theorem we shall see that it is a theorem about the number of
dimensions of certain vector spaces determined by the incidence
matrix.

beta: What?
epsilon: Look at our concept of a chain, say a 1-chain. It is this:

x1θ1 þ x2θ2 þ . . .þ xEθE,

where θ1, . . . , θE are the E edges, and x1, x2, . . . , xE are either 0 or 1.
It is easy to see that the 1-chains form an E-dimensional vector-space
over the field of residue-classes modulo 2. In general the k-chains form
Nk-dimensional vector-spaces over the field of residue-classes modulo 2
(where Nk stands for the number of k-polytopes). The circuits form
subspaces of the chain spaces and the bounding circuits again
subspaces of the circuit spaces.

So my theorem in fact is that ‘If the circuit-spaces and bounding
circuit spaces coincide, the number of dimensions of the 0-chain space
minus the number of dimensions of the 1-chain space plus the number of
dimensions of the 2-chain space equals 2’. This is the essence of Euler’s
theorem.

teacher: I like this reformulation which really showed the nature of
your simple tools – just as you promised. You will now no doubt prove
Euler’s theorem by the simple methods of vector algebra. Let us see
your proof

2. Another proof of the conjecture

epsilon: I decompose my theorem into two parts. The first states that
the circuit spaces and bounding circuit spaces coincide if and only
if the numbers of their dimensions coincide. The second states that if
the circuit spaces and bounding circuit spaces have the same
dimension, then the number of dimensions of the 0-chain space minus
the number of dimensions of the 1-chain space plus the number of
dimensions of the 2-chain space equals 2.
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teacher: The first part is a trivially true theorem of vector algebra.
Prove the second part.

epsilon: Nothing is easier than that. I need only fall back on the
definitions of the concepts involved.21 First let us write out our
incidence matrices. For instance let us take the incidence matrices of a
tetrahedron ABCD, with edges AD, BD, CD, BC, AC, AB and faces BCD,
ACD, ABD, ABC. The matrices are ηkij = 1 or 0, according as Pi

k�1 does, or
does not, belong to Pj

k. So our matrices are:

Now with the help of these matrices, the circuit spaces and the
bounded circuit spaces can be easily characterised. We have already
seen that the k-chains are really the vectors.

XNk

i¼1

xiPk
i :

η0 A B C D
the empty set 1 1 1 1

η1 AD BD CD BC AC AB
A 1 0 0 0 1 1
B 0 1 0 1 0 1
C 0 0 1 1 1 0
D 1 1 1 0 0 0

η2 BCD ACD ABD ABC
AD 0 1 1 0
BD 1 0 1 0
CD 1 1 0 0
BC 1 0 0 1
AC 0 1 0 1
AB 0 0 1 1

η3 ABCD
BCD 1
ACD 1
ABD 1
ABC 1

21 ‘To substitute mentally the definitions in place of the things defined’ (Pascal [1659]).
‘Go back to definitions’ (Pólya [1945], inside cover and p. 84).
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Now we defined the boundary of a Pk
j -polytope as

XNk�1

i¼1

ηkijP
k�1
i :

(This – like all the formulae which follow – is only a restatement of our
old definition in symbolic notation.)
The boundary of a k-chain :

P
xjPk

j is

X
i

X
j

xjηkijP
k�1
i :

Now a k-chain :
P

xjPk
j is a k-circuit if and only if

(1)
XNk

j¼1

ηkijxj ¼ 0 for each i.

A k-chain
P

xjPk
j is a bounding k-circuit if and only if it is the boundary

of some (k + 1)-chain
P

ymP
kþ1
m , i.e. if and only if there exist coefficients

ym(m = 1, . . ., Nk+1) such that

(2) xj ¼
X

ymη
kþ1
jm

Now it is obvious that the circuit space and the bounding circuit
space are identical if and only if their dimensions are identical, i.e. if and
only if the number of independent solutions of the Nk � 1 homogeneous
linear equations (1) equals the number of independent solutions of the
system of inhomogeneous linear equations (2). Now the first number is,
according to the well known theorems of linear algebra, Nk�ρk where
ρk is the rank of kηkijk; the second number is ρk+1�

So I have only to prove that if Nk – ρk = ρk+1 then V – E + F = 2.
lambda: Or, ‘If Nk = ρk + ρk+1 thenN0 – N1 + N2 = 2’. Nk are dimensions of

certain vector spaces, ρk the ranks of certain matrices. This is no longer a
theorem about polyhedra but about a certain set of multidimensional
vector spaces.

epsilon: I see you have just woken up. While you were asleep,
I analysed our concepts of polyhedra and showed that they are
really vector algebraic concepts. I translated the circle of ideas of the
Euler-phenomenon into vector algebra, thus displaying their essence.
Now I am certainly proving a theorem in vector algebra, which is a clear
and distinct theory with perfectly known terms, neat and indubitable
axioms, and with neat, indubitable proofs. For instance, look at the new
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trivial proof of our old much-discussed theorem: If Nk = ρk + ρk+1, then
N0 � N1 + N2 = ρ0 + ρ1 � ρ1 � ρ2 + ρ2 + ρ3 = ρ0 + ρ3 = 1 + 1 = 2. Who
would dare to doubt the certainty of this theorem now? Thus I proved
Euler’s controversial theorem with indubitable certainty.22

alpha: But look here Epsilon, if we had accepted a rival convention
that the vertices have no boundary, the matrix η0 for instance in the case
of the tetrahedron would have been

the rank ρ0would have been 0 and consequentlyV� E + F = ρ0 + ρ3 = 1. Do

you not think your ‘proof’ relies too heavily on a convention? Did you
not choose your convention only to save the theorem?

epsilon: My axiom concerning ρ0 was not a ‘convention’. ρ0 = 1 has
in my language the very real meaning that each couple of vertices
bounds, that is the network of edges is connected (ringshaped faces
are thereby excluded). The expression ‘convention’ is utterly
misleading. For polyhedra with simply connected faces, ρ0 = 1 is
true, ρ0 = 0 is false.

alpha: Hmm. You seem to say that both ρ0 = 1 and ρ0 = 0 characterise
some structure in vector-spaces. The difference is that ρ0 = 1 has a real
model in polyhedra with simply-connected faces, while the other
has not.

3� Some doubts about the finality of the proof. Translation procedure
and the essentialist versus the nominalist approach to definitions

teacher: Anyway, we have got the new proof. Is it final, though?
alpha: It is not. Take this polyhedron (fig. 29). It has two ringshaped

faces, in the front and in the back, it can be pumped into a torus. And it
has 16 vertices, 24 edges and 10 faces. Thus V – E + F = 16 – 24 + 10 = 2.
It is Eulerian, but far from being simply-connected.

beta: I do not think that this is an instance of the Descartes–Euler
phenomenon. This is an instance of the Lhuilier phenomenon; that is:

η0 A B C D
0 0 0 0

22 This proof is due to Poincaré (see his [1899]).
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for a polyhedron with k tunnels and m ringshaped faces V – E + F =
2 – 2k + m.23 For any polyhedron like this one with twice as many
ringshaped faces as tunnels, V – E + F = 2, but that does not mean that
it is Eulerian. And this Lhuilier-phenomenon explains at once why
we could not easily get a necessary and sufficient condition – or
mastertheorem – for the Descartes–Euler conjecture, because these
Lhuilier instances intruded among the Eulerian ones.24

teacher: But Epsilon never promised finality, only more depth than we
had achieved earlier. He has now fulfilled his promise to produce a
proof which explains both the Eulerian character of ordinary polyhedra
and the Eulerian character of star-polyhedra at one blow.

lambda: This is true. He translated the requirement that the faces be
simply–connected – that is that in the triangulating process each new
diagonal should create a new face – in such a way that the idea of
triangulation disappeared from it completely. In this new translation a
face is simply-connected if all vertex-circuits bound in it – and this
requirement holds for Eulerian star-polyhedra! And while we have
difficulties in applying Jordan’s intuitive (i.e. non-star-intuitive) concept
of simply-connectedness of the polyhedron to star-polyhedra, in the
Poincaré translation these difficulties disappear. Star-polyhedra, just
like ordinary polyhedra, are sets of vertices, edges and faces plus an
incidence-matrix; we are not concerned with the problem of a

Fig. 29.

23 See Lhuilier [1812–13a]. The relation was rediscovered about a dozen times between 1812
and 1890.

24 See above, pp. 67 ff.
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polyhedron’s realization in a space which happens to be our material,
three-dimensional, roughly Euclidean one. The small stellated
dodecahedron for instance is not Eulerian: and it is not too difficult to
trace 1-circuits on it which do not bound.

beta: I find this interesting also from another aspect. Epsilon’s proof is at
once more rigorous and more embracing. Is there a necessary
connection between these two?

epsilon: I do not know. But while our Teacher claims only more depth for
my proof, I am claiming absolute certainty.

kappa: Your theorem is as liable to be refuted by some imaginative
concept-stretching as any previous conjecture.

epsilon: You are wrong, Kappa, as I shall explain.25

alpha: Before you do let me raise a second question about your proof, or
rather about the finality and certainty that you claim for it.
Is the polyhedron in fact a model of your vector-algebraic structure?
Are you sure that your translation of ‘polyhedron’ into vector theory
was a true translation?

epsilon: I have already said that it is true. If something startles you that
is no reason for doubting it. ‘I am following the great school of
mathematicians who, in virtue of a series of startling definitions, have
saved mathematics from the sceptics, and provided a rigid
demonstration of its propositions.’26

teacher: I indeed think that this method of translation is the heart of the
matter of the certainty and finality of Epsilon’s proof. I think we should
call it translation-procedure. But let us see, are there any other doubts?

gamma: Just one more. Say I accept that your deduction is infallible.
Are you sure that you cannot deduce from your premisses the negation
of your theorem with the same infallibility?

epsilon: All my premisses are true. How can they possibly be
inconsistent?

teacher: I appreciate your doubts. But I always prefer one
counterexample to any number of doubts.

25 See pp. 131–4.
26 This is quoted from Ramsey [1931], p. 56. Only one word is changed, he says ‘mathemat-

ical logicians’ instead of ‘mathematicians’, but this is only because he did not understand
that the procedure he described was not a novel characteristic of mathematical logic, but a
feature of ‘rigorous’ mathematics from Cauchy on, and that the celebrated definitions of
limit, continuity, and so on, proposed by Cauchy and improved byWeierstrass all fall in this
line. I note that Russell also quotes this sentence from Ramsey (Russell [1959], p. 125).
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gamma: I wonder, does my cylinder not refute this new theorem?
epsilon: Of course it does not. In the cylinder the empty set does not

bound, and consequently ρ0 6¼ 1.
gamma: I see. You are right. This argument, put into your perfectly

familiar, clear and distinct terms has convinced me at once.
epsilon: I understand your sarcasm! Once before you queried my

definitions. I then said they are, in fact, indubitably true axioms stating
the essence of the concepts in question, with the help of infallibly clear
and distinct intuition. I have thought about this since and I think I have
to give up my Aristotelian view of definitions. When I define a vague
term, I in fact replace it by a new one, and the old term serves only as an
abbreviation of my new one.

alpha: Let me get this clear. What do you mean by ‘definition’: a
replacement which is an operation from the left to the right or an
abbreviation which is an operation from the right to the left?

epsilon: I mean the abbreviation. I forget about the old meaning. I create
freely the meaning of my terms while scrapping old vague terms. I also
create my problems freely, while scrapping old obscure ones.

alpha: You cannot help being an extremist. But go on.
epsilon: By this change in my programme I certainly gain one thing: one

of your doubts is herewith eliminated. If definitions are abbreviations,
then they cannot be false.

alpha: But you lose something which is much more important. You have
to restrict your Euclidean programme to theories with perfectly known
concepts, and when you want to pull theories with vague concepts into
the scope of this programme, you cannot do this by your translational
technique: as you said, you do not translate, rather you create new
meaning. But even if you tried to translate the old meaning, some
essential aspects of the original vague concept may get lost in this
translation. The new clear concept may not serve for the solution
of the problem for which the old concept was meant to serve.27

27 A classical example of a translation which did not satisfy the (usually implicit) adequacy
criterion was the nineteenth-century definition of the area of a surface, which was
knocked out by the Schwartz ‘counterexample’.

The trouble is that adequacy criteria may change with the emergence of new prob-
lems which may occasion a change in the conceptual tool-cabinet. A paradigm case for
such a change is the story of the concept of the integral. It is a shame of present
mathematical education that students can quote exactly the different definitions of
the Cauchy, Riemann, Lebesgue, etc. integrals, without knowing which problems they
were invented to solve, or in the course of the solution of which problems they were
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If you regard your translation as infallible, or, if you consciously
scrap the old meaning, both these extremes will yield the same
result: you may push out the original problem into the limbo of the
history of thought – which in fact you do not want to do.28 So if you
calm down, you have to admit that definition must have a touch
of modified essentialism: it must preserve some relevant aspects of
the old meaning, it must transfer relevant elements of meaning from
left to right.29

beta: But even if Epsilon will accept this modified essentialism in
definitions, the resignation from the essentialist approach will still be a
huge withdrawal from his original Euclidean programme. Epsilon now
says that there are Euclidean theories with perfectly known terms and
infallible inferences – like arithmetic, geometry, logic, set theory
I suppose, and he now makes the Euclidean programme consist of
translating non-Euclidean theories with vague, obscure terms and
uncertain inferences – like calculus and probability theory – into these
already Euclidean theories, thus opening new avenues of development
both of the underlying theories and of the originally non-Euclidean
theories.

epsilon: I shall call such an ‘already Euclidean’ or established theory a
dominant theory.

gamma: I wonder what is the field of applicability of this shrunken
programme? It certainly will not cover physics. You will never translate
wave-mechanics into geometry. Epsilon wanted, ‘in virtue of a series of
startling definitions to save mathematics from the sceptics‘,30 but what
he saved was at best some crumbs.

discovered. As adequacy criteria change, definitions usually develop in such a way that
the definition complying with all of the criteria becomes dominant. This could not happen
to the definition of the integral, because of the inconsistency of the criteria – this is why
the concept had to be split up. Proof-generated definitions play a decisive role even in
building up translatory definitions in the Euclidean programme.

28 This process is very characteristic of twentieth-century formalism.
29 This trivial point is curiously enough missed by nominalists like Pascal and Popper.

Pascal writes (loc. cit.): ‘. . . geometers and all those who operate methodically, impose
names on things only to abridge discourse’. And Popper writes ([1945], volume 2, p. 14):
‘In modern science only nominalist definitions occur, that is to say, shorthand symbols or
labels are introduced to cut a long story short’. It is intriguing how nominalists and
essentialists can each be blind to the rational kernel of the other’s argument.

30 See above, p. 128.
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beta: I have a problem about those translatory definitions. They seem to
appear as mere abbreviations in the dominant theory and thus there
they are true ‘by definition’. But they seem to be falsifiable if we regard
them as referring to the non-Euclidean realm.31

epsilon: That is right.
beta: It would be interesting to see how one falsifies such definitions.
theta: I should like now to switch the discussion back to the question of

the infallibility of Epsilon’s deduction. Epsilon, do you still claim
certainty for your theorem?

epsilon: Certainly.
theta: So you cannot imagine a counterexample to it?
epsilon: As I told Kappa, my proof is infallible. There are no

counterexamples to it.
theta: Do you mean you would rule out counterexamples as monsters?
epsilon: Not even a monster can refute it.
theta: So you claim that whatever I substitute in the place of your

perfectly known terms, the theorem remains true?
epsilon: You can substitute anything in the place of the perfectly known

terms which are specific to vector algebra.
theta: I cannot replace your non-specific primitive terms, like ‘all’, ‘and’,

‘2’ and so on?

31 The methodological importance of this difference has not yet been properly worked out.
Pascal, the great advocate of abbreviatory definitions and the great opponent of the
Aristotelian essentialist theory of definition, did not notice that to abandon essentialism
is in fact to abandon the large-scale Euclidean programme. In the Euclidean programme
one has to define all the terms that are ‘only a bit obscure’. If this consists only of
replacement of a vague term by an arbitrarily chosen precise one, one in fact abandons
the original field of enquiry and turns to another. But Pascal certainly did not want this.
Cauchy and Weierstrass were essentialists when carrying out the arithmetisation of
mathematics; Russell was an essentialist when carrying out the logicisation of mathemat-
ics. All these men thought of their definitions of continuity, real numbers, integers and so
on as capturing the essence of the concept involved. When stating the logical form of
statements in ordinary language, i.e. translating ordinary language into artificial lan-
guage, Russell thought – at least in his ‘honeymoon period’ ([1959], p. 73) – that he was
guided by an infallible intuition. Popper, in his justified onslaught against essentialist
definitions does not pay enough attention to the important problem of translatory
definitions and I guess that this may account for what seems to me his unsatisfactory
treatment of logical form in his [1947], p. 273. According to him (and here he follows
Tarski) the definition of valid inference hinges only on the list of formative signs. But
validity of an intuitive inference depends also on the translation of the inference from ordinary (or
arithmetical, geometrical, etc.) language into the logical language: it depends on the translation we
adopt.
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epsilon: No. But you can replace anything in the place of my specific
perfectly known terms like ‘vertex’, ‘edge’, ‘face’ and so on. By this
I think I clarified what I mean by refutation.

theta: You did. But then you either can be refuted or you indeed did not
do what you thought you did.

epsilon: I do not understand your obscure hint.
theta: You will, if you want to. Your characterisation of the idea of a

counterexample seems reasonable. But if that is what a counterexample
is, then the meaning of your ‘perfectly well known terms’ is immaterial.
And this, if your claim is justified, is precisely the merit of your proof.
A proof, if irrefutable, does not hinge – by the very concept of an
irrefutable proof – on the meaning of the specific ‘perfectly well known
terms’. So the burden of your proof – if you are right – is fully borne by
the meaning of the non-specific, underlying terms – in this case
arithmetic, set-theory, logic – but not in the least by the meaning of your
specific terms.

I shall call such proofs formal proofs, as they do not depend at all on
the meaning of the specific terms. The degree of formality certainly
depends on the non-specific terms. The perfectly known character of
these terms – I shall call them formative terms – is very important
indeed. By pinning down their meaning we state what can be accepted
as counterexamples and what cannot. Thus we regulate the spate of
counterexamples. If there are no counterexamples to the theorem, we
shall call the theorem a tautology: in our case an arithmetico-set
theoretical tautology.

alpha: We seem to have quite a gamut of tautologies according to our
choice of quasilogical constants. But I see here a host of problems. First:
how do we know of a tautology that it is a tautology?

kappa: You will never know beyond any possibility of doubt. But if you
have serious doubts about a dominant theory then scrap it, and replace
it by another dominant theory.32

32 Such changes in the dominant theory imply the reorganisation of all our knowledge. In
antiquity the paradoxicality and, indeed, seeming inconsistency of arithmetic induced the
Greeks to abandon arithmetic as the dominant theory and replace it by geometry. Their
theory of proportions served the purpose of translating arithmetic into geometry. They
were convinced that all astronomy, and all physics could be translated into geometry.

Descartes’s great innovation was to replace geometry by algebra; maybe because he
thought that in the dominant theory analysis itself should lead to truth.

Themodernmathematical ‘revolution of rigour’ consisted in fact of the re-establishment
of arithmetic as the dominant theory via the huge programme of the arithmetisation of
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* Editors’ note. This section of the dialogue ends here in Lakatos’s thesis.
We should have tried to persuade Lakatos to continue the dialogue along
the following lines:

theta: But from what has just been said it seems to follow that if we can
cast our proofs in systems in which the dominant theory is logic, then so
long as we have no serious doubts about our logic, we shall be able to
ensure the infallibility of our deductions and throw all the doubt not on
the actual proof, but on the lemmas, on the antecedents of the theorem.

epsilon: I am glad that at least Theta finally caught on. My proof can in
fact be cast in a system of which the dominant theory is logic. The
conditional statementwith all the lemmas incorporated as antecedents can
be proved in this system, and we know that (relative to the given stock of
formative ‘logical’ terms) there are no counterexamples to any statement
which can be proved in this way. Nomatter how the descriptive terms are
re-interpreted, this conditional statement will remain true.

lambda: How do ‘we know’?
epsilon: We don’t know for certain – it is an informal theorem about

logic. But, moreover, we know that, presented with any alleged proof in
such a system, we can check completely mechanically using a
procedure which is guaranteed to produce an answer in a finite number

mathematics which went on from Cauchy toWeierstrass. The theory of real numbers – felt
to be artificial by quite a few working mathematicians –was the crucial step; analogous to
the similarly ‘artificial’ theory of proportions of the Greeks.

Russell in turn made logic the dominant theory of all mathematics. The interpretation
of the history of metamathematics as a search for a dominant theory may throw new light
on the history of this subject, and one may be able to show that the Gödelian ‘discovery’
that the natural dominant theory for metamathematics is arithmetic, led straight to
the present stage of inquiry, and opened new vistas both in arithmetic and in
metamathematics.

Another example of a remarkable Euclidean translation was the modern embedding of
probability theory into measure theory.

Dominant theories and the change of dominant theories also determine much of the
development of science in general. The elaboration and then the breakdown of rational
mechanics as the dominant theory of physics played a central role in modern history of
science. The struggle of biology against being ‘translated’ into chemistry, the struggle of
psychology against being translated into physiology, are intriguing features of the history
of recent science. The translation procedures are vast reservoirs of problems, historical
trends which represent huge patterns of thought at least as important as the Hegelian
triad. Such translations usually speed up the development of both the dominant and the
absorbed theory, but later the translation will become an impediment to further develop-
ment as the weak spots of the translation come into the foreground.
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of steps, whether or not it is indeed a proof. In such systems, then, your
‘proof-analysis’ reduces to a triviality.

alpha: But you would agree, Epsilon, that ‘proof-analysis’ retains its
importance in informal mathematics; and that formal proofs are always
translations of informal proofs and that the problems that have been
raised about translation are very real.

lambda: But anyway, Epsilon, how do we know that proof checking is
always accurate?

epsilon: Really Lambda, your unquenchable thirst for certainty is
becoming tiresome! How many times do I have to tell you that we
know nothing for certain? But your desire for certainty is making you
raise very boring problems – and is blinding you to the interesting ones.
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APPENDIX 1

Another case-study in the method
of proofs and refutations

B

1. Cauchy’s defence of the ‘principle of continuity’

The method of proofs and refutations is a very general heuristic pattern of
mathematical discovery. However, it seems that it was discovered only in
the 1840s and even today seems paradoxical to many people; and certainly
it is nowhere properly acknowledged. In this appendix I shall try to sketch
the story of a proof-analysis in mathematical analysis and to trace the
sources of resistance to the understanding and recognition of it. I first
repeat the skeleton of the method of proofs and refutations, a method
which I have already illustrated by my case-study of the Cauchy proof of
the Descartes–Euler conjecture.

There is a simple pattern of mathematical discovery– or of the growth of
informal mathematical theories. It consists of the following stages:1

(1) Primitive conjecture.
(2) Proof (a rough thought-experiment or argument, decomposing the primitive

conjecture into subconjectures or lemmas).
(3) ‘Global’ counterexamples (counterexamples to the primitive conjecture) emerge.
(4) Proof re-examined: the ‘guilty lemma’ to which the global counterexample is a

‘local’ counterexample is spotted. This guilty lemma may have previously
remained ‘hidden’ or may have been misidentified. Now it is made explicit, and
built into the primitive conjecture as a condition. The theorem – the improved
conjecture – supersedes the primitive conjecture with the new proof-generated
concept as its paramount new feature.2

1 As I have stressed the actual historical pattern may deviate slightly from this heuristic
pattern. Also the fourth stage may sometimes precede the third (even in the heuristic
order) – an ingenious proof analysis may suggest the counterexample.

2 * Editors’ note: In other words this method consists (in part) of producing a series of
statements P1 . . . Pn such that P1 & . . . & Pn is supposed to be true of some domain of
interesting objects and seems to imply the primitive conjecture C. This may turn out not to
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These four stages constitute the essential kernel of proof-analysis. But
there are some further standard stages which frequently occur:

(5) Proofs of other theorems are examined to see if the newly found lemma or the
new proof-generated concept occurs in them: this concept may be found lying at
cross-roads of different proofs, and thus emerge as of basic importance.

(6) The hitherto accepted consequences of the original and now refuted conjecture are
checked.

(7) Counterexamples are turned into new examples – new fields of inquiry open up.

I should now like to consider another case-study. Here the primitive
conjecture is that the limit of any convergent series of continuous functions
is itself continuous. It was Cauchy who gave the first proof of this conjec-
ture, whose truth had been taken for granted and assumed therefore not to
be in need of any proof throughout the eighteenth century. It was
regarded as the special case of the ‘axiom’ according to which ‘what is
true up to the limit is true at the limit’.3 We find the conjecture and its
proof in Cauchy’s celebrated [1821] (p. 131).

Given that this ‘conjecture’hadhitherto been regarded as trivially true,why
did Cauchy feel the need to prove it? Had someone criticised the conjecture?

As we shall see, the situation was not quite so simple. With the benefit of
hindsight we can now see that counterexamples to the Cauchy conjecture
had been provided by Fourier’s work. Fourier’s Mémoire sur la Propagation
de la Chaleur4 actually contains an example of what, according to present
notions, is a convergent series of continuous functions which tends to a
Cauchy discontinuous function, namely:

cos x� 1
3
cos 3xþ 1

5
cos 5x� . . . (1)

be the case – in other words we find cases in which C is false (‘global counterexamples’)
but in which P1 to Pn hold. This leads to the articulation of a new lemma Pn+1 which is
also refuted by the counterexample (‘local counterexample’). The original proof is thus
replaced by a new one which can be summed up by the conditional statement

P1 & . . . & Pn & Pn+1 ! C.

The (logical) truth of this conditional statement is no longer impugned by the counterexample
(since the antecedent is now false in this case and hence the conditional statement true).

3 Whewell [1858], I. p. 152. Whewell is in 1858 at least ten years out of date. The principle
stems from Leibniz’s principle of continuity ([1687], p. 744). Boyer in his [1939], p. 256,
quotes a characteristic restatement of the principle from Lhuilier [1786], p. 167.

4 This Mémoire was awarded the grand prix de mathématiques for 1812, having been refereed
by Laplace, Legendre and Lagrange. It was published only after Fourier’s classical Théorie
de Ia Chaleurwhich appeared in 1822, a year after Cauchy’s textbook, but the content of the
Mémoire was then already well known.
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Fourier’s own attitude to this series is, however, quite clear (and clearly
different from this modern one):

(a) He states that it is everywhere convergent.
(b) He states that its limit function is composed of separate straight lines, each

of which is parallel to the x-axis, and equal to the circumference [that is π].
These parallels are situated alternately above and below the axis, with a
distance of π/4, and are joined by perpendiculars which themselves make
part of the line.5

Fourier’s words about the perpendiculars in the graph are telling.
He considered these limit functions to be (in some sense) continuous. In
fact, Fourier certainly regarded anything as a continuous function if its
graph could be drawn with a pencil which is not lifted from the paper.
Thus Fourier would not have regarded himself as having constructed
counterexamples to Cauchy’s continuity axiom.6 It was only in the light
of Cauchy’s subsequent characterisation of continuity that the limit func-
tions in some of Fourier’s series came to be regarded as discontinuous, and
thus that the series themselves came to be seen as counterexamples to
Cauchy’s conjecture. Given this new, and counterintuitive definition of
continuity, Fourier’s innocent continuous drawings seemed to become
wicked counterexamples to the old, long established continuity principle.

5 Fourier, op. cit., sections 177 and 178.
6 After writing this I discovered that the term ‘discontinuous’ appears in roughly the

Cauchy sense in some hitherto unpublished manuscripts of Poisson (1807) and of Fourier
(1809), which were being studied by Dr. J. Ravetz, who kindly permitted me to look at
his photostats. This certainly complicates my case, though it does not refute it. Fourier
obviously had two different notions of continuity in mind at different times, and indeed
these two different notions arise quite naturally from two different domains. If we
interpret a function like:

sin x� 1
2
sin 2xþ 1

3
sin 3x� . . .

as the initial position of a string, it will certainly be considered as continuous, and to cut
out the perpendicular lines – as was to be required by Cauchy’s definition – will seem
unnatural. But if we interpret this function as, say, representing temperature along a wire,
the function will seem obviously discontinuous. These considerations suggest two conjec-
tures. Firstly, Cauchy’s celebrated definition of continuity, which runs counter to the
‘string-interpretation’ of a function, may have been stimulated by Fourier’s investigation
of heat phenomena. Secondly, Fourier’s insistence on the perpendiculars in the graphs of
these (according to the ‘heat-interpretation’) discontinuous functions may have stemmed
from an effort not to come into conflict with the Leibniz principle. *Editors’ note: For
further information on Fourier’s mathematics, see I. Grattan-Guinness (in collaboration
with J. R. Ravetz), Joseph Fourier, 1768–1830 (M.I.T. Press, 1972).
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Cauchy’s definition certainly translated the homely concept of continu-
ity into arithmetical language in such a way that ‘ordinary commonsense’
could only be shocked.7 What sort of continuity is it that implies that if we
rotate the graph of a continuous function a little, it turns into a discontinu-
ous one?8

So if we replace the intuitive concept of continuity by the Cauchy
concept then (and only then!) does the axiom of continuity seem to be
contradicted by Fourier’s results. This looks like a strong, perhaps
decisive, argument against Cauchy’s new definitions (not only of continu-
ity, but also other concepts like that of limit). No wonder then that Cauchy
wanted to show that he could indeed prove the continuity axiom in his
new interpretation of it, thereby providing the evidence that his definition
satisfies this most stringent adequacy requirement. He succeeded in pro-
viding the proof – and thought he had thereby dealt a mortal blow to
Fourier, that talented but woolly and unrigorous dilettante, who had
unintentionally challenged his definition.

Of course if Cauchy’s proof were correct, then Fourier’s examples,
despite appearances, could not be real counterexamples. One way of
showing that they were not real counterexamples would be to show that
the series apparently converging to functions which were discontinuous in
Cauchy’s sense were not convergent at all!

And this was a plausible guess. Fourier himself was doubtful about the
convergence of his series in these critical cases. He noticed that the con-
vergence was slow: ‘The convergence is not sufficiently rapid to produce
an easy approximation, but it suffices for the truth of the equation.’9

With hindsight we can see that Cauchy’s hope that in these critical cases
Fourier’s series do not converge (and thus do not represent the function)
was also justified in a way by the following fact. Where the limit function

7 That is string-commonsense or graph-commonsense.
8 * Editors’ note: What is violated here is, perhaps, not our intuitive notion of continuity, but

rather our belief that any graph representing a function would still represent some
function when slightly rotated. Fourier’s curve is continuous from an intuitive point of
view, and this intuition can still be accounted for by the ε, δ definition of continuity (with
which Cauchy is usually credited); for Fourier’s curve, complete with perpendiculars, is
parametrically representable by two continuous functions.

9 Op. cit., section 177. This remark, of course, is a far cry from the discovery that the
convergence is in these places infinitely slow, which was made only after 40 years experi-
ence in calculating Fourier series. And this discovery could not possibly be made before
Dirichlet’s decisive improvement on Fourier’s conjecture showing that only those func-
tions can be represented by Fourier series whose value at the discontinuities is
1
2 ½ f ðxþ 0Þ þ f ðx� 0Þ�.
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is discontinuous, the series tends to 1
2 ½ f ðxþ 0Þ þ f ðx� 0Þ�, and not simply

to f ðxÞ. It tends to f ðxÞ only if f ðxÞ ¼ 1
2 ½ f ðxþ 0Þ þ f ðx� 0Þ�. But this was

not known before 1829, and in fact general opinion was at first behind
Fourier rather than Cauchy. Fourier’s series seemed to work and when
Abel, in 1826, five years after the publication of Cauchy’s proof, men-
tioned in a footnote of his [1826b].10 that there are ‘exceptions’ to Cauchy’s
theorem, this constituted a rather intriguing double victory: Fourier series
were accepted, but so was Cauchy’s startling definition of continuity and
the theorem he had proved using it.

It was precisely in view of this double victory that it now seemed that
there must be exceptions to the specific version of the principle of continu-
ity we are considering, even though Cauchy had flawlessly proved it.

Cauchy must have reached the same conclusion as Abel for in the same
year he gave, without of course giving up his characterisation of continu-
ity, a proof of the convergence of the Fourier series.11 He must have been
very ill at ease with the situation however. The second volume of the Cours
d’Analyse was never published. And, which is still more suspicious,
he produced no further editions of the first volume, allowing his pupil
Moigno, when the pressure for a textbook had become too great, to
publish his notes of his lectures.12

Given that Fourier’s examples were now interpreted as counter-
examples, the puzzle was evident: how could a proved theorem be false,
or ‘suffer exceptions’? We have already discussed how people in the same
period were puzzled by the ‘exceptions’ to the Euler theorem despite the
fact that it had been proved.

2. Seidel’s proof and the proof-generated concept of uniform
convergence

Everybody felt that this Cauchy–Fourier case was not just a harmless
puzzle, but a fatal blemish on the whole of the new ‘rigorous’ mathemat-
ics. Dirichlet in his celebrated papers about Fourier series,13 while pre-
occupied with showing exactly how convergent series of continuous
functions represent discontinuous functions, and while obviously very

10 Abel [1826b], p. 316.
11 Cauchy [1826]. The proofis based on an incorrigibly false assumption (see e.g. Riemann,

[1868]).
12 Moigno [1840–1]. 13 Dirichlet [1829].
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much aware of the Cauchy version of the continuity principle, did not
mention the obvious contradiction at all.

It was left to Seidel at last to solve the riddle by spotting the guilty
hidden lemma in Cauchy’s proof.14 But this happened only in 1847. Why
did it take so long? To answer this question we shall have to look at
Seidel’s celebrated discovery a little more closely.

Let Σfn(x) be a convergent series of continuous functions and, for

any n, define SnðxÞ ¼
Xn
m¼0

f mðxÞ and rnðxÞ ¼
X∞

m¼nþ1

f nðxÞ. Then the gist of

Cauchy’s proof is the inference from the premise:
Given any ε > o:

(1) there is δ such that for any b, if |b| < δ, then |Sn(x +b)– Sn(x)| < ε (there is
such a δ because of the continuity of Sn(x));

(2) there is an N, such that |rn(x)| < ε for all n �N (there is such an N because
of the convergence of Σ fn(x));

(3) there is an N0 such that |rn(x+b)| < ε for all n � N’ (there is such an N0

because of the convergence of Σ fn(x + b));

to the conclusion that:

j f ðxþ bÞ � f ðxÞj ¼ jSnðxþ bÞ þ rnðxþ bÞ � SnðxÞ � rnðxÞj
� jSnðxþ bÞ � SnðxÞj þ jrnðxÞj þ jrnðxþ bÞj
< 3ε, for all b < δ

Nowtheglobal counterexamplesprovidedby series of continuous functions
which converge to Cauchy-discontinuous functions show that something is
wrong with this (roughly stated) argument. But where is the guilty lemma?

A slightly more careful proof-analysis (using the same symbols as
before, but making explicit the functional dependencies of some of the
quantities) produces the following inference:

(10) |Sn(x + b) � Sn(x)| < ε if b < δ(ε, x, n)
(20) |rn(x)| < ε if n > N(ε, x)
(30) |rn(x+ b)| < ε if n > N(ε, x + b)

therefore

jSnðxþ bÞ þ rnðxþ bÞ � SnðxÞ � rnðxÞj ¼ j f ðxþ bÞ � f ðxÞj < 3ε

if n > maxz N(ε, z) and b < δ(ε, x, n).

14 Seidel [1847].
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The hidden lemma is that this maximum, maxz N(ε, z), should exist for
any fixed ε. This is what came to be called the requirement of uniform
convergence.

There were probably three major impediments in the way of making
this discovery.

The first was Cauchy’s loose usage of ‘infinitely small’ quantities.15

The second was that even if some mathematicians had noticed that the
assumption of the existence of a maximum of an infinite set of Ns is
involved in this proof, they may very well have made it without a second
thought. Existence proofs in maximum problems occur first in the Weier-
strass school. But the third and main obstacle was the prevalence of
Euclidean methodology – this good and evil spirit of early nineteenth
century mathematics.

But before discussing this in general let us see how Abel solves the
problem posed for the Cauchy theorem by the Fourier counterexamples.
I shall show that he solves it (or rather ‘solves’ it) by the primitive ‘excep-
tion-barring’ method.16

3� Abel’s exception-barring method

Abel states the problem, which I claim to be the basic background problem
of his celebrated paper on the binomial series,17 only in a footnote. He
writes: ‘It seems to me that there are some exceptions to Cauchy’s the-
orem’, and immediately gives the example of the series

sin ϕ� 1
2
sin 2ϕþ 1

3
sin 3ϕ� . . .18

Abel adds that ‘as it is known, there are many more examples like this’.
His response to these counterexamples is to start guessing: ‘What is the
safe domain of Cauchy’s theorem?’

His answer to this question is this: the domain of validity of the
theorems of analysis in general, and that of the theorems about the
continuity of the limit function in particular, is restricted to power series.
All the known exceptions to this basic continuity principle were trigono-
metrical series, and so he proposed to withdraw analysis to within the
safe boundaries of power series, thus leaving behind Fourier’s cherished

15 This prevented Cauchy from giving a clear critical appraisal of his old proof and even
from formulating his theorem clearly in his [1853] (pp. 454–9).

16 See above, pp. 26–32. 17 Abel [1826b], p. 316.
18 Abel fails to mention that precisely this example had already been mentioned in this

context by Fourier.
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trigonometrical series as an uncontrollable jungle – where exceptions are
the norm and successes miracles.

In a letter to Hansteen dated 29 March 1826, Abel characterised ‘miser-
able Eulerian induction’ as a method which leads to false and unfounded
generalisations and he asks what the reason is for such procedures having
in fact led to so few calamities. His answer is

To my mind the reason is that in analysis one is largely concerned with
functions that can be represented by power-series. As soon as other
functions enter – and this happens but rarely – then [induction] does
not work any more and an infinite number of incorrect theorems arise
from these false conclusions, one leading to the others. I have investi-
gated several of these and I was lucky enough to solve the problem . . .19

In Abel’s paper, we find his famous theorem – which, I claim, stemmed
from his grappling with the classical metaphysical principle of Leibniz – in
the following restricted form:

If the series

fα ¼ ν0 þ ν1αþ ν2α
2 þ . . .þ νmα

m þ . . .

is convergent for a given value δ of α, it will also converge for every value
smaller than δ, and for steadily decreasing values of β, the function f (α� β)
will approach the limit fα indefinitely, provided that α is smaller than or
equal to δ.20

19 Letter to Hansteen ([1826a]). The rest of the letter is also interesting and reflects Abel’s
exception-barring method: ‘When one proceeds by a general method, it is not too difficult;
but I have had to be very circumspect, for propositions once accepted without rigorous
proof (i.e. without any proof) are so rooted within me that I at each moment risk using
them without further examination.’ Thus Abel checked these general conjectures one after
the other and tried to guess the domain of their validity.

This Cartesian self-imposed restriction to the absolutely clear power series explains
Abel’s particular concern about the rigorous treatment of the Taylor-expansion: ‘Taylor’s
theorem, the basis of all the infinitesimal calculus is not better founded. I have only found
one rigorous demonstration and that is M. Cauchy’s in his Résumé des leçons sur le calcul
infinitesimal, where he demonstrated that one will have

ϕ(x + a) = ϕ(x) + aϕ0(x) + a2ϕ”(x) + . . .

as long as the series is convergent; but one employs it without attention in all cases.’
(Letter to Holmboë [1825].)

20 Abel [1826b], I. p. 314. The text is a retranslation from German, (Crelle translated the
original French into German).* Editors’ note: It seems that Abel forgot the modulus sign
around α.
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Modern rationalist historians of mathematics who consider the history
of mathematics as the history of a homogeneous growth of knowledge on
the basis of unchanging methodology, assume that anyone who discovers
a global counterexample and proposes a new conjecture which is not
subject to refutation by the counterexample in question, has automatically
discovered the corresponding hidden lemma and proof-generated concept.
In this way such students of history attribute the discovery of uniform
convergence to Abel. So in the authoritative Encyclopädie der Mathematischen
Wissenschaften, Pringsheim says that Abel ‘demonstrated the existence of
the property today calleduniform convergence’.21Hardy shares Pringsheim’s
view. In his [1918] paper he says that ‘the idea of uniform convergence
is present implicitly in Abel’s proof of his celebrated theorem’.22 Bourbaki
is even more explicitly false: according to him, Cauchy

did not at first perceive the distinction between simple convergence and
uniform convergence, and considered himself able to demonstrate that
every convergent series of continuous functions has as its sum a con-
tinuous function. The error was almost as soon revealed by Abel, who
proved at the same time that every complete [?] series is continuous in
the interior of its interval of convergence by the reasoning which has
become classical and which uses essentially, in this particular, the idea
of uniform convergence. It only remained to disentangle the latter in a
general manner, which was done independently by Stokes and Seidel
in 1847–8 and by Cauchy himself in 1853�23

So many sentences, so many mistakes. Abel did not reveal Cauchy’s
mistake in identifying the two sorts of convergences. His proof does not
exploit the concept of uniform convergence any more than does Cauchy’s.
Abel’s and Seidel’s results are not in the relation of ‘special’ and ‘general’ –
they are on quite different levels. Abel did not even notice that it is not the
domain of eligible functions which has to be restricted, but rather the way
they converge! In fact for Abel there is only one sort of convergence, the simple
one; and the secret of the sham certainty of his proof lies in his cautious
(and lucky) zero-definitions:24 as we now know, in the case of power series,
simple convergence coincides with uniform convergence!25

21 Pringsheim [1916], p. 34. 22 Hardy [1918], p. 148.
23 Bourbaki [1949], p. 65 and [1960], p. 228. 24 Cf. above, pp. 26–32.
25 There were two mathematicians who noticed that Abel’s proof was not quite flawless.

One was Abel himself, who comes to grips with the problem again – without success – in
his posthumously published paper ‘Sur les Séries’ ([1881], p. 202). The other was Sylow,
the coeditor of the second edition of Abel’s Collected Works. He added a critical footnote
to the theorem, in which he pointed out that we have to require uniform convergence in
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Whilst I am criticizing the historians I should just mention that the first
counterexample to Cauchy’s theorem has generally been attributed to
Abel. That it occurs in Fourier was noticed only by Jourdain. But he, in
the ahistorical spirit already noted, draws from this fact the consequence
that Fourier, for whom Jourdain had a great admiration, came close to
discovering the concept of uniform convergence.26 The point that a coun-
terexample may have to fight for recognition, and when recognised it still
may not lead automatically to the hidden lemma and thereby to the proof-
generated concept in question, has been missed by all historians so far.

4� Obstacles in the way of the discovery of the method of proof-analysis

But now let us return to the main problem. Why did the leading mathem-
aticians from 1821 to 1847 fail to find the simple flaw in Cauchy’s proof
and improve both the proof-analysis and the theorem?

The first reply is that they did not know about the method of proofs and
refutations. They did not know that after the discovery of a counterexam-
ple they had to analyse their proof carefully and try to find the guilty
lemma. They dealt with global counterexamples with the help of the
heuristically sterile exception-barring method.

In fact, Seidel discovered the proof-generated concept of uniform con-
vergence and the method of proofs and refutations at one blow. He was
fully conscious of his methodological discovery27 which he stated in his
paper with great clarity:

the proof and not simple convergence, as Abel does. But he did not use the term ‘uniform
convergence’ about which he did not seem to know, (the second edition of Jordan’s Cours
d’Analyse had not then appeared) and he referred instead to a later generalisation of du
Bois-Reymond, which only shows that even he did not see clearly the nature of the flaw.
Reiff, in his [1889], rejected Sylow’s criticism with the naive argument that Abel’s theorem
is valid. Reiff says that while Cauchy was the founder of the theory of convergence, Abel
was the founder of the theory of the continuity of series:

Briefly summarizing the achievement of Cauchy and of Abel, we can say: Cauchy
discovered the theory of the convergence and divergence of infinite series in his
Analyse Algébrique, and Abel discovered the theory of the continuity of series in his
Treatise on the Binomial Series. ([1889], pp. 178–9.)

To say this in 1889 was certainly a piece of pompous ignorance.
But of course the validity of Abel’s theorem is due to the very narrow zero-definition,

and not to the proof. Abel’s paper was later published in Ostwald’s Klassiker (Nr. 71),
Leipzig, 1895. In the notes Sylow’s remarks are reproduced without any comment.

26 Jourdain [1912], 2, p. 527.
27 Rationalists doubt that there are methodological discoveries at all. They think that

method is unchanging, eternal. Indeed methodological discoverers are very badly treated.
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Starting from the certainty just achieved, that the theorem is not univer-
sally valid, and hence that its proof must rest on some extra hidden
assumption, one then subjects the proof to a more detailed analysis. It
is not very difficult to discover the hidden hypothesis. One can then
infer backwards that this condition expressed by the hypothesis is not
satisfied by series which represent discontinuous functions, since only
thus can the agreement between the otherwise correct proof sequence,
and what has been on the other hand established, be restored.28

What prevented the generation before Seidel from discovering this? The
main reason (which we already mentioned) was the prevalence of Euclid-
ean methodology.

The Cauchy revolution of rigourwasmotivated by a conscious attempt to
apply Euclidean methodology to the Calculus.29 He and his followers
thought that this was how they could introduce light to dispel the ‘tremen-
dous obscurity of analysis’.30 Cauchy proceeded in the spirit of Pascal’s
rules: he first set out to define the obscure terms of analysis – like limit,
convergence, continuity, etc. – in the perfectly familiar terms of arithmetic,
and then he went on to prove everything that had not previously been
proved, or that was not perfectly obvious. Now in the Euclidean framework
there is no point trying to provewhat is false, so Cauchy hadfirst to improve
the extant body of mathematical conjectures by jettisoning the false rubbish.
In order to improve the conjectures, he applied themethod of looking out for
exceptions and restricting the domain of validity of the original, rashly stated
conjectures to a safe field, i.e. he applied the exception-barring method.31

A writer in the 1865 edition of the Larousse (probably Catalan) rather
sarcastically characterised Cauchy’s search for counterexamples. He wrote:

He has introduced into science only negative doctrines...it is in fact
almost always the negative aspect of the truth which he came to discover,
that he takes care to make evident: if he had found some gold in whiting,
he would have announced to the world that chalk is not exclusively
formed of carbonate of lime.

Before their method is accepted it is treated like a cranky theory; after, it is treated as a
trivial commonplace.

28 Seidel [1847], p. 383.
29 ‘As for methods, I have had to give them all the rigour that one demands in geometry, so

as never to resort to reasons drawn from the generality of algebra.’ (Cauchy [1821],
Introduction.)

30 Abel [1826a], p. 263.
31 ‘To bring useful restrictions to too extended assertions.’ (Cauchy, [1821].)
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A part of a letter which Abel wrote to Holmboë is further evidence of this
new heartsearching mood of the Cauchy school:

I have begun to examine the most important rules which (at present) we
ordinarily sanction in this respect, and to show in which cases they are
not proper. This goes well enough and interests me infinitely.32

What was considered by the rigourists to be hopeless rubbish, such as
conjectures about sums of divergent series, was duly committed to the
flames.33 ‘Divergent series are’, wrote Abel, ‘the work of the devil’. They
only cause ‘calamities and paradoxicalities’.34

But while constantly endeavouring to improve their conjectures by
exception-barring, the idea of improving by proving never occurred
to them. The two activities of guessing and proving are rigidly separated
in the Euclidean tradition. The idea of a proof which deserves its name
and still is not conclusivewas alien to the rigourists. Counterexampleswere
regarded as grave and disastrous blemishes: they showed that a conjecture
was wrong and that one had to start proving again from scratch.

This was understandable in view of the fact that in the eighteenth century
pieces of shabby inductive reasoning were called proofs.35 But there was no
way of improving these ‘proofs’. They were rightly scrapped as ‘not rigorous
proofs – that means, no proofs at all’.36 Inductive argument was fallible –

therefore it was committed to the flames. Deductive argument took its place – because
it was held to be infallible. ‘I make all uncertainty disappear’, announced
Cauchy.37 It is against this background that the refutation of Cauchy’s
‘rigorously’ proved theorem has to be appreciated. And this refutation was
not an isolated case. Cauchy’s rigorous proof of the Euler formulawas, aswe
have seen, followed likewise by papers stating the well known ‘exceptions’.

There were only two ways out: either to revise the whole infallibilist
philosophy of mathematics underlying the Euclidean method, or some-
how to hush up the problem. Let us first see what would be involved in
revising the infallibilist approach. One would certainly have to give up the

32 Abel [1825], p. 258.
33 Contemporaries certainly regarded this purge as ‘a little harsh’. (Cauchy, [1821], Introduction.)
34 Abel [1825], p. 257.
35 The eighteenth-century ‘formalism’ was sheer inductivism. Cf. p. 142. Cauchy rejects in

the Preface of his [1821] inductions which are only ‘appropriate to sometimes present the
truth’.

36 Abel, [1826a], p. 263. For Cauchy and Abel ‘rigorous’ means deductive, as opposed to
inductive.

37 Cauchy [1821], Introduction.
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idea that all mathematics can be reduced to indubitably true trivialities,
that there are statements about which our truth-intuition cannot possibly
be mistaken. One had to give up the idea that our deductive, inferential
intuition is infallible. Only these two admissions could open the way to the
free development of the method of proofs and refutations and its applica-
tion to the critical appraisal of deductive argument and to the problem of
dealing with counterexamples.38

As long as a counterexample was a blemish not only to a theorem but
to the mathematician who advocated it, as long as there were only proofs
or non-proofs, but no sound proofs with weak spots, mathematical criti-
cism was barred. It was the infallibilist philosophical background of
Euclidean method that bred the authoritarian traditional patterns in math-
ematics, that prevented publication and discussion of conjectures, that
made impossible the rise of mathematical criticism. Literary criticism
can exist because we can appreciate a poem without considering it to be
perfect; mathematical or scientific criticism cannot exist while we only
appreciate a mathematical or scientific result if it yields perfect truth.
A proof is a proof only if it proves; and it either proves or it does not.
The idea – expressed so clearly by Seidel – that a proof can be respectable
without being flawless, was a revolutionary one in 1847, and, unfortu-
nately, still sounds revolutionary today.

It is no coincidence that the discovery of the method of proofs and
refutations occurred in the 1840s, when the breakdown of Newtonian
optics (through the work of Fresnel in the 1810s and 1820s), and the
discovery of non-Euclidean geometries (by Lobatschewsky in 1829 and
Bolyai in 1832) shattered infallibilist conceit.39

38 * Editors’ note: This passage seems to us mistaken and we have no doubt that Lakatos,
who came to have the highest regard for formal deductive logic, would himself have
changed it. First order logic has arrived at a characterisation of the validity of an inference
which (relative to a characterisation of the ‘logical’ terms of a language) does make valid
inference essentially infallible. Thus, one need make only the first of the two admissions
mentioned by Lakatos. By a sufficiently good ‘proof analysis’ all the doubt can be thrown
onto the axioms (or antecedents of the theorem) leaving none on the proof itself. The
method of proofs and refutations is by no means invalidated (as is suggested in the text)
by refusing to make the second of these admissions: indeed it may be by this method that
proofs are improved so that all the assumptions that have to be made in order that the
proof be valid, are made explicit.

39 In the same decade Hegel’s philosophy offered both a radical break with its infallibilist
predecessors and a powerful start for a thoroughly novel approach to knowledge. (Hegel
and Popper represent the only fallibilist traditions in modern philosophy, but even they
both made the mistake of reserving a privileged infallible status for mathematics.)
A passage from de Morgan shows the new fallibilist mood of the forties:

method of proof-analysis 147

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316286425.006
https:/www.cambridge.org/core


Before the discovery of the method of proofs and refutations the prob-
lem posed by the succession of counterexamples to a ‘rigorously proved’
theorem could be ‘solved’ only by the exception-barring method. The proof
proves the theorem, but it leaves the question open of what is the theorem’s
domain of validity. We can determine this domain by stating and carefully
excluding the ‘exceptions’ (this euphemism is characteristic of the period). These
exceptions are then written into the formulation of the theorem.

The dominance of the exception-barring method shows how the Euclid-
ean method can, in certain crucial problem situations, have deleterious
effects on the development of mathematics. Most of these problem situ-
ations occur in growing mathematical theories, where growing concepts
are the vehicles of progress, where the most exciting developments come
from exploring the boundary regions of concepts, from stretching them,

‘A disposition sometimes appears to reject all that offers any difficulty, or does not give all
its conclusions without any trouble in examination of apparent contradictions. If by this it
be meant that nothing should be permanently used, and implicitly trusted, which is not
true to the full extent of the assertion made, I, for one, should offer no opposition to so
rational a course. But if it be implied that nothing should be produced to the student, with
or without warning, which cannot be understood in all its generality, I should, with
deference, protest against a restriction which would tend, in my opinion, not only to give
false views of what is actually known, but to stop the progress of discovery. It is not true,
out of geometry, that the mathematical sciences are, in all their parts, those models of
finished accuracy which many suppose. The extreme boundaries of analysis have always
been as imperfectly understood as the tract beyond the boundaries was absolutely
unknown. But the way to enlarge the settled country has not been by keeping within it,
[this remark is against the exception-barring method] but by making voyages of discov-
ery, and I am perfectly convinced that the student should be exercised in this manner; that
is, that he should be taught how to examine the boundary, as well as how to cultivate the
interior. I have therefore never scrupled, in the latter part of the work, to use methods
which I will not call doubtful, because they are presented as unfinished, and because the
doubt is that of an expectant learner, not of an unsatisfied critic. Experience has often
shown that the defective conclusion has been rendered intelligible and rigorous by perse-
vering thought, but who can give it to conclusions which are never allowed to come
before him? The effect of exclusive attention to those parts of mathematics which offer no
scope for the discussion of doubtful points is a distaste for modes of proceedings which
are absolutely necessary to the extension of analysis. If the cultivation of the higher parts
of mathematics were left to persous trained for the purpose, there might be some show of
reason for keeping out of the ordinary student’s reach, not only the unsettled, but even
the purely speculative parts of the abstract sciences; reserving them for those persons
whose business it would then be to render the former clear and the latter applicable. As it
is, however, the few in this country who pay attention to any difficulty of mathematics for
its own sake come to their pursuit through the casualties of taste or circumstances; and
the number of such casualties should be increased by allowing all students whose
capacity will let them read on the higher branches of applied mathematics, to have each
his chance of being led to the cultivation of those parts of analysis on which rather depends
its future progress than its present use in the sciences of matter.’ (de Morgan [1842], p. vii).
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and from differentiating formerly undifferentiated concepts. In these
growing theories intuition is inexperienced, it stumbles and errs. There is
no theory which has not passed through such a period of growth; more-
over, this period is the most exciting from the historical point of view and
should be the most important from the teaching point of view. These
periods cannot be properly understood without understanding the
method of proofs and refutations, without adopting a fallibilist approach.

This is why Euclid has been the evil genius particularly for the history of
mathematics and for the teaching of mathematics, both on the introduc-
tory and the creative levels.40

Note: In this appendix the supplementary stages 5, 6, and 7 (cf p. 136) of
the method of proofs and refutations have not been discussed. I would just
mention here that a methodical hunt for uniform convergence in other
proofs (stage 5) would very quickly have yielded the refutation and
improvement of another theorem proved by Cauchy: the theorem that
the integral of the limit of any convergent series of continuous functions is
the limit of the sequence of the integrals of the terms, or briefly, that in the
case of series of continuous functions, the limit and the integral-operations
can be interchanged. This had been uncontested throughout the eight-
eenth century, and even Gauss applied it without giving it a second
thought. (See Gauss [1813], Knopp [1928] and Bell [1945].)

Now it did not occur to Seidel, who discovered uniform convergence
in 1847, to look at other proofs to see if it had been implicitly assumed
there. Stokes, who discovered uniform convergence in the same year –

though not with the help of the method of proofs and refutations – uses in
this same paper the false theorem about integration of series, referring to
Moigno (Stokes [1848]). (Stokes made another mistake: he thought he had
proved that uniform convergence was not only sufficient but necessary
for the continuity of the limit function.)

This delay in discovering that the proof that the integration of series
also depends on the assumption of uniform convergence may have been
due to the fact that this primitive conjecture was refuted by a concrete
counterexample only in 1875 (Darboux [1875]), by which date proof-
analysis had already traced uniform convergence in the proof without
the analysis being catalysed by a counterexample. The hunt for uniform

40 According to R. B. Braithwaite, ‘the good genius of mathematics and of unselfconscious
science, Euclid has been the evil genius of philosophy of science – and indeed of meta-
physics’. (Braithwaite [1953], p. 353.) This statement, however, originates in a static
logicist conception of mathematics.
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convergence once fully under way with Weierstrass at its head soon
discovered the concept in proofs concerning term by term differentiation,
double limits, etc.

The sixth stage is to check the hitherto accepted consequences of the
refuted primitive conjecture. Can we rescue these consequences, or does
the refutation of the lemma lead to a disastrous holocaust? Term by term
integration, for instance, was a cornerstone of the Dirichlet proof of
Fourier’s conjecture. Du Bois-Reymond describes the situation in dramatic
terms: the theory of trigonometric series is ‘cut to the heart’, its two key
theorems ‘have had the ground cut from under them’ and

with one blow the general theory was pushed back to the state in which
it had been before Dirichlet, back even before Fourier.

(du Bois-Reymond [1875], p. 120.) It makes an intriguing study to see how
the ‘lost ground’ has been regained.

In this process a spate of counterexamples was unearthed. But their
study – the seventh stage of the method – started only in the last years of
the century. (E.g. Young’s work on the classification and distribution of
points of non-uniform convergence; Young [1903–4].)
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APPENDIX 2

The deductivist versus the
heuristic approach

B

1. The deductivist approach

Euclidean methodology has developed a certain obligatory style of
presentation. I shall refer to this as ‘deductivist style’. This style starts
with a painstakingly stated list of axioms, lemmas and/or definitions. The
axioms and definitions frequently look artificial and mystifyingly compli-
cated. One is never told how these complications arose. The list of axioms
and definitions is followed by the carefully worded theorems. These are
loaded with heavy-going conditions; it seems impossible that anyone
should ever have guessed them. The theorem is followed by the proof.

The student of mathematics is obliged, according to the Euclidean ritual,
to attend this conjuring act without asking questions either about the
background or about how this sleight-of-hand is performed. If the student
by chance discovers that some of the unseemly definitions are proof-
generated, if he simply wonders how these definitions, lemmas and the
theorem can possibly precede the proof, the conjuror will ostracize him for
this display of mathematical immaturity.1

In deductivist style, all propositions are true and all inferences valid.
Mathematics is presented as an ever-increasing set of eternal, immutable
truths. Counterexamples, refutations, criticism cannot possibly enter. An
authoritarian air is secured for the subject by beginning with disguised
monster-barring and proof-generated definitions and with the fully-fledged
theorem, and by suppressing the primitive conjecture, the refutations, and
the criticism of the proof. Deductivist style hides the struggle, hides the
adventure. The whole story vanishes, the successive tentative formulations

1 Some textbooks claim that they do not expect the reader to have any previous know-
ledge, only a certain mathematical maturity. This frequently means that they expect the
reader to be endowed by nature with the ‘ability’ to take a Euclidean argument without
any unnatural interest in the problem-background, in the heuristic behind the argument.
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of the theorem in the course of the proof-procedure are doomed to oblivion
while the end result is exalted into sacred infallibility.2

Some who defend deductivist style claim that deduction is the heuristic
pattern in mathematics, that the logic of discovery is deduction.3 Others
realise that this is not true, but draw from this realisation the conclusion
that mathematical discovery is a completely non-rational affair. Thus they
will claim that although mathematical discovery does not proceed deduct-
ively, if we want our presentation of mathematical discoveries to proceed
rationally, it must proceed in the deductivist style.4

2 It has not yet been sufficiently realised that present mathematical and scientific education
is a hotbed of authoritarianism and is the worst enemy of independent and critical
thought. While in mathematics this authoritarianism follows the deductivist pattern just
described, in science it operates through the inductivist pattern.
There is a longstanding tradition of inductivist style in science. An ideal paper written

in this style starts with the painstaking description of the layout of the experiment,
followed by the description of the experiment and its result. A ‘generalisation’ may
conclude the paper. The problem-situation, the conjecture which the experiment had to
test, is hidden away. The author boasts of an empty, virgin mind. The paper will be
understood only by the few who actually know the problem-situation. – Inductivist style
reflects the pretence that the scientist starts his investigation with an empty mind whereas
in fact he starts with a mind full of ideas. This game can only be played – not always with
success – by and for a selected guild of experts. Inductivist style, just like its deductivist
twin (not counterpart!), while claiming objectivity, in fact fosters a private guild-language,
atomises science, suffocates criticism, makes science authoritarian. Counterexamples can
never occur in such presentation: one starts with observations (not a theory), and obvi-
ously unless one has a prior theory one cannot observe counterexamples.

3 These people claim that mathematicians start with an empty mind, set up their axioms
and definitions at their pleasure, in the course of a playful free creative activity, and it is
only at a later stage that they deduce the theorems from these axioms and definitions. If in
some interpretation the axioms are true, the theorems will all be true. The mathematical
conveyor-belt of truth cannot fail. After our case-study in the proof-procedure this can be
ruled out as an argument for the defence of the deductivist style in general – if we do
not accept the restriction of mathematics to formal systems.
Now while Popper showed that those who claim that induction is the logic of scientific

discovery are wrong, these essays intend to show that those who claim that deduction is
the logic of mathematical discovery are wrong. While Popper criticised inductivist style,
these essays try to criticise deductivist style.

4 This doctrine is an essential part of most brands of formalist philosophies of mathematics.
Formalists, when talking about discovery, discriminate the context of discovery and the
context of justification. ‘The context of discovery is left to psychological analysis, whereas
logic is concerned with the context of justification.’ (Reichenbach [1947], p. 2.) A similar
view can be found in R. B. Braithwaite’s [1953], p. 27, and even in K. R. Popper’s [1959],
pp. 31–2, and in his [1935]. Popper, when (in fact in 1934) dividing the aspects of discovery
between psychology and logic in such a way that no place was left for heuristic as an
independent field of inquiry, obviously had not then realised that his ‘logic of discovery’
was more than just the strictly logical pattern of the progress of science. This is the source
of the paradoxicality of the title of his book, the thesis of which seems to be double-faced:
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So we have nowadays two arguments for deductivist style. One is based
on the idea that heuristic is rational and deductivist. The second argument
is based on the idea that heuristic is not deductivist, but also not rational.

There is also a third argument. Some working mathematicians who do
not like logicians, philosophers and other cranks interfering in their work,
usually say that the introduction of heuristic style would require the
rewriting of textbooks, and would make them so long that one could
never read them to the end. Papers would become much longer too.5

The answer to this pedestrian argument is: let us try.

2. The heuristic approach. Proof-generated concepts

This section will contain brief heuristic analyses of some mathematically
important proof-generated concepts. It is hoped these analyses will show
the advantage of introducing heuristic elements into mathematical style.

As has already been mentioned, deductivist style tears the proof-
generated definitions off their ‘proof-ancestors’, presents them out of the
blue, in an artificial and authoritarian way. It hides the global counter-
examples which led to their discovery. Heuristic style on the contrary
highlights these factors. It emphasises the problem-situation: it emphasises
the ‘logic’ which gave birth to the new concept.

Let us seefirst howone can introduce in heuristic style the proof-generated
concept of uniform convergence, which we discussed above (appendix 1). In
this and the other examples, we certainly presume familiarity with the
technical terms of the method of proofs and refutations. But this is no more
demanding than the usual requirement of familiaritywith the technical terms
of the Euclidean programme, like axioms, primitive terms, etc.

(a) Uniform convergence
Thesis The specific version of the Leibnizian principle of continuity;

which states that the limit function of any convergent sequence
of continuous functions is continuous. (Primitive Conjecture)

(a) there is no logic of scientific discovery – Bacon and Descartes were both mistaken;
(b) the logic of scientific discovery is the logic of conjectures and refutations. The solution
of this paradox is at hand: (a) there is no infallibilist logic of scientific discovery, one which
would infallibly lead to results; (b) there is a fallibilist logic of discovery which is the logic
of scientific progress. But Popper, who has laid down the basis of this logic of discovery,
was not interested in the metaquestion of what was the nature of his inquiry and he did
not realise that this is neither psychology nor logic, it is an independent discipline, the
logic of discovery, heuristic.

5 Although it has to be admitted that they would be much fewer too, as the statement of the
problem-situation would too obviously display the pointlessness of quite a few of them.
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Antithesis Cauchy’s definition of continuity raises the thesis to a higher
level. His definitional decision legalises Fourier’s counter-
examples. This definition at the same time excludes the possible
compromise that continuity be restored by perpendicular lines,
and so gives rise – together with some trigonometrical series – to
the negative pole of the antithesis. The ‘positive pole’ gets
strengthened by Cauchy’s proof, which will be the proof-
ancestor of uniform convergence. The ‘negative pole’ gets
strengthened by more and more global counterexamples to the
primitive conjecture.

Synthesis The guilty lemma to which the global counterexamples are also
local ones is spotted, the proof improved, the conjecture
improved. The characteristic constituents of the synthesis
emerge; the theorem and with it the proof-generated concept of
uniform convergence.6

The Hegelian language, which I use here, would I think, generally be
capable of describing the various developments in mathematics. (It has,

6 For some reason, uniform convergence is, in some text books, singled out for exceptional
(quasi-heuristic) treatment. For instance W. Rudin in his [1953], first introduces a section:
‘Discussion of Main Problem’ (p. 115), where he proposes the primitive conjecture and its
refutation and only then introduces the definition of uniform convergence. This presenta-
tion has two blemishes: (a) Rudin does not present only the primitive conjecture and its
refutation, but rather asks whether the primitive conjecture is true or false, and shows
falsehoodby thewell-known examples. But by doing this he does not go beyond infallibilist
style; in his ‘problem-situation’ there is no conjecture but rather a sharp and sophisticated
question, followed by an example (not by a counterexample) which gives the unwavering
answer. (b) Rudin does not show that the concept of uniform convergence emerges from the
proof, rather, in his presentation, the definition precedes the proof. This could not be
otherwise in the deductivist style, because if he had given first the original proof, and only
then the refutation followed by the improved proof and by the proof-generated definition, he
would have displayed the movement of ‘eternally static’ mathematics, the fallibility of
‘infallible’mathematics,which is inconsistentwith the Euclidean tradition. (Perhaps it should
be added that I keep quoting Rudin’s book because it is one of the best textbooks within this
tradition.) In the preface, for instance, Rudin says: ‘It seems important, particularly for a
beginner, to see explicitly that the hypotheses of a theorem are really needed to ensure the
validity of the conclusions. For this purpose a fairly large number of counterexamples
have been included in the text’. Unfortunately these are mock-counterexamples, as in fact
they are examples to show howwise mathematicians are to include all the hypotheses in the
theorem. But he does not say where these hypotheses come from, that they come from the
proof-ideas, and that the theorem does not jump out of the head of the mathematician, like
Pallas Athene, fully armed out of Zeus’s head. His use of the word ‘counterexample’ should
not misguide us into expecting a fallibilist style. *Editors’ note: All Lakatos’s remarks about
Rudin’sworkare based on the first editionof this book.Not all the passages Lakatos quotes are
to be found in the second edition, which appeared in 1964.
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however, its dangers as well as its attractions.) The Hegelian conception
of heuristic which underlies the language is roughly this. Mathematical
activity is human activity. Certain aspects of this activity – as of any
human activity – can be studied by psychology, others by history.
Heuristic is not primarily interested in these aspects. But mathematical
activity produces mathematics. Mathematics, this product of human activ-
ity, ‘alienates itself’ from the human activity which has been producing it.
It becomes a living, growing organism, that acquires a certain autonomy
from the activity which has produced it; it develops its own autonomous
laws of growth, its own dialectic. The genuine creative mathematician is
just a personification, an incarnation of these laws which can only realise
themselves in human action. Their incarnation, however, is rarely perfect.
The activity of human mathematicians, as it appears in history, is only
a fumbling realisation of the wonderful dialectic of mathematical ideas.
But any mathematician, if he has talent, spark, genius, communicates with,
feels the sweep of, and obeys this dialectic of ideas.7

Now heuristic is concerned with the autonomous dialectic of mathemat-
ics and not with its history, though it can study its subject only through the
study of history and through the rational reconstruction of history.8

(b) Bounded variation
The way the concept of bounded variation is generally introduced in
textbooks of analysis is a beautiful example of authoritarian deductivist

7 This Hegelian idea of the autonomy of alienated human activity may provide the clue to
some problems concerning the status and methodology of social sciences, especially
economics. My concept of the mathematician as an imperfect personification of Mathe-
matics is closely analogous to Marx’s concept of the capitalist as the personification of
Capital. Unfortunately Marx did not qualify his conception by stressing the imperfect
character of this personification, and that there is nothing inexorable about the realisation
of this process. On the contrary, human activity can always suppress or distort the
autonomy of alienated processes and can give rise to new ones. The neglect of this
interaction was a central weakness of Marxist dialectic.

8 * Editors’ note: We feel sure that Lakatos would have modified this passage in some
respects, for the grip of his Hegelian background grew weaker and weaker as his work
progressed. He did, however, retain a belief in the central importance of recognising the
partial autonomy of the products of human intellectual endeavour. In this world of the
objective content of propositions (Popper came to call it the ‘third world’: see his [1972]),
problems exist (caused, for example, by logical inconsistencies between propositions)
independently of our recognition of them; hence we may discover (rather than invent)
intellectual problems. But Lakatos came to believe that these problems did not ‘demand’ a
solution or dictate their own solution; rather, human ingenuity (which may or may not be
forthcoming) is required for their solution. This view is presaged in the criticism of Marx
in the above footnote.
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style. Let us take Rudin’s book again. In the middle of his chapter on the
Riemann–Stieltjes integral he suddenly introduces the definition of func-
tions of bounded variation.

6.20. Definition. Let f be defined on [a, b]. We put

(37) Vð f Þ ¼ lub
Xn

i¼1

j f ðxiÞ � f ðxi�1Þj,

where the lub is taken over all partitions of [a, b]. If V( f ) is finite, we say
that f is of bounded variation on [a, b], and we call V( f ) the total variation
of f on [a, b].9

Why should we be interested in just this set of functions? The deducti-
vist’s answer is: ‘Wait and see’. So let us wait, follow the exposition, and
try to see. The definition is followed by examples designed to give the
reader some ideas about the domain of the concept (this, and things like
this, make Rudin’s book outstandingly good within the deductivist trad-
ition). Then a series of theorems (6.22, 6.24, 6.25) follows; and then sud-
denly the following proposition:

Corollary 2. If f is of bounded variation and g is continuous on [a, b], then
f є ℜ*(g).10

(ℜ*(g) is the class of Riemann–Stieltjes functions integrable with respect
to g.)

We might be more interested in this proposition if we really understood
just why the Riemann–Stieltjes integrable functions are so important. Rudin
does not even mention the intuitively most obvious concept of integrabil-
ity, namely Cauchy-integrability, criticism of which led to Riemann-
integrability. So nowwe have got a theorem inwhich twomystical concepts,
bounded variation and Riemann-integrability, occur. But two mysteries
do not add up to understanding. Or perhaps they do for those who have
the ‘ability and inclination to pursue an abstract train of thought’?11

A heuristic presentation would show that both concepts – Riemann–
Stieltjes integrability and bounded variation – are proof-generated concepts,
originating in one and the same proof: Dirichlet’s proof of the Fourier
conjecture. This proof gives the problem-background of both concepts.12

9 Rudin [1953], pp. 99–100. 10 Ibid., p. 106. 11 Rudin [1953], Preface.
12 This proof and the theorem which sums it up are in fact mentioned in Rudin’s book, but

they are hidden away in exercise 17, of chapter 8 (p. 164), completely disconnected from
the above two concepts which are introduced in an authoritarian way.
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Now Fourier’s primitive conjecture13 does not contain any mystical
terms. This ‘conjecture-ancestor’ of bounded variation says that any arbi-
trary function is Fourier-expandable14 – which is a simple and most
exciting conjecture. The conjecture was proved by Dirichlet.15 Dirichlet
examined his proof carefully and improved Fourier’s conjecture by
building into it the lemmas as conditions. These conditions are the
celebrated Dirichlet conditions. The resulting theorem was this: All func-
tions are Fourier-expandable (1) the value of which at a point of jump is
1
2 ½ f ðxþ 0Þ þ f ðx� 0Þ�, (2) which have only a finite number of discontinui-
ties, and (3) which have only a finite number of maxima and minima.16

All these conditions flow from the proof. Dirichlet’s proof-analysis was
faulty only as regards the third condition: the proof in fact hinges only on
the bounded variation of the function. Dirichlet’s proof-analysis was criti-
cised and his mistake corrected by C. Jordan in 1881, who thus became the
discoverer of the concept of bounded variation. But he did not invent the
concept, he did not ‘introduce’ it17 – he rather discovered it in Dirichlet’s
proof in the course of a critical re-examination.18

13 Fourier [1808], p. 112.
14 ‘Fourier-expandable’ stands for ‘expandable into a trigonometrical series with the Four-

ier-coefficients’.
15 See his [1829] and [1837]. There are many interesting aspects of the background to this

proof we unfortunately cannot now go into; for example, the problem of the value of
Fourier’s original ‘proof’, the comparison of the two subsequent Dirichlet-proofs, and
Dirichlet’s crushing criticism of Cauchy’s earlier ([1826]) proof.

16 It should be mentioned here that Dirichlet’s proof was not preceded or stimulated by
counterexamples to Fourier’s original conjecture. Nobody offered any counterexamples;
in fact, Cauchy ‘proved’ the original conjecture (cf. footnote 11, p. 139; the domain of
validity of his proof was the empty set). The first counterexamples were only suggested
by the lemmas of Dirichlet’s proof; particularly by the first lemma. Apart from this the
first counterexample to Fourier’s conjecture was presented only in 1876 by du Bois-
Reymond, who found a continuous function which was not Fourier-expandable. (du
Bois-Reymond [1876].)

17 To ‘introduce’ a concept out of the blue is a magical operation which is resorted to very
often in history written in deductivist style!

18 See Jordan [1881] and Jordan [1893], p. 241. Jordan himself stresses that he does not
modify Dirichlet’s proof, but only his theorem. (‘. . . Dirichlet’s demonstration is thus
applicable without modification to every function where oscillation is limited . . .’). Zyg-
mund, however, is mistaken when stating that Jordan’s theorem is ‘only more general in
appearance’ than Dirichlet’s (Zygmund [1935], p. 25). This is true of Jordan’s proof but
not of his theorem. But at the same time it is misleading to say that Jordan extended’
Dirichlet’s theorem to the more general domain of functions with bounded variation. (E.g.
Szökefalvi-Nagy [1954], p. 272.) Also Carslaw shows similar lack of understanding of
proof-analysis in his Historical Introduction to his [1930]. He does not notice that Dirichlet’s
proof is the proof-ancestor of the proof-generated concept of bounded variation.
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Another weakness in Dirichlet’s proof was its use of the Cauchy defin-
ition of the integral which is a suitable tool only for continuous functions.
According to the Cauchy definition, discontinuous functions are not inte-
grable at all, and ipso facto they are not Fourier-expandable. Dirichlet
avoided this difficulty by regarding the integral of a discontinuous func-
tion as the sum of the integrals on those intervals on which the function
was continuous. This can easily be done if the number of discontinuities is
finite, but leads to difficulties if it is infinite. This is why Riemann criticised
Cauchy’s concept of integral and invented a new one.

So the two mysterious definitions of bounded variation and of the
Riemann-integral are entzaubert, deprived of their authoritarian magic;
their origin can be traced to some clear-cut problem situation and to the
criticism of previous attempted solutions of these problems. The first
definition is a proof-generated definition tentatively formulated by Dirich-
let and in the end discovered by C. Jordan, critic of Dirichlet’s proof-
analysis. The second definition comes from the criticism of a previous
definition of the integral which turned out to be inapplicable to more
complicated problems.

In this second example of heuristic exposition we followed the Popper-
ian pattern of the logic of conjectures and refutations. This pattern follows
history more closely than the Hegelian one, which dismisses ‘trial and
error’ as a sheer fumbling human realisation of the necessary development
of objective ideas. But even in a rational heuristic of the Popperian brand
one has to differentiate between problems which one sets out to solve and
problems which one in fact solves; one has to differentiate between ‘acci-
dental’ errors on the one hand which just disappear, and the criticism of
which does not play any role in the further development, and ‘essential’
errors, which in a sense will be preserved also after refutation and on the
criticism of which further development is based. In the heuristic presenta-
tion the accidental errors can be omitted without loss, to deal with them is
the business of history only.

We have only sketched the first four stages of the proof-procedure
which has led to the concept of bounded variation. Here we merely hint
at the rest of the intriguing story. The fifth stage,19 the hunt for the newly
found proof-generated concept in other proofs, immediately led to the
discovery of bounded variation in the proof of the primitive conjecture

19 For the list of the standard stages of the method of proofs and refutations, cf. pp. 135–6.
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that ‘all curves are rectifiable’.20 The seventh stage leads us to the
Lebesgue-integral and to modern measure theory.

Historical Note. Some heuristically interesting details may be added
to the story told in the text. Dirichlet was convinced that the local counter-
examples to his second and third lemmas were not global; he was con-
vinced that e.g. all continuous functions, regardless of the number of their
maxima and minima, are Fourier-expandable. He also hoped that this
more general result could be proved by simple local amendments in his
proof. This idea, that (1) Dirichlet’s proof was only a partial one and (2) the
final proof could be achieved by some minor amendments, was widely
accepted from 1829 to 1876 when du Bois-Reymond produced the first
genuine counterexample to Fourier’s old conjecture and thereby destroyed
the hopes for such an amendment. Jordan’s discovery of bounded vari-
ation seems to have been stimulated by this counterexample.

It is interesting to note that Gauss, too, encouraged Dirichlet to improve
his proof so that it should apply to functions with any number of maxima
and minima. It is intriguing that although Dirichlet did not solve this
problem, either in 1829 or in 1837, still in 1853 he thought the solution
to be so obvious that in his letter replying to Gauss’s request, he impro-
vised it (Dirichlet [1853]). The gist of his solution is this. The condition
that the set of maxima and minima should not have any point of conden-
sation in the interval considered, is in fact a sufficient condition for his
proof. That his second condition, about the finite number of discontinuities
can be amended, was stated by him already in his first 1829 paper.
He asserted there that his proof in fact applies only if the set of discon-
tinuities is nowhere dense. These corrections show that Dirichlet was
very much concerned with the problem of the analysis of his proof,
and was convinced that it applies to more functions than those which
satisfy his cautious conditions, later called ‘Dirichlet conditions’. It is
characteristic that in his [1837] he does not state the theorem at all. He
was always convinced that his theorem held for all continuous functions
as his letter to Gauss shows and as he himself told the probably sceptical
Weierstrass. (Cf. Ostwald’s Klassiker der Exakten Wissenschaften, 186, 1913,
p. 125.)

20 In this discovery again, du Bois-Reymond was a forerunner ([1879], [1885]), and again, the
admirably sharp C. Jordan the actual discoverer (Jordan [1887], p. 594–8 and [1893],
p. 100–8). But the thing to be done with all the clarity that one can desire, requires some
details bound up with the fundamental principles of the infinitesimal calculus, which will
be presented in another note . . .
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Now the theorem as stated by him in his [1829] in fact embraces all
types of functions ‘which occur in nature’. Further, more refined analysis
already leads into the realm of very ‘pure’ analysis. I claim that the
analysis of Dirichlet’s proof – first of all by Riemann – was the starting
point of modern abstract analysis and I find the recently widely accepted
view of P. Jourdain about Fourier’s decisive role exaggerated. Fourier was
not interested in mathematical arguments which went beyond direct
applicability. Dirichlet’s thinking was indeed different. He vaguely felt
that the analysis of his proof required a new conceptual framework. The
last sentence of his [1829] paper is a veritable prophecy:

But the thing to be done with all the clarity that one can desire, requires
some details bound up with the fundamental principles of the infinit-
esimal calculus, which will be presented in another note . . .

But he never published the promised note. It was Riemann who, by
criticising the Cauchy concept of the integral, clarified these ‘details
bound up with the fundamental principles of the infinitesimal calculus’,
and who, by articulating Dirichlet’s vague feelings, and by introducing
a revolutionary technique, carried mathematical analysis and, indeed,
rationality into the domain of functions which do not occur in nature
and which had hitherto been regarded as monsters, or, at best, uninterest-
ing exceptions or ‘singularities’. (This was Dirichlet’s attitude, expressed in
his [1829] paper and in his letter to Gauss [1853].)

Some infallibilist historians of mathematics use here the ahistorical
technique of condensing a long development full of struggle and criti-
cism into one single action of infallible insight and attribute to Dirichlet
the maturity of later analysts. These antihistorical historians attribute
our modern general concept of a real function to Dirichlet, and accord-
ingly name this concept the Dirichlet concept of function. E. T. Bell
asserts in his [1945], p. 293 that ‘P. G. L. Dirichlet’s definition of a
(numerical valued) function of a (real, numerical valued) variable as a
table, or correspondence, or correlation, between two sets of numbers
hinted at a theory of equivalence of point sets’. Bell gives as reference:
‘Dirichlet: Werke, I, p. 135 ‘. But there is nothing like this there. Bourbaki
says: ‘It is known that it was on this occasion that Dirichlet, making
precise Fourier’s ideas, defined the general notion of a function as
we understand it today’. (Bourbaki [1960], p. 247.) ‘It is known’ says
Bourbaki, but does not give any reference. We find the remark that this
concept of real function ‘is due to Dirichlet’ in most classical textbooks
(e.g. Pierpont [1905], p. 120). Now there is no such definition in Dirich-
let’s works at all. But there is ample evidence that he had no idea of this
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concept. In his [1837] paper for instance, when he discusses piecewise
continuous functions, he says that at points of discontinuity the function
has two values:

The curve, whose x and y coordinates are denoted by β and ϕ(β) respect-
ively, consists of several pieces. At points above the x axis corresponding
to certain particular values of β, successive portions of the curve are
disconnected; and for each such x co-ordinate there correspond in fact
2 y co-ordinates, of which one belongs to the portion that ends at that
point, and the other belongs to the portion that begins there. In what
follows it will be necessary to distinguish these two values of ϕ(β) and we
shall denote them by ϕ(β� 0) and ϕ(βþ 0).

These quotations show beyond any reasonable doubt how far Dirichlet
was from the ‘Dirichlet concept of function’.

Those who associate Dirichlet with the ‘Dirichlet definition’ usually
think of the Dirichlet function which occurs on the last page of his
[1829] paper: a function which is 0 where x is rational and 1 where x is
irrational. The trouble again is that Dirichlet still held that all genuine
functions are in fact Fourier-expandable – he devised this ‘function’ expli-
citly as a monster. According to Dirichlet his ‘function’ is an example not
of an ‘ordinary’ real function, but of a function which does not really
deserve the name.

It is intriguing that those who managed to notice the Dirichlet definition
of function despite its absence, did not notice the titles of his two papers,
which refer to the expansion of any ‘completely arbitrary’ (ganz willkürliche)
functions into Fourier series. But this means that – according to Dirichlet –
the Dirichlet function was outside this family of ‘completely arbitrary
functions’, that he regarded it as a monster, because an ‘ordinary’ function
has to have an integral and this obviously had none. Riemann, in fact,
criticised Dirichlet’s narrow concept of a function when criticising Cau-
chy’s concept of integral together with its ad hoc amendment by Dirichlet.
Riemann showed that if we widen the concept of integral, a monster like a
function which is discontinuous for every rational number of the form
p/2n, where p is an odd number, prime to n, is integrable, although it is
discontinuous on an everywhere dense set. Consequently this function,
so akin to Dirichlet’s monster, is ordinary. (There was nothing ‘arbitrary’
in Riemann’s extension of the integral concept; his revolutionary step was
to ask what kind of functions are represented by trigonometric series,
instead of asking what kind of functions are Fourier-expandable. His
aim was to expand the concept of integral so much that all functions
which are the sums of trigonometrical series should be integrable and
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thereby Fourier-expandable. This is a most beautiful example of concep-
tual instrumentalism.) Perhaps the originator of the tale about Dirichlet’s
having set up the ‘Dirichlet definition of function’ should be identified
here. It was H. Hankel, who in analysing the development of the concept
of function ([1882], pp. 63–112), explained how Fourier’s results broke
down the old concept of a function; and then, he went on:

It only remained first, to drop the condition that the function should
be analytic, on the grounds that such a condition is without significance,
and, secondly, while cutting that knot, to give the following explication.
A function is called y of x if to each value of the variable xwithin a certain
interval, there corresponds a definite value of y, and this irrespective of
whether y depends on x according to the same law throughout the whole
interval, and of whether this dependence can be expressed by means of
mathematical operations. This purely nominal definition I shall ascribe to
Dirichlet because it lies at the basis of his work on Fourier series, which
demonstrated the untenability of that older concept . . .

(c) The Carathéodory definition of measurable set
The change from the deductivist to the heuristic approach will certainly
be difficult, but some of the teachers of modern mathematics already
realise the need for it. Let us look at an example. In modern textbooks
on measure theory or probability theory we frequently get confronted by
the Carathéodory definition of measurable set:

Let μ* be an outer measure on an hereditary σ-ring H. A set E in H is
μ*-measurable if, for every set A in H,

μ�ðAÞ ¼ μ�ðA \ EÞ þ μ�ðA \ E0Þ21

The definition as it stands is bound to be puzzling. Of course there is
always the easy way out: mathematicians define their concepts just as they
like. But serious teachers do not take this easy refuge. Nor can they say
that just this is the correct, true definition of measurability and that mature
mathematical insight should see it as such. Usually in fact, they give a
rather vague hint that we should look to the conclusions later to be drawn
from the definition: ‘Definitions are dogmas; only the conclusions drawn
from them can afford new insight’.22 So we have to take the definitions
on trust and see what happens. Although this has an authoritarian touch,

21 Halmos [1950], p. 44.
22 K. Menger [1928], p. 76, quoted with approval by K. R. Popper in his [1959], p. 55.
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at least it is a sign that the problem has been realised. It is an apology, if still
an authoritarian one. Let us quote Halmos’s apology for Carathéodory’s
definition: ‘It is rather difficult to get an intuitive understanding of the
meaning of, μ*-measurability except through familiarity with its implica-
tions, which we propose to develop below.’23 And then he goes on:

The following comment may, however, be helpful. An outer measure is
not necessarily a countably, nor even finitely, additive set function. In an
attempt to satisfy the reasonable requirement of additivity, we single out
those sets which split every other set additively – the definition of μ*-
measurability is the precise formulation of this rather loose description.
The greatest justification of this apparently complicated concept is, how-
ever, its possibly surprising but absolutely complete success as a tool in
proving the important and useful extension theorem of §13.24

Now the first, ‘intuitive’, part of this justification is a bit misleading,
because, as we learn from the second part, this concept is a proof-
generated concept in Carathéodory’s theorem about the extension of
measures (which Halmos introduces only in the next chapter). So whether
it is intuitive or not is not at all interesting: its rationale lies not in its
intuitiveness, but in its proof-ancestor. One should never tear a proof-
generated definition off from its proof-ancestor and present it sections
or even chapters before the proof to which it is heuristically secondary.

M. Loève, in his [1955] presents the definition very properly in his
section on the extension of measures, as a notion needed in the extension
theorem: ‘We shall need various notions that we collect here.’25 But how
on earth can he knowwhich of these most complicated instruments will be
needed for the operation? Certainly he already has some idea what he will
find and how he will proceed. But why then, this mystical set-up of
putting the definition before the proof?

One can easily give more examples, where stating the primitive conjec-
ture, showing the proof, the counterexamples, and following the heuristic
order up to the theorem and to the proof-generated definition would dispel
the authoritarian mysticism of abstract mathematics, and would act as a
brake on degeneration. A couple of case-studies in this degeneration would
do much good for mathematics. Unfortunately the deductivist style and
the atomisation of mathematical knowledge protect ‘degenerate’ papers to
a very considerable degree.

23 Halmos [1950], p. 44. 24 Ibid. 25 Loève [1955], p. 87.
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petty, 55
rejection of, 15–26
theoretical and naive, 99–101
see also Descartes–Euler conjecture, proofs,
refutations

criticism
fake, 15
and growth, 119
heuristic, 110
literary, 147
mathematical, 87
may turn mathematical truth into logical
truth, 105–11

of a conjecture, 10
crystals, 14

decision procedure, 4, 113
deduction
generalisation by, 101
as heuristic pattern of mathematics, 152–3
and increased content, 86
and infallibility, 128, 133–4, 146

deductivist style, 151–63
definitions, 1
ad hoc, 25
essentialism in, 20
essentialist versus nominalist theory of, 98,
126–34, 162

’hidden’ clauses of, 23
monster-including, 91
Pascal’s rules of, 113
of polyhedra, 15–25
proof-generated, 129–30, 151, 163
rigorous, 106
translatory, 129–31
zero, 143

degeneration, mathematical, 163
depth of a proof, 63–4, 102–3, 127
Descartes–Euler conjecture, 6, 9
Becker’s version of, 103

Cauchy’s proof of, 7–8, 63, 69, 94, 96, 146
counterexamples to, (cylinder) 50, (crested
cube) 74, (nested cube) 36, (picture frame)
46, (twintetrahedron) 40, (urchin), 18–19

decomposed into two parts, 123
different versions are the result of different
proofs, 69–70

formulated in vector-algebraic terms, 121–3
further generalised to include ringshaped
faces, 83

generalised to n-spheroid polyhedra, 83
Gergonne’s proof of, 63, 69, 96
irrefutable master-theorem, 54, 67
Jordan’s version of, 103
Legendre’s proof, 64, 69
naive version, 43, 70
original problem situation of, 89
perfect formulations of, 28, 43
Poincaré’s proof of, 96, 112, 124–5
relations analogous to, 74
restricted to convex, 30, 32, 44
restricted to quasi-convex
polyhedra, 63

restricted to simple polyhedra, 36
restricted to simple polyhedra with simply-
connected faces, 39, 44, 112

’safe’ formulation of, 31–2, 40
dialectic, 5, 39, 100, 155
accounts for change without criticism, 58

divergent series, 146
dogmatism, 4–5
and the theory of error, 33
see also scepticism

dominant theory, 130–3; see Euclideanism

edges
as the boundary of a face, 119
Cayley’s definition of, 102
invented by Euler, 6
undefined, 113

education, 151–2
error, 34, 158
essentialism: and the Euclidean programme,

131
in definitions, 20, 126–34
modified, 129–30

Euclideanism, 113, 129, 146–7, 153
deleterious effect on mathematics, 148

Euclidean style, 151–63
separates guessing and proving, 146

evolution, 4, 24
exception-barring, 26–32, 44, 62, 70, 89, 92,

141–4, 148
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exception-barring (cont.)
as the standard method before
Seidel, 144

Cauchy’s method and the revolution in
rigour, 145

combined with proof-analysis and lemma-
incorporation, 40

continuum of methods, 39
modified, 30

faces
boundary of, 119
undefined, 113
see also polyhedra

fallibilism, 147
finality, 126–34
and certainty, 67, 113, 128
and depth, 127

formalism
eighteenth-century, 1, 146
Hilbert’s, 59
twentieth-century, 130

four-colour conjecture, 7, 77
Fourier’s conjecture, 150, 157
counterexamples to, 157, 159
proved and improved by Dirichlet,
157–9

proved by Cauchy, 157
Fourier series, 138, 141
functions, as monsters, 21–2, 25, 160
see also Cauchy’s theorem, convergence,
Fourier’s conjecture, uniform
convergence

geometry
analytical, 20
as a ’dominant’ theory, 130, 132–3
Euclidean, 52
non-Euclidean, 27, 59, 147

Gödel sentences, 2
Goldbach’s conjecture, 77
graph theory, 98
guessing
deductive, 98–9
deductive versus naive, 74–81
guesswork versus insight, 32
as a heuristic pattern, 99–101
increased content by deductive guessing,
81–7

Hegelianism, 147
and heuristic, 151
see also dialectic, Hegelian triad

Hegelian triad, 132–3, 151, 158

heuristic, x, 3, 12
counterexamples, 88, 98–9
criticism, 110
deductive, 77, 152–3
dogmas, 40
follows a zig-zag path, 44
Hegelian conception of, 151
helps to ignore refutations, 79
and historical variation, 99–100
inductive, 77
language dynamics, 98
like scientific heuristic, 78
may deviate from the historical pattern,
135

Pappian, 67, 80
rules of the method of proofs and
refutations, 53, 61, 68, 70, 80, 104

and vagueness, 106
versus deductivist approach, 151–63

historicism, 57

ideology, political, 52
incidence matrices, 114, 118, 123–4
induction: Abel’s criticism of, 142
and analysis, 10
as the basis of the method of proofs and
refutations, 72–4, 95

eighteenth-century inductivism, 146
inductive conjectures and inductive
heuristic, 77

inductivist style, 151
infallibilist theory, 160
see also Euclideanism, fallibilism

infinite regress, 43, 56
see also proofs, vicious infinity

integral
Cauchy’s, 156, 158
Dirichlet’s, 158
Lesbesgue’s, 159
Riemann’s, 161
Riemann’s criticism of Cauchy’s, 158, 161
Riemann–Stieltjes, 156
textbook presentation of, 129–30

interpretations
dogmatic versus sceptical, 105
intended and unintended, 89–91

intuitionism, 55, 59
see also language

intuitions
as a source of definitions and axioms, 114
clear and distinct, 129–30
conjectures turned into, 114
deductive, 147
mature, 54
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knowledge
autonomy of, 155
growth of, 87–9, 99–100, 101
see also conjectures

language
and the growth of knowledge, 99
and the problem of universals, 98
changes in, 99
formalised, 99
irrelevant to mathematics, 55
laws of, 87
linguistic precision, 85
naive versus theoretical, 97
natural language reflects the essence of an
object, 122

vagueness of, 55
lemma-incorporation, 35–45, 70
dogmatist interpretation of, 49–50
playing for safety, 61
rechristened the method of proof and
refutations, 53

relies on the proof, 44
versus exception-barring, 38

lemmas, 10
ad hoc versus suitable, 53
discovery of, 54
false, 11
hidden, 46–50, 59, 135, 140, 143, 154
improved, 13
trivially true, 42–3, 48–9
see also lemma-incorporation

logic
ancient, 86–7
Bolzano’s, 109
and deductive infallibility, 147
depends upon translation, 131
of discovery, 3, 152–3
as the dominant theory, 133–4
and exception-barring, 26–7
inductive, 29, 77
informal, 101
informal theorems of, 60
and language statics, 99
logical constants, 132
logical form, 109–10
mathematical, 21–2, 128
of mathematics, 152
situational, 1, 3–4
theory and practice of, 87
three-valued, 57
union with mathematics, 59

logical positivism, 2, 99
logicism, 59

mathematics
autonomy of, 155
degeneration of, 103, 153
as eternal truth, 151
formalist philosophy of, 1–5
foundations of, 58
teaching of, ix, 151–3
union with logic, 59

measure theory, 132–3, 159, 162
Carathéodory’s definition of measurable
set, 162–3

outer measure, 162
mechanics
Newtonian, 52
rational, 132–3
wave, 130

metamathematics, 1, 3, 5, 59
and the search for a dominant
theory, 132–3

monster-adjustment, 32–5, 59, 103
monster-barring
and content, 94
in defence of the theorem, 45
definitions, 104, 106
disguised, 151
the method of, 15–28, 44, 49, 53, 70, 89
and rigour, 59
versus exception barring, 31

monsters, 24, 53, 102, 104, 131
examples of, 15–26, 160

optics, Newtonian, 147

paradoxes
inventor’s paradox, 72
of set theory, 59

piecemeal engineering, 42
playing for safety, 26–32, 40
polygons, 6
heptagon, 20, 76
inner, 85, 97–8
multiply-connected, 85, 97–8
perfect, 81
ringshaped, 34, 37, 41, 85, 97–8
star, 18–19, 33, 116
systems of, 15–16, 74–6
triangular, 20, 76

polyhedra, 6
almost convex, 64
boundary of, 107, 119, 126
Cauchy, 54, 71
with cavities, 85, 97, 102
complex, 91
concave and convex, 23, 30, 44, 89, 91–2
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polyhedra (cont.)
crested cube, 36–7, 40, 83
cube, 62
cylinder, 24, 30, 45, 50, 56, 85, 88, 102, 105–6,
129

defined in vector-algebraic terms, 114, 126
definitions of, 15–25, 97–8
dodecahedron, 62
essence of, 113
heptahedron, 116–19
Lhuilier’s classification of, 97
naive concept of, 105
nested cube, 14
normal, 81
n-spheroid, 83
octahedron, 116
one-sided, 88, 103, 116
open, 103
picture frame, 20, 23, 35, 51, 71, 82, 88
primitive, 115
prisms and pyramids, 90
regular, 6, 89
simple, 36, 90, 93, 106, 120
simply-connected, 91, 103, 105, 115, 127
spherical, 35
star, 17–18, 33, 35, 45, 65–6, 90, 96, 103
tabulated values for F, V, and E, 73
torus, 36
triangular, 35
twintetrahedron, 16, 28, 85, 103, 106
uneigentliche, 17

polytopes, 115
see also polyhedra

power series, 141–4
pragmatism, 57
probability theory, 132–3, 162
problems, 6
one does not solve the problem one has set
out to solve, 96

problem situation, 153
problem to prove, 7, 43
scientific inquiry begins and ends with
problems, 111

proof-analysis, ix, 45–60, 140
approximate, 54
as a fermenting agent for refutations, 50
can make proof infallible, 147
concludes with a proof, 113
discovery of, 144–50
domain of, 68
and lemma-incorporation, 38
may decrease content, 61
no limitations on the tools of, 113
perfect, 50

and proof, 53, 87
reduced to a triviality, 134
and revolution in rigour, 59
rigorous, 50
safe, 62
without proof, 53

proof and refutations, rechristened ’the
method of proofs and refutations’, 68

the dialectical unity of, 39
the heuristic rules of, 53, 61–2
the method of, 50–3
see also proofs and refutations

proof procedure, 112, 152
see also proofs and refutations

proofs, 7–10
changing standards of, 110
criticism of, 10–13, 141
crystal clear, 55
deeper, 60, 67, 70, 127
different proofs yield different theorems,
69–70

domain of, 68
Euclidean, 113
final, 67–9, 102
formal, 1, 131–2
to improve, 11, 31, 39, 44
inductive, 146
infinite regress of, 43
and meaning, 132
more rigorous and more embracing, 128
perfect versus imperfect, 147
and proof-analysis, 87
proofs ancestor, 163
proving after improving, 112
rules of, 60
as stage in method of proofs and
refutations, 135

as tests, 31
that do not prove, 30, 39, 44
trivial extensions of, 102
valid, 106
without a conjecture, 83
see also proof analysis, proof procedure,
thought-experiment

proofs and refutations
and concepts, 95–6
discovery of, 144–9
logic of, 5
method of, 68, 89, 135–6, 144
see also proof and refutations

proportion, theory of, 132–3
psychologism
and crystal-clear proof, 55
versus objectivity, 55
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psychology
and the context of discovery, 152–3
translated into physiology, 132–3

rationalism, critical, 4, 57, 72
rational reconstructions, 5, 90
rectifiable curves, 159
refutations: fermenting agents for

proof-analysis, 50
heuristic, 100
important and unimportant, 92, 104
lack of refutations causes neglect of
proof-analysis, 52

logical and heuristic, 98–9
proof-generated, 51
their diminishing returns, 103
theoretical versus naive, 101–5
see also counterexamples

retransmission of falsity, principle of, 50, 61, 67
rigour, 45–60
Abel’s and Cauchy’s concept of, 146
absolute, 30, 55
Cauchy–Weierstrass revolution in, 59, 128,
132–3

connections with more embracing proofs,
128

degrees of, 55, 57
and Fourier’s counterexamples, 139
and proof-analysis, 54–5, 58–60
and scepticism, 128
sufficient, 57
see also proofs

scepticism, 5, 108
and linguistic communication, 54
religious, 57
and rigour, 128
sceptic turned into dogmatist, 49

set theory, 21–2, 59
simplicity, 69
social sciences, methodology of, 155
surrender, method of, 14–15
synthesis, 10
as proof thought-experiment, 80
see also analysis

tautologies, theorems as, 132
Taylor’s theorem, 142

terms: clear and distinct, 129–30
and counterexamples, 131–2
logical and descriptive, 109–10
perfectly known (formative), 132
primitive, 115, 122
specific and non-specific, 115, 131
technical, 153
see also translation

theorem, 57
domain of validity, 55, 148
master-theorem, 67
proof-generated, 54, 93, 135
versus conjecture, 7–8, 44

theories
formalised, 113
growing (informal), 2, 45, 113, 148
mature, 45
method of, 113

thought-experiment, 7, 10, 14–15, 79,
83, 135

deductive, 86
distinct from its linguistic articulation, 54
quasi-experiment, 9
stimulated by counterexamples, 87
see also proof

topology, 19, 65, 68, 97–8, 102
translation: and definitions, 129–30
problem of, 112–23
procedure, 128
some examples, 132–3
true translation, 128

truth
certain, 70
retransmission of, 67
vacuous, 47

tunnels, 23, 71, 97

uniform convergence, 139–41, 153–5
as a hidden lemma in other proofs, 150
discovery of, 141–4
textbook presentation of, 154

verification, 86
vertices, 6
boundary of, 121
sum of, 121
undefined, 113

vicious infinity, 56–7, 59, 67, 104, 109
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