Modern C++ 17 OOP and Windows

Reverse Engineering Essentials
By Milad Kahsari Alhadi

Last Update: Wednesday - 2019 24 April

e Object Oritented Programming with C++ - 960 Min

— Introduction to Microsoft C++
Microsoft C++ Compiler
Microsoft C++ Linker
Visual Studio IDE
Visual Studio Debugger

— Introduction to C++ and OOP
What is C++?

What is a Multiparadigm Language?
Native C++ Programming

Managed C++ Programming
DotNet Framework and C++/CLI
Graphical Programs - Win32 API
Console Programs

— Fundamental and User Data Type

Fundamental Data Types
1. Int
2. Float
3. Double

User Defined Data Types

1. Classes
2. Structure

— Cast and Converting
Roundoff Problem
Losing Precisions



— Classes and Objects
Classes and Objects
Inheritance and Access Modifiers
1. Public
2. Private
3. Protected
4. Friend Classes and Functions
Namespaces and Enumerations

— Conditions and Repeations
If and Else
Switch Cases
For and While loop
Range based for loop

Visual Studio Arguments Settings:
1. Intermediate File
2. OutputFile
3. Compile As
4. Language Standard

— Memory Addressing
What is a Pointer?
Pointers Declaration
Pointers Initialization
Pointers to Pointers
Pointers Dereferencing
C++ References
Pass by References
Memory Analysis for References
— Translation Phases
Preprocessing — Microsoft Preprocessor
Compiling - Microsoft C++ Compiler and Optimizer
Assembling - Microsoft Assembler / MASM
Linking — Microsoft Linker

Visual Studio Project Settings
1. Preproccessing Output - .i Files



2. Compiling Output - .Asm Files
3. Assembling Output - .Obj Files

4. Linking Output - .Exe Files
— Preprocessoring and Preprocessor
What is Preprocessing?
Why Preprocessing is important?
Introduction to Translation Phase

Preprocessing Directives
1. Include
2. Pragma
Define
Undef
Ifdef and ifndef
6. Else
— Disassembler and Disassembling
Reverse of Compilation Process
Disassemblers Tasks

Disassemblers Types
1. Capstone Engine
2. IDA Disassembler
3. NinjaBinary
4, Radare2 Cutter
— Debugger and Debugging
Visual Studio Builtin Debugger
Standalone Debuggers
1. OllyDBG
2. ImmDBG
3. x64DBG
— Overloading
What is Overloading?
What is an Operator?
Why is it Important?
Function Overloading
Class Member Overloading
Operator Member Overloading

L ol o



— Templates

What are Templates?

Why is it Important?
Standard Template Library
Template in Action

1.
2.

Free Function Templates
Member Function Templates

3. Class Templates
4. Specialization Templates

— Constants and const keyword
What are Cons Qualifier?
Why is it Important?
Const Keyword
Constin Action

1.
2.
3.
4.

Constant Variables

Constant Pointers

Constant Pointers and Constant Locations
Pass Constant Arguments to Functions

— Free Store or Heap Memory
Free Store / Heap Memory
Dynamic Memory Allocation

1.

Struct Memory Management

2. Class Memory Managment
3.
4. Free Store Keywords

Constructor and Destructor

a. New
b. Delete
c. Malloc
d. Free

Smart Pointers and Automatic Memory Managment

1.
2.

Raw Pointers
Raw Pointers Memory Management Issues
a. Never Free
b. Double Free
c. Danling Pointers
d. Other Memory Leakage Issues

3. What are Smart Pointers?



a. Auto Deductions
b. Unique Pointers
c. Shared Pointers
d. Weak Pointers

— Collection and Smart Arrays

Std::Vectors
Push and Pop back
Begin and RBeign
End and REnd
Capacity and Size
. Atand (]
Std::Map

1. Keysand Values

2. Reverse Iterator

3. lterator

4. Insert
Std::List
Doubly Linked List
Push Back and Front
Emplace Back and Front
Advance and Erase
Merge and Sort
. Unique and Remove
Std:Pair

1. Pair Concept

2. Make Pair

3. Pair Compare

Std:Stack

1. Stack Structure

2. Stack Push Back

3. Stack Pop Back

4. Stack Empty
Std:Queue

1. Queue

2. Priority Queues

3. Double Ended Queue

— Static and Mutable Storage Class

voRw N e

oA W



Storage Class

Static Storage Class
1. Static Global Variable
2. Static Global Function
3. Static Local Variable
Mutable Storage Class
1. Const Member Function
2. Mutable Field

— Polymorphism and Its Types
Compile-time Polymorphism
Run-time Polymorphism

1. Virtual Functions

2. Overrided Functions

3. Pure Virtual Functions

4. Template-based Functions
Coercion Polymorphism
Ad-hoc Polymorphism

— Lambda Expression
Lambda Calculus

Lambda Expression

Capture Clause

2. Parameter List

3. Return Type

4. Algorithm Header
a. for_each
b. find_if

5. Functional Header
a. function

— Exception Handling

Different Model of Handling
1. C-Style
2. C++-Style
3. COM Model
4. Posix Model
C++ Exception Handling
1. Try
2. Catch

=



3. Multiple Catch
Runtime Exceptions
1. invalid_argument
2. out_of_range
3. exception
Stack Unwinding
Structured Exception Handler
Assert and Static Assert

— Modern CPP Standard Coding
Linux Environment
1. Clang++
2. Github Commands
3. Makefile
CPP Code Refactoring
Template Deduction
— Input and Output File Stream
File Systems
C++ Streams
Output File Stream
1. File Creation
2. File Opening
3. Ofstream Flags
4. Writing Data to File
Input File Stream
1. ReadingData
2. Parsing Data
3. Showing Data in Terminal
XML File Processing
1. XML File
2. XML Processing

3. Pugixml Library
a. Installation pugixml
b. Accessing document data
c. Modifying document data



