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Preface

Thank you for choosing to read Zero Trust Networks! Building trusted
systems in hostile networks has been a passion of ours for many years. In
building and designing such systems, we have found frustration in the pace
of progress toward solving some of the more fundamental security
problems plaguing our industry. We’d very much like to see the industry
move more aggressively toward building the types of systems which strive
to solve these problems.

To that end, we are proposing that the world take a new stance toward
building and maintaining secure computer networks. Rather than being
something which is layered on top, considered only after some value has
been built, security must be fundamentally infused with the operation of the
system itself. It must be ever-present, enabling operation rather than
restricting it. As such, this book sets forth a collection of design patterns
and considerations which, when heeded, can produce systems that are
resilient to the vast majority of modern-day attack vectors.

This collection, when taken as a whole, is known as the zero trust model. In
this model, nothing is taken for granted, and every single access request—
whether it be made by a client in a coffee shop or a server in the datacenter
—is rigorously checked and proven to be authorized. Adopting this model
practically eliminates lateral movement, VPN headaches, and centralized
firewall management overhead. It is a very different model indeed; one that
we believe represents the future of network and infrastructure security
design.

Security is a complicated and ever-changing field of engineering. Working
on it requires a deep understanding of many layers of a system and how
bugs or weaknesses in those layers can allow an attacker to subvert access
controls and protections. While this makes defending a system challenging,
it’s also a lot of fun to learn about! We hope you’ll enjoy learning about it
as much as we have!



Who Should Read This Book
Have you found the overhead of centralized firewalls to be restrictive?
Perhaps you’ve even found their operation to be ineffective? Have you
struggled with VPN headaches, TLS configuration across a myriad of
applications and languages, or compliance and auditing hardships? These
problems represent just a small subset of those addressed by the zero trust
model. If you find yourself thinking that there just has to be a better way,
then you’re in luck—this book is for you.

Network engineers, security engineers, CTOs, and everyone in between can
benefit from zero trust learnings. Even without a specialized skillset, many
of the principles included within can be clearly understood, helping leaders
make decisions that get them closer to realizing the zero trust model,
improving their overall security posture incrementally.

Additionally, readers with experience using configuration management
systems will see the opportunity of using those same ideas to build a more
secure and operable networked system—one in which resources are secure
by default. They will be interested in how automation systems can enable a
new network design that is able to apply fine-grained security controls more
easily.

Finally, this book also explores mature zero trust design, enabling those
who have already incorporated the basic philosophies to further the
robustness of their security systems.

Why We Wrote This Book
We started speaking about our approach to system and network design at
industry conferences in 2014. At the time, we were using configuration
management systems to rigorously define the system state, applying
changes programmatically as a reaction to topological changes. As a result
of leveraging automation tools for this purpose, we naturally found
ourselves programmatically calculating the network enforcement details
instead of managing such configuration by hand. We found that using



automation to capture the system design in this way was enabling us to
deploy and manage security features, including access control and
encryption, much more easily than in systems past. Even better, doing so
allowed us to place much less trust in the network than other systems might
normally do, which is a key security consideration when operating in and
across public clouds.

Around that same time, Google’s first BeyondCorp paper was published,
describing how they were rethinking system and network design to remove
trust from the network. We saw a lot of philosophical similarities in how
Google was approaching their network security, and how we approached
similar problems in our own systems. It was clear that reducing trust in the
network was not only our own design preference/opinion, but the general
direction the industry was headed. With the realizations gained from
comparing the BeyondCorp paper to our own efforts, we started sharing
broader understandings of this architecture and philosophy at various
conferences.

Attendees were engaged and interested in what we were doing, but the
question we frequently heard was “Where can I learn more about how to do
this in my own system?” Unfortunately, the answer was typically “Well,
there’s not a whole lot…come see me afterward.” The lack of publicly
available information and guidance became a glaring gap—one we wanted
to correct. This book aims to fill that gap.

While writing this book, we spoke to individuals from dozens of companies
to understand their perspective on network security designs. We found that
many of those companies were themselves reducing the trust of their
internal networks. While each organization took a slightly different
approach in their own system, it was clear that they all were working under
the same threat model and were as a result building solutions that shared
many properties.

Our goal with this book isn’t to present one or two particular solutions to
building these types of systems, but rather to define a system model that
places no trust in its communication network. Therefore, this book won’t be



focused on using specific software or implementations, but rather it will
explore the concepts and philosophies that are used to build a zero trust
network. We hope you will find it useful to have a clear mental model for
how to construct this type of system when building your own system, or
even better, reusable solutions for the problems described herein.

Zero Trust Networks Today
The zero trust model was originally conceived by Forrester’s John
Kindervag in 2010. He worked for many years to set forth architectural
models and guidance for building zero trust networks and has advised many
large companies on how to evolve their security posture in order to attain
zero trust guarantees. John was, and still is, an important figure in the field.
His work in the area greatly informed our understanding of the state of the
union, and we thank him for popularizing zero trust during its formative
years.

Today’s zero trust networks are largely built using off-the-shelf software
components with custom software and glue to integrate the components in
novel ways. As such, when reading this text, please be aware that deploying
this type of system isn’t as easy as installing and configuring some ready-
made hardware or software...yet.

It could be said that the lack of easily deployable components that work
well together is an opportunity. A suite of open source tools could help
drive adoption of zero trust networks.

Navigating This Book
This book is organized as follows:

Chapters 1 and 2 discuss the fundamental concepts at play in a zero trust
network.

Chapters 3 and 4 explore the new concepts typically seen in mature zero
trust networks: network agents and trust engines.



Chapters 5–8 detail how trust is established among the actors in a
network. Most of this content is focused on existing technology that
could be useful even in a traditional network security model.

Chapter 9 brings all this content together to discuss how you could begin
building your own zero trust network and includes two case studies.

Chapter 10 looks at the zero trust model from an adversarial view. It
explores potential weaknesses, discussing which are well mitigated, and
which are not.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.



NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

O’Reilly Safari
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Chapter 1. Zero Trust
Fundamentals

In a time where network surveillance is ubiquitous, we find ourselves
having a hard time knowing who to trust. Can we trust that our internet
traffic will be safe from eavesdropping? Certainly not! What about that
provider you leased your fiber from? Or that contracted technician who was
in your datacenter yesterday working on the cabling?

Whistleblowers like Edward Snowden and Mark Klein have revealed the
tenacity of government-backed spy rings. The world was shocked at the
revelation that they had managed to get inside the datacenters of large
organizations. But why? Isn’t it exactly what you would do in their
position? Especially if you knew that traffic there would not be encrypted?

The assumption that systems and traffic within a datacenter can be trusted is
flawed. Modern networks and usage patterns no longer echo those that
made perimeter defense make sense many years ago. As a result, moving
freely within a “secure” infrastructure is frequently trivial once a single host
or link there has been compromised.

Zero trust aims to solve the inherent problems in placing our trust in the
network. Instead, it is possible to secure network communication and access
so effectively that physical security of the transport layer can be reasonably
disregarded. It goes without saying that this is a lofty goal. The good news
is that we’ve got pretty good crypto these days, and given the right
automation systems, this vision is actually attainable.

What Is a Zero Trust Network?
A zero trust network is built upon five fundamental assertions:

The network is always assumed to be hostile.



External and internal threats exist on the network at all times.

Network locality is not sufficient for deciding trust in a network.

Every device, user, and network flow is authenticated and authorized.

Policies must be dynamic and calculated from as many sources of data
as possible.

Traditional network security architecture  breaks different networks (or
pieces of a single network) into zones, contained by one or more firewalls.
Each zone is granted some level of trust, which determines the network
resources it is permitted to reach. This model provides very strong defense-
in-depth. For example, resources deemed more risky, such as web servers
that face the public internet, are placed in an exclusion zone (often termed a
“DMZ”), where traffic can be tightly monitored and controlled. Such an
approach gives rise to an architecture that is similar to some you might have
seen before, such as the one shown in Figure 1-1.

Figure 1-1. Traditional network security architecture



The zero trust model turns this diagram inside out. Placing stopgaps in the
network is a solid step forward from the designs of yesteryear, but it is
significantly lacking in the modern cyberattack landscape. There are many
disadvantages:

Lack of intra-zone traffic inspection

Lack of flexibility in host placement (both physical and logical)

Single points of failure

It should be noted that, should network locality requirements be removed,
the need for VPNs is also removed. A VPN (or virtual private network)
allows a user to authenticate in order to receive an IP address on a remote
network. The traffic is then tunneled from the device to the remote network,
where it is decapsulated and routed. It’s the greatest backdoor that no one
ever suspected.

If we instead declare that network location has no value, VPN is suddenly
rendered obsolete, along with several other modern network constructs. Of
course, this mandate necessitates pushing enforcement as far toward the
network edge as possible, but at the same time relieves the core from such
responsibility. Additionally, stateful firewalls exist in all major operating
systems, and advances in switching and routing have opened an opportunity
to install advanced capabilities at the edge. All of these gains come together
to form one conclusion: the time is right for a paradigm shift.

By leveraging distributed policy enforcement and applying zero trust
principles, we can produce a design similar to the one shown in Figure 1-2.



Figure 1-2. Zero trust architecture

Introducing the Zero Trust Control Plane
The supporting system is known as the control plane, while most
everything else is referred to as the data plane, which the control plane
coordinates and configures. Requests for access to protected resources are
first made through the control plane, where both the device and user must
be authenticated and authorized. Fine-grained policy can be applied at this
layer, perhaps based on role in the organization, time of day, or type of
device. Access to more secure resources can additionally mandate stronger
authentication.

Once the control plane has decided that the request will be allowed, it
dynamically configures the data plane to accept traffic from that client (and
that client only). In addition, it can coordinate the details of an encrypted
tunnel between the requestor and the resource. This can include temporary
one-time-use credentials, keys, and ephemeral port numbers.



While some compromises can be made on the strength of these measures,
the basic idea is that an authoritative source, or trusted third party, is
granted the ability to authenticate, authorize, and coordinate access in real
time, based on a variety of inputs.

Evolution of the Perimeter Model
The traditional architecture described in this book is often referred to as the
perimeter model, after the castle-wall approach used in physical security.
This approach protects sensitive items by building lines of defenses that an
intruder must penetrate before gaining access. Unfortunately, this approach
is fundamentally flawed in the context of computer networks and no longer
suffices. In order to fully understand the failure, it is useful to recall how the
current model was arrived at.

Managing the Global IP Address Space
The journey that led to the perimeter model began with address assignment.
Networks were being connected at an ever-increasing rate during the days
of the early internet. If it wasn’t being connected to the internet (remember
the internet wasn’t ubiquitous at the time), it was being connected to
another business unit, another company, or perhaps a research network. Of
course, IP addresses must be unique in any given IP network, and if the
network operators were unlucky enough to have overlapping ranges, they
would have a lot of work to do in changing them all. If the network you are
connecting to happens to be the internet, then your addresses must
be globally unique. So clearly some coordination is required here.

The Internet Assigned Numbers Authority (IANA), formally established in
1998, is the body that today provides that coordination. Prior to the
establishment of the IANA, this responsibility was handled by Jon Postel,
who created the internet map shown in Figure 1-3. He was the authoritative
source for IP address ownership records, and if you wanted to guarantee
that your IP addresses were globally unique, you would register with him.
At this time, everybody was encouraged to register for IP address space,



even if the network being registered was not going to be connected to the
internet. The assumption was that even if a network was not connected now,
it would probably be connected to another network at some point.



Figure 1-3. A map of the early internet created by Jon Postel, dated February 1982

Birth of Private IP Address Space



As IP adoption grew through the late 1980s and early 1990s, frivolous use
of address space became a serious concern. Numerous cases of truly
isolated networks with large IP address space requirements began to
emerge. Networks connecting ATMs and arrival/departure displays at large
airports were touted as prime examples. These networks were considered
truly isolated for various reasons. Some devices might be isolated to meet
security or privacy requirements (e.g., networks meant for ATMs). Some
might be isolated because the scope of their function was so limited that
having broader network access was seen as exceedingly unlikely (e.g.,
airport arrival and departure displays). RFC 1597, Address Allocation for
Private Internets, was introduced to address this wasted public address
space issue.

In March of 1994, RFC 1597 announced that three IP network ranges had
been reserved with IANA for general use in private networks: 10.0.0.0/8,
172.16.0.0/12, and 192.168.0.0/16. This had the effect of slowing address
depletion by ensuring that the address space of large private networks never
grew beyond those allocations. It also enabled network operators to use
non-globally unique addresses where and when they saw fit. It had another
interesting effect, which lingers with us today: networks using private
addresses were more secure, because they were fundamentally incapable of
joining other networks, particularly the internet.

At the time, very few organizations (relatively speaking) had an internet
connection or presence, and as such, internal networks were frequently
numbered with the reserved ranges. Additionally, security measures were
weak to nonexistent because these networks were typically confined by the
walls of a  single organization.

Private Networks Connect to Public Networks
The number of interesting things on the internet grew fairly quickly, and
soon most organizations wanted at least some sort of presence. Email was
one of the earliest examples of this. People wanted to be able to send and
receive email, but that meant they needed a publicly accessible mail server,
which of course meant that they needed to connect to the internet somehow.

https://tools.ietf.org/html/rfc1597


With established private networks, it was often the case that this mail server
would be the only server with an internet connection. It would have one
network interface facing the internet, and one facing the internal network.
With that, systems and people on the internal private network got the ability
to send and receive internet email via their connected mail server.

It was quickly realized that these servers had opened up a physical internet
path into their otherwise secure and private network. If one was
compromised, an attacker might be able to work their way into the private
network, since hosts there can communicate with it. This realization
prompted strict scrutiny of these hosts and their network connections.
Network operators placed firewalls on both sides of them to restrict
communication and thwart potential attackers attempting to access internal
systems from the internet, as shown in Figure 1-4. With this step, the
perimeter model was born. The internal network became the “secure”
network, and the tightly controlled pocket that the external hosts laid in
became the DMZ, or the demilitarized zone.



Figure 1-4. Both internet and private resources can access hosts in the DMZ; private resources,
however, cannot reach beyond the DMZ, and thus do not gain direct internet access

Birth of NAT
The number of internet resources desired to be accessed from internal
networks was growing rapidly, and it quickly became easier to grant general
internet access to internal resources than it was to maintain intermediary
hosts for every application desired. NAT, or network address
translation, solved that problem nicely.

RFC 1631, The IP Network Address Translator, defines a standard for a
network device that is capable of performing IP address translation at
organizational boundaries. By maintaining a table that maps public IPs and
ports to private ones, it enabled devices on private networks to access
arbitrary internet resources. This lightweight mapping is application-
agnostic, which meant that network operators no longer needed to support

https://tools.ietf.org/html/rfc1631


internet connectivity for particular applications; they needed only to support
internet connectivity in general.

These NAT devices had an interesting property: because the IP mapping
was many-to-one, it was not possible for incoming connections from the
internet to access internal private IPs without specifically configuring the
NAT to handle this special case. In this way, the devices exhibited the same
properties as a stateful firewall. Actual firewalls began integrating NAT
features almost instantaneously, and the two became a single function,
largely indistinguishable. Supporting both network compatibility and tight
security controls meant that eventually you could find one of these devices
at practically every organizational boundary, as shown in Figure 1-5.

Figure 1-5. Typical (and simplified) perimeter firewall design

The Contemporary Perimeter Model



With a firewall/NAT device between the internal network and the internet,
the security zones are clearly forming. There is the internal “secure” zone,
the DMZ (demilitarized zone), and the untrusted zone (aka the internet). If
at some point in the future, this organization needed to interconnect with
another, a device would be placed on that boundary in a similar manner.
The neighboring organization is likely to become a new security zone, with
particular rules about what kind of traffic can go from one to the other, just
like the DMZ or the secure zone.

Looking back, the progression can be seen. We went from offline/private
networks with just one or two hosts with internet access to highly
interconnected networks with security devices around the perimeter. It is
not hard to understand: network operators can’t afford to sacrifice the
perfect security of their offline network because they had to open doors up
for various business purposes. Tight security controls at each door
minimized the risk.

Evolution of the Threat Landscape
Even before the public internet, communicating with a remote computer
system was highly desirable. This was commonly done over the public
telephone system. Users and computer systems could dial in and, by
encoding data into audible tones, gain connectivity to the remote machine.
These dial-in interfaces were the most common attack vector of the day,
since gaining physical access was much more difficult.

Once organizations had internet-connected hosts, attacks shifted from
occurring over the telephone network to being launched over the internet.
This triggered a change in most attack dynamics. Incoming calls to dial-in
interfaces tied up a phone line, and were a notable occurrence when
compared to a TCP connection coming from the internet. It was much
easier to have a covert presence on an IP network than it was on a system
that needed to be dialed into. Exploitation and brute force attempts could be
carried out over long periods of time without raising too much



suspicion...though an additional and more impactful capability rose from
this shift: malicious code could then listen for internet traffic.

By the late 1990s, the world’s first (software) Trojan horses had begun to
make their rounds. Typically, a user would be tricked into installing the
malware, which would then open a port and wait for incoming connections.
The attacker could then connect to the open port and remotely control the
target machine.

It wasn’t long after that people realized it would be a good idea to protect
those internet-facing hosts. Hardware firewalls were the best way to do it
(most operating systems had no concept of a host-based firewall at the
time). They provided policy enforcement, ensuring that only whitelisted
“safe” traffic was allowed in from the internet. If an administrator
inadvertently installed something that exposed an open port (like a Trojan
horse), the firewall would physically block connections to that port until
explicitly configured to allow it. Likewise, traffic to the internet-facing
servers from inside the network could be controlled, ensuring that internal
users could speak to them, but not vice versa. This helped prevent
movement into the internal network by a potentially compromised DMZ
host.

DMZ hosts were of course a prime target (due to their connectivity), though
such tight controls on both inbound and outbound traffic made it hard to
reach an internal network through a DMZ. An attacker would first have to
compromise the firewalled server, then abuse the application in such a way
that it could be used for covert communication (they need to get data out of
that network, after all). Dial-in interfaces remained the lowest hanging fruit
if one was determined to gain access to an internal network.

This is where things took an interesting turn. NAT was introduced to grant
internet access to clients on internal networks. Due in some part to NAT
mechanics and in some part to real security concerns, there was still tight
control on inbound traffic, though internal resources wishing to consume
external resources might freely do so. There’s an important distinction to be
made when considering a network with NAT’d internet access against a



network without it: the former has relaxed (if any) outbound network
policy.

This significantly transformed the network security model. Hosts on the
“trusted” internal networks could then communicate directly with untrusted
internet hosts, and the untrusted host was suddenly in a position to abuse
the client attempting to speak with it. Even worse, malicious code could
then send messages to internet hosts from within the internal
network. Today, we know this as phoning home.

Phoning home is a critical component of most modern attacks. It allows
data to be exfiltrated from otherwise-protected networks; but more
importantly, since TCP is bidirectional, it allows data to be injected as well.

A typical attack involves several steps, as shown in Figure 1-6. First, the
attacker will compromise a single computer on the internal network by
exploiting the user’s browser when they visit a particular page, by sending
them an email with an attachment that exploits some local software, for
example. The exploit carries a very small payload, just enough code to
make a connection out to a remote internet host and execute the code it
receives in the response. This payload is sometimes referred to as a dialer.

The dialer downloads and installs the real malware, which more often than
not will attempt to make an additional connection to a remote internet host
controlled by the attacker. The attacker will use this connection to send
commands to the malware, exfiltrate sensitive data, or even to obtain an
interactive session. This “patient zero” can act as a stepping stone, giving
the attacker a host on the internal network from which to launch additional
attacks.



Figure 1-6.  Client initiates all attack-related connections, easily traversing perimeter firewalls with
relaxed outbound security

OUTBOUND SECURITY
Outbound network security is a very effective mitigation measure against dialer-based
attacks, as the phone home can be detected and/or blocked. Oftentimes, however, the
phone home is disguised as regular web traffic, possibly even to networks that are
seemingly benign or “normal.” Outbound security tight enough to stop these attacks will
oftentimes cripple web usability for users. This is a more realistic prospect for back-
office systems.

The ability to launch attacks from hosts within an internal network is a very
powerful one. These hosts almost certainly have permission to talk to other
hosts in the same security zone (lateral movement) and might even have
access to talk to hosts in zones more secure than their own. To this effect,
by first compromising a low-security zone on the internal network, an



attacker can move through the network, eventually gaining access to the
high-security zones.

Taking a step back for a moment, it can be seen that this pattern very
effectively undermines the perimeter security model. The critical flaw
enabling attack progression is subtle, yet clear: security policies are defined
by network zones, enforced only at zone boundaries, using nothing more
than the source and destination details.

Perimeter Shortcomings
Even though the perimeter security model still stands as the most prevalent
model by far, it is increasingly obvious that the way we rely on it is flawed.
Complex (and successful) attacks against networks with perfectly good
perimeter security occur every day. An attacker drops a remote access tool
(or RAT) into your network through one of a myriad of methods, gains
remote access, and begins moving laterally. Perimeter firewalls have
become the functional equivalent of building a wall around a city to keep
out the spies.

The problem comes when architecting security zones into the network
itself. Imagine the following scenario: you run a small ecommerce
company. You have some employees, some internal systems (payroll,
inventory, etc.), and some servers to power your website. It is natural to
begin classifying the kind of access these groups might need: employees
need access to internal systems, web servers need access to database
servers, database servers don’t need internet access but employees do, and
so on. Traditional network security would codify these groups as zones and
then define which zone can access what, as shown in Figure 1-7. Of course,
you need to actually enforce these policies; and since they are defined on a
zone-by-zone basis, it makes sense to enforce them wherever one zone can
route traffic into another.

As you might imagine, there are always exceptions to these generalized
rules... they are, in fact, colloquially known as firewall exceptions. These
exceptions are typically as tightly scoped as possible. For instance, your



web developer might want SSH access to the production web servers, or
your HR representative might need access to the HR software’s database in
order to perform audits. In these cases, an acceptable approach is to
configure a firewall exception permitting traffic from that individual’s IP
address to the particular server(s) in question.

Now let’s imagine that your archnemesis has hired a team of hackers. They
want to have a peek at your inventory and sales numbers. The hackers send
emails to all the employee email addresses they can find on the internet,
masquerading as a discount code for a restaurant near the office. Sure
enough, one of them clicks the link, allowing the attackers to install
malware. The malware phones home and provides the attackers with a
session on the now-compromised employee’s machine. Luckily, it’s only an
intern, and the level of access they gain is limited.

Figure 1-7. Corporate network interacting with the production network



They begin searching the network and find that the company is using file
sharing software on its network. Out of all the employee computers on the
network, none of them have the latest version and are vulnerable to an
attack that was recently publicized. One by one, the hackers begin searching
for a computer with elevated access (this process of course can be more
targeted if the attacker has advanced knowledge). Eventually they come
across your web developer’s machine. A keylogger they install there
recovers the credentials to log into the web server. They SSH to the server
using the credentials they gathered; and using the sudo rights of the web
developer, they read the database password from disk and connect to the
database. They dump the contents of the database, download it, and delete
all the log files. If you’re lucky, you might actually discover that this breach
occurred. They accomplished their mission, as shown in Figure 1-8.

Wait, what? As you can see, many failures at many levels led to this breach,
and while you might think that this is a particularly contrived case,
successful attacks just like this one are staggeringly common. The most
surprising part however goes unnoticed all too often: what happened to all
that network security? Firewalls were meticulously placed, policies and
exceptions were tightly scoped and very limited, everything was done right
from a network security perspective. So what gives?



Figure 1-8. Attacker movement into corporate network, and subsequently production into network

EXAMPLE ATTACK PROGRESSION
1. Employees targeted via phishing email

2. Corporate machine compromised, shell shoveled

3. Lateral movement through corporate network

4. Privileged workstation located

5. Local privilege escalation on workstation—keylogger installed

6. Developer password stolen

7. Compromised prod app host from privileged workstation

8. Developer password used to elevate privileges on prod app host

9. Database credentials stolen from app

10. Database contents exfiltrated via compromised app host



When carefully examined, it is overwhelmingly obvious that this network
security model is not enough. Bypassing perimeter security is trivial with
malware that phones home, and firewalls between zones consider nothing
more than source and destination when making enforcement decisions.
While perimeters can still provide some value in network security, their role
as the primary mechanism by which a network’s security stance is defined
needs to be reconsidered.

The first step of course is to search for existing solutions. Sure, the
perimeter model is the accepted approach to securing a network, but that
doesn’t mean we haven’t learned better elsewhere. What is the worst
possible scenario network security-wise? It turns out that there is actually a
level of absoluteness to this question, and the crux of it lies in trust.

Where the Trust Lies
When considering options beyond the perimeter model, one must have a
firm understanding of what is trusted and what isn’t. The level of trust
defines a lower limit on the robustness of the security protocols required.
Unfortunately, it is rare for robustness to exceed what is required, so it is
wise to trust as little as possible. Once trust is built into a system, it can be
very hard to remove.

A zero trust network is just as it sounds. It is a network that is completely
untrusted. Lucky for us, we interact with such a network very frequently:
the internet.

The internet has taught us some valuable security lessons. Certainly an
operator will secure an internet-facing server much differently than it
secures its locally accessible counterpart. Why is that? And if the pains
associated with such rigor were cured (or even just lessened), would the
security sacrifice still be worth it?

The zero trust model dictates that all hosts be treated as if they’re internet-
facing. The networks they reside in must be considered compromised and
hostile. Only with this consideration can you begin to build secure



communication. With most operators having built or maintained internet-
facing systems in the past, we have at least some idea of how to secure IP in
a way that is difficult to intercept or tamper with (and, of course, how to
secure those hosts). Automation enables us to extend this level of security
to all of the systems in our infrastructure.

Automation as an Enabler
Zero trust networks do not require new protocols or libraries. They do,
however, use existing technologies in novel ways. Automation systems are
what allow a zero trust network to be built and operated.

Interactions between the control plane and the data plane are the most
critical points requiring automation. If policy enforcement cannot be
dynamically updated, zero trust will be unattainable; therefore it is critical
that this process be automatic and rapid.

There are many ways that this automation can be realized. Purpose-built
systems are most ideal, though more mundane systems like traditional
configuration management can fit here as well. Widespread adoption of
configuration management represents an important stepping stone for a zero
trust network, as these systems often maintain device inventories and are
capable of automating network enforcement configuration in the data plane.

Due to the fact that modern configuration management systems can both
maintain a device inventory and automate the data plane configuration, they
are well positioned to be a first step toward a mature zero trust network.

Perimeter Versus Zero Trust
The perimeter and zero trust models are fundamentally different from each
other. The perimeter model attempts to build a wall between trusted and
untrusted resources (i.e., local network and the internet). On the other hand,
the zero trust model basically throws the towel in, and accepts the reality



that the “bad guys” are everywhere. Rather than build walls to protect the
soft bodies inside, it turns the entire population into a militia.

The current approaches to perimeter networks assign some level of trust to
the protected networks. This notion violates the zero trust model and leads
to some bad behavior. Operators tend to let their guard down a bit when the
network is “trusted” (they are human). Rarely are hosts that share a trust
zone protected from themselves. Sharing a trust zone, after all, seems to
imply that they are equally trusted. Over time, we have come to learn that
this assumption is false, and it is not only necessary to protect your hosts
from the outside, but it is also necessary to protect them from each other.

Since the zero trust model assumes the network is fully compromised, you
must also assume that an attacker can communicate using any arbitrary IP
address. Thus, protecting resources by using IP addresses or physical
location as an identifier is not enough. All hosts, even those which share
“trust zones,” must provide proper identification. Attackers are not limited
to active attacks though. They can still perform passive attacks in which
they sniff your traffic for sensitive information. In this case, even host
identification is not enough—strong encryption is also required.

There are three key components in a zero trust network: user/application
authentication, device authentication, and trust. The first component has
some duality in it due to the fact that not all actions are taken by users. So
in the case of automated action (inside the datacenter, for instance), we look
at qualities of the application in the same way that we would normally look
at qualities of the user.

Authenticating and authorizing the device is just as important as doing so
for the user/application. This is a feature rarely seen in services and
resources protected by perimeter networks. It is often deployed using VPN
or NAC technology, especially in more mature networks, but finding it
between endpoints (as opposed to network intermediaries) is uncommon.



NAC AS A PERIMETER TECHNOLOGY
NAC, or Network Access Control, represents a set of technologies designed to strongly
authenticate devices in order to gain access to a sensitive network. These technologies,
which include protocols like 802.1X and the Trusted Network Connect (TNC) family,
focus on admittance to a network rather than admittance to a service and as such are
independent to the zero trust model. An approach more consistent with the zero trust
model would involve similar checks as close to the service being accessed as possible
(something which TNC can address—more on this in Chapter 5). While NAC can still
be employed in a zero trust network, it does not fulfill the zero trust device
authentication requirement due to its distance from the remote endpoint.

Finally, a “trust score” is computed, and the application, device, and score
are bonded to form an agent. Policy is then applied against the agent in
order to authorize the request. The richness of information contained within
the agent allows very flexible yet fine-grained access control, which can
adapt to varying conditions by including the score component in your
policies.

If the request is authorized, the control plane signals the data plane to
accept the incoming request. This action can configure encryption details as
well. Encryption can be applied at the device level, application level, or
both. At least one is required for confidentiality.

With these authentication/authorization components, and the aide of the
control plane in coordinating encrypted channels, we can assert that every
single flow on the network is authenticated and expected. Hosts and
network devices drop traffic that has not had all of these components
applied to it, ensuring sensitive data can never leak out. Additionally, by
logging each of the control plane events and actions, network traffic can be
easily audited on a flow-by-flow or request-by-request basis.

Perimeter networks can be found which have similar capability, though
these capabilities are enforced at the perimeter only. VPN famously
attempts to provide these qualities in order to secure access to an internal
network, but the security ends as soon as your traffic reaches a VPN
concentrator. It is apparent that operators know what internet-strength



security is supposed to look like; they just fail to implement those strong
measures throughout.

If one can imagine a network that applies these measures homogeneously,
some brief thought experiment can shed a lot of light on this new paradigm.
Identity can be proven cryptographically, meaning it no longer matters what
IP address any given connection is originating from (technically, you can
still associate risk with it—more on that later). With automation removing
the technical barriers, VPN is essentially obsoleted. “Private” networks no
longer mean anything special: the hosts there are just as hardened as the
ones on the internet. Thinking critically about NAT and private address
space, perhaps zero trust makes it more obvious that the security arguments
for it are null and void.

Ultimately, the perimeter model flaw is lack of universal protection and
enforcement. Secure cells with soft bodies inside. What we’re really
looking for is hard bodies, bodies that know how to check IDs and speak in
a way they can’t be overheard. Having hard bodies doesn’t necessarily
preclude you from also maintaining the security cells. In very sensitive
installations, this would still be encouraged. It does, however, raise the
security bar high enough that it wouldn’t be unreasonable to lessen or
remove those cells. Combined with the fact that the majority of the zero
trust function can be done with transparency to the end user, the model
almost seems to violate the security/convenience trade-off: stronger
security, more convenience. Perhaps the convenience problem (or lack
thereof) has been pushed onto the operators.

Applied in the Cloud
There are many challenges in deploying infrastructure into the cloud, one of
the larger being security. Zero trust is a perfect fit for cloud deployments for
an obvious reason: you can’t trust the network in a public cloud! The ability
to authenticate and secure communication without relying on IP addresses
or the security of the network connecting them means that compute
resources can be nearly commoditized.



Since zero trust advocates that every packet be encrypted, even within the
same datacenter, operators need not worry about which packets traverse the
internet and which don’t. This advantage is often understated. Cognitive
load associated with when, where, and how to encrypt traffic can be quite
large, particularly for developers who may not fully understand the
underlying system. By eliminating special cases, we can also eliminate the
human error associated with them.

Some might argue that intra-datacenter encryption is overkill, even with the
reduction in cognitive load. History has proven otherwise. At large cloud
providers like AWS, a single “region” consists of many datacenters, with
fiber links between them. To the end user, this subtlety is often obfuscated.
The NSA was targeting precisely links like these in 2013, and internet-
backbone links even earlier in rooms like the one shown in Figure 1-9.

Figure 1-9. Room 641A—NSA interception facility inside an AT&T datacenter in San Francisco



There are additionally risks in the network implementation of the provider
itself. It is not impossible to think that a vulnerability might exist in which
neighbors can see your traffic. A more likely case is network operators
inspecting traffic while troubleshooting. Perhaps the operator is honest, but
how about the person who stole his/her laptop a few hours later with your
captures on the disk? The unfortunate reality is that we can no longer
assume that our traffic is protected from snooping or modification while in
the datacenter.

Summary
This chapter explored the high-level concepts that have led us toward the
zero trust model. The zero trust model does away with the perimeter model,
which attempts to ensure that bad actors stay out of the trusted internal
network. Instead, the zero trust system recognizes that this approach is
doomed to failure, and as a result, starts with the assumption that malicious
actors are within the internal network and builds up security mechanisms to
guard against this threat.

To better understand why the perimeter model is failing us, we reviewed
how the perimeter model came into being. Back at the internet’s beginning,
the network was fully routable. As the system evolved, some users
identified areas of the network that didn’t have a credible reason to be
routable on the internet, and thus the concept of a private network was born.
Over time, this idea took hold, and organizations modeled their security
around protecting the trusted private network. Unfortunately, these private
networks aren’t nearly as isolated as the original private networks were. The
end result is a very porous perimeter, which is frequently breached in
regular security incidents.

With the shared understanding of perimeter networks, we are able to
contrast that design against the zero trust design. The zero trust model
carefully manages trust in the system. These types of networks lean on
automation to realistically manage the security control systems that allow
us to create a more dynamic and hardened system. We introduced some key



concepts like the authentication of users, devices, and applications, and the
authorization of the combination of those components. We will discuss
these concepts in greater detail throughout the rest of this book.

Finally, we talked about how the move to public cloud environments and
the pervasiveness of internet connectivity have fundamentally changed the
threat landscape. “Internal” networks are now increasingly shared and
sufficiently abstracted away in such a way that end users don’t have as clear
an understanding of when their data is transiting more vulnerable long-
distance network links. The end result of this change is that data security is
more important than ever when constructing new systems.

The next chapter will discuss the high-level concepts that need to be
understood in order to build systems that can safely manage trust.



Chapter 2. Managing Trust

Trust management is perhaps the most important component of a zero trust
network. We are all familiar with trust to some degree—you probably trust
members of your family, but not a stranger on the street, and certainly not a
stranger who looks threatening or menacing. Why is that?

For starters, you actually know your family members. You know what they
look like, where they live; perhaps you’ve even known them your whole
life. There is no question of who they are, and you are more likely to trust
them with important matters than others.

A stranger, on the other hand, is someone completely unknown. You might
see their face, and be able to tell some basic things about them, but you
don’t know where they live, and you don’t know their history. They might
appear perfectly cromulent, but you likely wouldn’t rely on one for
important matters. Watch your stuff for you while you run to the bathroom?
Sure. Make a quick run to the ATM for you? Definitely not.

At the end, you are simply taking in all the information you can tell about
the situation, a person, and all you may know about them, and deciding how
trustworthy they are. The ATM errand requires a very high level of trust,
where watching your stuff needs much less, but not zero.

You may not even trust yourself completely, but you can definitely trust that
actions taken by you were taken by you. In this way, trust in a zero trust
network always originates with the operator. Trust in a zero trust network
seems contradictory, though it is important to understand that when you
have no inherent trust, you must source it from somewhere and manage it
carefully.

There’s a small wrinkle though: the operator won’t always be available to
authorize and grant trust! Plus, the operator just doesn’t scale :). Luckily,
we know how to solve that problem—we delegate trust as shown in
Figure 2-1.



Figure 2-1. An operator declares trust in a particular system, which can in turn trust another,
forming a trust chain

Trust delegation is important because it allows us to build automated
systems that can grow to large scale and to operate in a secure and trusted
way with minimal human intervention. The trusted operator must assign
some level of trust to a system, enabling it to take actions on behalf of the
operator. A simple example of this is auto-scaling. You want your servers to
provision themselves as needed, but how do you know a new server is one
of yours and not some other random server? The operator must delegate the
responsibility to a provisioning system, granting it the ability to assign trust
to, and create, new hosts. In this way, we can say that we trust the new
server is indeed our own, because the provisioning system has validated



that it has taken the action to create it, and the provisioning system can
prove that the operator has granted it the ability to do so. This flow of trust
back to the operator is often referred to as a trust chain, and the operator
can be referred to as a trust anchor.

Threat Models
Defining threat models is an important first step when designing a security
architecture. A threat model enumerates the potential attackers, their
capabilities and resources, and their intended targets. Threat models will
normally define which attackers are in scope, rationally choosing to
mitigate attacks from weaker adversaries before moving onto more difficult
adversaries.

A well-defined threat model can be a useful tool to focus security
mitigation efforts. When building security systems, like most engineering
exercises, there is a tendency to focus on the fancier aspects of the
engineering problem to the detriment of the more boring but still important
parts. This tendency is especially worrisome in a security system, since the
weakest link in the system is where attackers will quickly focus their
attention. Therefore, the threat model serves as a mechanism for focusing
our attention on a single threat and fully mitigating their attacks.

Threat models can also be useful when prioritizing security initiatives.
Fighting state-level actors is pointless if a system’s security measures are
insufficient to defend against a simple brute force attack on a user’s poor
password. As such, it is important to start first with simpler personas when
building a threat model.

Common Threat Models
There are many different techniques for threat modeling in the security
field. Here are some of the more popular ones:

STRIDE

https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx


DREAD

PASTA

Trike

VAST

The varying threat modeling techniques provide different frameworks for
exploring the threat space. Each of them is after the same goal: to
enumerate threats to the system and further enumerate the mitigating
systems and processes for those threats.

Different threat models approach the problem from different angles. Some
modeling systems might focus on the assets that an attacker would be
targeting. Others might look at each software component in isolation and
enumerate all the attacks that could be applied to that system. Finally, some
models might look at the system as a whole from the attacker’s perspective:
as an attacker, how might I approach penetrating this system. Each of these
approaches has pros and cons. For a well-diversified mitigating strategy, a
blend of the three approaches is ideal.

If we were to look at the attacker-based threat modeling methodology, we
are able to categorize attackers into a list of increasing capabilities (ordered
from least to most threatening):

1. Opportunistic attackers

So-called script kiddies, who are unsophisticated attackers taking
advantage of well-known vulnerabilities with no predetermined target.

2. Targeted attackers

Attackers who craft specialized attacks against a particular target. Spear
phishing and corporate espionage might fall under this bucket.

3. Insider threats

A credentialed but everyday user of a system. Contractors and
unprivileged employees generally fall into this bucket.

https://www.owasp.org/index.php/Threat_Risk_Modeling#DREAD
http://bit.ly/2rQGNoa
http://octotrike.org/
http://threatmodeler.com/threat-modeling-methodology/


4. Trusted insider

A highly trusted administrator of a system.

5. State-level actor

Attackers backed by foreign or domestic governments and assumed to
have vast resources and positioning capabilities to attack a target.

Categorizing threats like this is a useful exercise to focus discussion around
a particular level to mitigate against. We will discuss which level zero trust
targets in the next section.

Zero Trust’s Threat Model
In RFC 3552, the Internet Threat Model is described. Zero trust networks
generally follow the Internet Threat Model to plan their security stance.
While reading the entire RFC is recommended, here is a relevant excerpt:

The Internet environment has a fairly well understood threat model. In
general, we assume that the end-systems engaging in a protocol
exchange have not themselves been compromised. Protecting against an
attack when one of the end-systems has been compromised is
extraordinarily difficult. It is, however, possible to design protocols which
minimize the extent of the damage done under these circumstances.

By contrast, we assume that the attacker has nearly complete control of
the communications channel over which the end-systems communicate.
This means that the attacker can read any PDU (Protocol Data Unit) on
the network and undetectably remove, change, or inject forged packets
onto the wire. This includes being able to generate packets that appear to
be from a trusted machine. Thus, even if the end-system with which you
wish to communicate is itself secure, the Internet environment provides
no assurance that packets which claim to be from that system in fact are.

Zero trust networks, as a result of their control over endpoints in the
network, expand upon the Internet Threat Model to consider compromises
at the endpoints. The response to these threats is generally to first harden

https://tools.ietf.org/html/rfc3552#section-3


the systems proactively against compromised peers, and then facilitate
detection of those compromises. Detection is aided by scanning of devices
and behavioral analysis of the activity from each device. Additionally,
mitigation of endpoint compromise is achieved by frequent upgrades to
software on devices, frequent and automated credential rotation, and in
some cases frequent rotation of the devices themselves.

An attacker with unlimited resources is essentially impossible to defend
against, and zero trust networks recognize that. The goal of a zero trust
network isn’t to defend against all adversaries, but rather the types of
adversaries that are commonly seen in a hostile network.

From our earlier discussion of attacker capabilities, a zero trust network is
generally attempting to mitigate attacks up to and including attacks
originating from a “trusted insider” level of access. Most organizations do
not experience attacks that exceed this level of sophistication. Developing
mitigations against these attackers will defend against the vast majority of
compromises and would be a dramatic improvement for the industry’s
security stance.

Zero trust networks generally do not try to mitigate all state-level actors,
though they do attempt to mitigate those attempting to compromise their
systems remotely. State-level actors are assumed to have vast amounts of
money, so many attacks that would be infeasible for lesser organizations are
available to them. Additionally, local governments have physical and legal
access to many of the systems that organizations depend upon for securing
their networks.

Defending against these localized threats is exceedingly expensive,
requiring dedicated physical hardware, and most zero trust networks
consider the more extreme forms of attacks (say a vulnerability being
inserted into a hypervisor which copies memory pages out of a VM) out of
scope in their threat models. We should be clear that while security best
practices are still very much encouraged, the zero trust model only requires
the safety of information used to authenticate and authorize actions, such as



on-disk credentials. Further requirements on endpoints, say full disk
encryption, can be applied via additional policy.

Strong Authentication
Knowing how much to trust someone is useless without being able to
associate a real-life person with that identity you know to trust. Humans
have many senses to determine if the person in front of them is who they
think they are. Turns out, combinations of senses are hard to fool.

Computer systems, however, are not so lucky. It’s more like talking to
someone on the phone. You can listen to their voice, read their caller ID,
ask them questions...but you can’t see them. Thus we are left with a
challenge: how can one be reasonably assured that the person (or system)
on the other end of the line is in fact who they say they are?

Typically, operators examine the IP address of the remote system and ask
for a password. Unfortunately, these methods alone are insufficient for a
zero trust network, where attackers can communicate from any IP they
please and insert themselves between yourself and trusted remote host.
Therefore, it is very important to employ strong authentication on every
flow in a zero trust network.

The most widely accepted method to accomplish this is a standard named
X.509, which most engineers are familiar with. It defines a certificate
standard that allows identity to be verified through a chain of trust. It’s
popularly deployed as the primary mechanism for authenticating TLS
(formerly SSL) connections.



SSL IS ANONYMOUS
The most widely consumed TLS configuration validates that the client is speaking to a
trusted resource, but not that the resource is speaking to a trusted client. This poses an
obvious problem for zero trust networks. 

TLS additionally supports mutual authentication, in which the resource also validates
the client. This is an important step in securing private resources; otherwise, the client
device will go unauthenticated. More on zero trust TLS configuration in “Mutually
Authenticated TLS”.

Certificates utilize two cryptographic keys: a public key and a private key.
The public key is distributed, and the private key is held as a secret. The
public key can encrypt data that the private key can decrypt, and vice versa,
as shown in Figure 2-2. This allows one to prove they are in the presence of
the private key by correctly decrypting a piece of data that was encrypted
by the well-known (and verifiable) public key. In this way, identity can be
validated without ever exposing the secret.

Certificate-based authentication lets us be certain that the person on the
other end of the line has the private key, and also lets us be certain that
someone listening in can’t steal the key and reuse it in the future. It does,
however, still rely on a secret, something that can be stolen. Not necessarily
by listening in, but perhaps by a malware infection or physical theft.

So while we can validate that credentials are legitimate, we might not trust
that they have been kept a secret. For this reason, it is desirable to use
multiple secrets, stored in different places, which in combination grant
access. With this approach, a potential attacker must steal multiple
components.



Figure 2-2. Bob can use Alice’s well-known public key to encrypt a message that only Alice is able to
decrypt

While having multiple components goes a long way in preventing
unauthorized access, it is still conceivable that all these components can be
stolen. Therefore, it is critical that all authentication credentials be time-
boxed. Setting an expiration on credentials helps to minimize the blast
radius of leaked or stolen keys and gives the operator an opportunity to
reassert trust. The act of changing, or renewing, keys/passwords is known
as credential rotation.

Credential rotation is essential for validating that no secrets have been
stolen, and revoking them when required. Systems utilizing keys/passwords
that are hard or impossible to rotate should be avoided at all cost, and when
building new systems this fact should be taken into account early on in the
design process. The rotation frequency of a particular credential is often
inversely proportional to the cost of rotation.



EXAMPLES OF SECRETS EXPENSIVE TO ROTATE
Certificates requiring external coordination

Hand-configured service accounts

Database passwords requiring downtime to reset

A site-specific salt that cannot be changed without invalidating all stored hashes

Authenticating Trust
We spoke a little bit about certificates and public key cryptography.
However, certificates alone don’t solve the authentication issue. For
instance, you can be assured that a remote entity is in possession of a
private key by making an assertion using its public key. But how do you
obtain the public key to begin with? Sure, public keys don’t need to be
secret, but you must still have a way to know that you have the right public
key. Public key infrastructure, or PKI, defines a set of roles and
responsibilities that are used to securely distribute and validate public keys
in untrusted networks.

The goal of a PKI is to allow unprivileged participants to validate the
authenticity of their peers through an existing trust relationship with a
mutual third party. A PKI leverages what is known as a registration
authority (RA) in order to bind an identity to a public key. This binding is
embedded in the certificate, which is cryptographically signed by the
trusted third party. The signed certificate can then be presented in order to
“prove” identity, so long as the recipient trusts the same third party.

There are many types of PKI providers. The most popular two are
certificate authorities (CAs) and webs of trust (WoTs). The former relies on
a signature chain that is ultimately rooted in the mutually trusted party. The
latter allows systems to assert validity of their peers, forming a web of
endorsements rather than a chain. Trust is then asserted by traversing the
web until a trusted certificate is found. While this approach is in relatively



wide use with Pretty Good Privacy (PGP) encryption, this book will focus
on PKIs that employ a CA, the popularity of which overshadows the WoT
provider.

What Is a Certificate Authority?
Certificate authorities act as the trust anchor of a certificate chain. They
sign and publish public keys and their bound identities, allowing
unprivileged entities to assert the validity of the binding through the
signature.

CA certificates are used to represent the identity of the CA itself, and it is
the private key of the CA certificate that is used to sign client certificates.
The CA certificate is well known, and is used by the authenticating entity to
validate the signature of the presented client certificate. It is here that the
trusted third-party relationship exists, issuing and asserting the validity of
digital certificates on behalf of the clients.

The trusted third-party position is very privileged. The CA must be
protected at all costs, since its subversion would be catastrophic. Digital
certificate standards like X.509 allow for chaining of certificates, which
enables the root CA to be kept offline. This is considered standard practice
in CA-based PKI security. We’ll talk more about X.509 security in
Chapter 5.

Importance of PKI in Zero Trust
All zero trust networks rely on PKI to prove identity throughout the
network. As such, it acts as the bedrock of identity authentication for the
majority of operations. Entities that might be authenticated with a digital
certificate include:

Devices

Users

Applications



BINDING KEYS TO ENTITES
PKI can bind an identity to a public key, but what about a private key to the entity it is
meant to identify? After all, it is the private key which we are really authenticating. It is
important to keep the private key as close to the entity it was meant to represent as
possible. The method by which this is done varies by the type of entity. For instance, a
user might store a private key on a smart card in their pocket, where a device might
store a private key in an on-board security chip. We’ll discuss which methods best fit
which entities in Chapters 5, 6, and 7.

Given the sheer number of certificates that a zero trust network will issue, it
is important to recognize the need for automation. If humans are required in
order to process certificate signing requests, the procedure will be applied
sparingly, weakening the overall system. That being said, certificates
deemed highly sensitive will likely wish to retain a human-based approval
process.

Private Versus Public PKI
PKI is perhaps most popularly deployed as a public trust system, backing
X.509 certificates in use on the public internet. In this mode, the trusted
third party is publicly trusted, allowing clients to authenticate resources that
belong to other organizations. While public PKI is trusted by the internet at
large, it is not recommended for use in a zero trust network.

Some might wonder why this is. After all, public PKI has some defensible
strengths. Factors like existing utilities/tooling, peer-reviewed security
practices, and the promise of a better time to market are all attractive. There
are, however, several drawbacks to public PKI that work against it. The first
is cost.

The public PKI system relies on publicly trusted authorities to validate
digital certificates. These authorities are businesses of their own, and
usually charge a fee for signing certificates. Since a zero trust network has
many certificates, the signing costs associated with public authorities can be
prohibitive, especially when considering rotation policies.



Another significant drawback to public PKI is the fact that it’s hard to fully
trust the public authorities. There are lots of publicly trusted CAs, operating
in many countries. In a zero trust network leveraging public PKI, any one of
these CAs can cut certificates that your network trusts. Do you trust the
laws and the governments associated with all of those CAs too? Probably
not. While there are some mitigation methods here, like certificate pinning
or installing trust in a single public CA, it remains challenging to retain
trust in a disjoint organization.

Finally, flexibility and programmability can suffer when leveraging public
CAs. Public CAs are generally interested in retaining the public’s trust, so
they do employ good security measures. This might include policies about
how certificates are formed, and what information can be placed where.
This can adversely affect zero trust authentication in that it is often
desirable to store site-specific metadata in the certificate, like a role or a
user ID. Additionally, not all public CAs provide programmable interfaces,
making automation a challenge.

Public PKI Strictly Better Than None
While the drawbacks associated with public PKI are significant, and the
authors heavily discourage its use within a zero trust network, it remains
superior to no PKI at all. A well-automated PKI is the first step, and work
will be required in this area no matter which PKI approach you choose. The
good news is that if you choose to leverage public PKI initially, there is a
clear path to switch to private PKI once the risk becomes too great. It begs
the question, however, if it is even worth the effort, since automation of
those resources will still be required.

Least Privilege
The principle of least privilege is the idea that an entity should be granted
only the privileges it needs to get its work done. By granting only the
permissions that are always required, as opposed to sometimes desired, the
potential for abuse or misuse by a user or application is greatly reduced.



In the case of an application, that usually means running it under a service
account, in a container or jail, etc. In the case of a human, it commonly
manifests itself as policies like “only engineers are allowed access to the
source code.” Devices must also be considered in this regard, though they
often assume the same policies as the user or application they were
originally assigned to.

PRIVACY AS LEAST PRIVILEGE
The application of encryption in the name of privacy is an often-overlooked application
of least privilege. Who really needs access to the packet payload?

Another effect of this principle is that if you do need elevated access, that
you retain those access privileges for only as long as you need them. It is
important to understand what actions require which privileges so that they
may be granted only when appropriate. This goes one step beyond simple
access control reviews.

This means that human users should spend most of their time executing
actions using a nonprivileged user account. When elevated privileges are
needed, the user needs to execute those actions under a separate account
with higher privileges.

On a single machine, elevating one’s privileges is usually accomplished by
taking an action that requires the user to authenticate themselves. For
example, on a Unix system, invoking a command using the sudo command
will prompt the user to enter their password before running that command
as a different role. In GUI environments, a dialog box might appear
requiring the user’s password before performing the risky operation. By
requiring interaction with the user, the potential for malicious software to
take action on behalf of the user is (potentially) mitigated.

In a zero trust network, users should similarly operate in a reduced privilege
mode on the network most of the time, only elevating their permissions
when needed to perform some sensitive operation. For example, an



authenticated user might freely access the company’s directory or interact
with project planning software. Accessing a critical production system,
however, should require additional confirmation that the user or the user’s
system is not compromised. For relatively low-risk actions, this privilege
elevation could be as simple as reprompting for the user’s password,
requesting a second factor token, or sending a push notification to the user’s
phone. For high-risk access, one might choose to require active
confirmation from a peer via an out-of-band request.

HUMAN-DRIVEN AUTHENTICATION
For particularly sensitive operations, an operator may rely on the coordination of
multiple humans, requiring a number of people to be actively engaged in order to
authenticate a particular action. Forcing authentication actions into the real world is a
good way to ensure a compromised system can’t interfere with them. Be careful,
however—these methods are expensive and will become ineffective if employed too
frequently.

Like users, applications should also be configured to have the fewest
privileges necessary to operate on the network. Sadly, applications deployed
in a corporate setting are often given fairly wide access on the network.
Either due to the difficulty of defining policies to rein in applications, or the
assumption that compromised users are the more likely target, it’s now
become commonplace for the first step in setting up a machine to be
disabling the application security frameworks that are meant to secure the
infrastructure.

Beyond the traditional consideration of privilege for users and applications,
zero trust networks also consider the privilege of the device on the network.
It is the combination of user or application and the device being used that
determines the privilege level granted. By joining the privilege of a user to
the device being used to access a resource, zero trust networks are able to
mitigate the effects of lost or compromised credentials. Chapter 3 will
explore how this marriage of devices and users works in practice.



Privilege in a zero trust network is more dynamic than in traditional
networks. Traditional networks eventually converge on policies that stay
relatively static. If new use cases appear that require greater privilege, either
the requestor must lobby for a change in policy; or, perhaps more
frequently, they ask someone with greater privilege (a sysadmin, for
example) to perform the operation for them. This static definition of policy
presents two problems. First, in more permissive organizations, privilege
will grow over time, lessening the benefit of least privilege. Second, in both
permissive and restrictive organizations, admins are given greater access,
which has resulted in malicious actors purposefully targeting sysadmins for
phishing attacks.

A zero trust network, by contrast, will use many attributes of activity on the
network to determine a riskiness factor for the access being requested
currently. These attributes could be temporal (access outside of the normal
window activity for that user is more suspicious), geographical (access from
a different location than the user was last seen), or even behavioral (access
to resources the user does not normally access). By considering all the
details of an access attempt, the determination of whether the action is
authorized or not can be more granular than a simple binary answer. For
example, access to a database by a given user from their normal location
during typical working hours would be granted, but access from a new
location at different working hours might require the user to authenticate
using an additional factor.

The ability to actively adjust access based on the riskiness of activity on a
network is one of the several features that make zero trust networks more
secure. By dynamically adjusting policies and access, these networks are
able to respond autonomously to known and unknown attacks by malicious
actors.

Variable Trust
Managing trust is perhaps the most difficult aspect of running a secure
network. Choosing which privileges people and devices are allowed on the



network is time consuming, constantly changing, and directly affects the
security posture the network presents. Given the importance of trust
management, it’s surprising how under-deployed network trust management
systems are today.

Defining trust policies is typically left as a manual effort for security
engineers. Cloud systems might have managed policies, but those policies
provide only basic isolation (e.g., super user, admin, regular user) which
advanced users typically outgrow. Perhaps in part due to the difficulty of
defining and maintaining them, requests to change existing policies can be
met with resistance. Determining the impact of a policy change can be
difficult, so prudence pushes the administrators toward the status quo,
which can frustrate end users and overwhelm system administrators with
change requests.

Policy assignment is also typically a manual effort. Users are granted
policies based on their responsibilities in the organization. This role-based
policy system tends to produce large pools of trust in the administrators of
the network, weakening the overall security posture of the network. These
pools of trust have created a market for hackers to “hunt sys admins”,
seeking out and compromising system administrators. Perhaps the gold
standard for a secure network is one without highly privileged system
administrators.

These pools of trust underscore the fundamental issue with how trust is
managed in traditional networks: policies are not nearly dynamic enough to
respond to the threats being leveled against the network. Mature
organizations will have some sort of auditing process in place for activity
on their network, but audits can be done too infrequently, and are frankly so
tedious that doing them well is difficult for humans. How much damage
could a rogue sysadmin do on a network before an audit discovered their
behavior and mitigated it? A more fruitful path might be to rethink the
actor/trust relationship, recognizing that trust in a network is ever evolving
and based on the previous and current actions of an actor within the
network.

http://bit.ly/2sYnfNQ


This model of trust, considering all the actions of an actor and determining
their trustworthiness, is not novel. Credit agencies have been performing
this service for many years. Instead of requiring organizations like retailers,
financial institutions, or even an employer to independently define and
determine one’s trustworthiness, a credit agency can use actions in the real
world to score and gauge the trustworthiness of an individual. The
consuming organizations can then use their credit score to decide how much
trust to grant that person. In the case of a mortgage application, an
individual with a higher credit score will receive a better interest rate, which
mitigates the risk to the lender. In the case of an employer, one’s credit
score might be used as a signal for a hiring decision. On a case-by-case
basis, these factors can feel arbitrary and opaque, but they serve a useful
purpose; providing a mechanism for defending a system against arbitrary
threats by defining policy based not only on specifics, but also on an ever-
changing and evolving score.

A zero trust network utilizes this insight to define trust within the network,
as shown in Figure 2-3. Instead of defining binary policy decisions assigned
to specific actors in the network, a zero trust network will continuously
monitor the actions of an actor on the network to update their trust score.
This score can then be used to define policy in the network based on the
severity of breach of that trust (Figure 2-4). A user viewing their calendar
from an untrusted network might require a relatively low trust score.
However, if that same user attempted to change system settings, they would
require a much higher score and would be denied or flagged for immediate
review. Even in this simple example, one can see the benefit of a score: we
can make fine-grained determinations on the checks and balances needed to
ensure trust is maintained.



Figure 2-3. Using a trust score allows fewer policies to provide the same amount of access



Figure 2-4. The trust engine calculates a score and forms an agent, which is then compared against
policy in order to authorize a request. We’ll talk more about agents in Chapter 3.

MONITORING ENCRYPTED TRAFFIC
Since practically all flows in a zero trust network are encrypted, traditional traffic
inspection methods don’t work as well as intended. Instead, we are limited to inspecting
what we can see, which in most cases is the IP header and perhaps the next protocol
header (like TCP in the case of TLS). If a load balancer or proxy is in the request path,
however, there is an opportunity for deeper inspection and authorization, since the
application data will be exposed for examination.

Clients begin sessions as untrusted. They must accumulate trust through
various mechanisms, eventually accruing enough to gain access to the
service they’re requesting. Strong authentication proving that a device is
company-owned, for instance, might accumulate a good bit of trust, but not
enough to allow access to the billing system. Providing the correct RSA
token might give you a good bit more trust, enough to access the billing



system when combined with the trust inferred from successful device
authentication.

STRONG POLICY AS A TRUST BOOSTER
Things like score-based policies, which can affect the outcome of an authorization
request based on a number of variables like historical activity, drastically improve a
network’s security stance when compared to static policy. Sessions that have been
approved by these mechanisms can be trusted more than those that haven’t. In turn, we
can rely (a little bit) less on user-based authentication methods to accrue the trust
necessary to access a resource, improving the overall user experience.

Switching to a trust score model for policies isn’t without its downsides.
The first hurdle is whether a single score is sufficient for securing all
sensitive resources. In a system where a trust score can decrease based on
user activity, a user’s score can also increase based on a history of
trustworthy activity. Could it be possible for a persistent attacker to slowly
build their credibility in a system to gain more access?

Perhaps slowing an attacker’s progress by requiring an extended period of
“normal” behavior would be sufficient to mitigate that concern, given that
an external audit would have more opportunity to discover the intruder.
Another way to mitigate that concern is to expose multiple pieces of
information to the control plane so that sensitive operations can require
access from trusted locations and persons. Binding a trust score to device
and application metadata allows for flexible policies that can declare
absolute requirements yet still capture the unknown unknowns through the
computed trust score.

Loosening the coupling between security policy and a user’s organizational
role can cause confusion and frustration for end users. How can the system
communicate to users that they are denied access to some sensitive resource
from a coffee shop, but not from their home network? Perhaps we present
them with increasingly rigorous authentication requirements? Should new
members be required to live with lower access for a time before their score
indicates that they can be trusted with higher access? Maybe we can accrue



additional trust by having the user visit a technical support office with the
device in question. All of these are important points to consider. The route
one takes will vary from deployment to deployment.

Control Plane Versus Data Plane
The distinction between the control plane versus the data plane is a concept
that is commonly referenced in network systems. The basic idea is that a
network device has two logical domains with a clear interface between
those domains. The data plane is the relatively dumb layer that manages
traffic on the network. Since that layer is handling high rates of traffic, its
logic is kept simple and often pushed to specialized hardware. The control
plane, conversely, could be considered the brains of the network device. It
is the layer that system administrators apply configuration to, and as a result
is more frequently changed as policy evolves.

Since the control plane is so malleable, it is unable to handle the high rate
of traffic on the network. Therefore, the interface between the control plane
and the data plane needs to be defined in such a way that nearly any policy
behavior can be implemented at the data layer with infrequent requests
being made to the control plane (relative to the rate of traffic).

A zero trust network also defines a clear separation between the control
plane and data plane. The data plane in such a network is made up of the
applications, firewalls, proxies, and routers that directly process all traffic
on the network. These systems, being in the path of all connections, need to
quickly make a determination of whether traffic should be allowed. When
viewing the data plane as a whole, it has broad access and exposure
throughout the system, so it is important that the services on the data plane
cannot be used to gain privilege in the control plane and thereby move
laterally within the network. We’ll discuss control plane security in
Chapter 4.

The control plane in a zero trust network is made up of components that
receive and process requests from data plane devices that wish to access (or
grant access to) network resources, as shown in Figure 2-5. These



components will inspect data about the requesting system to make a
determination on how risky the action is, and examine relevant policy to
determine how much trust is required. Once a determination is made, the
data plane systems are signaled or reconfigured to grant the requested
access.

The mechanism by which the control plane affects change in the data plane
is of critical importance. Since the data plane systems are often the entry
point for attackers into a network, the interface between it and the control
plane must be clear, helping to ensure that it cannot be subverted to move
laterally within the network. Requests between the data plane and control
plane systems must be encrypted and authenticated using a non-public PKI
system to ensure that the receiving system is trustworthy. The control/data
plane interface should resemble the user/kernel space interface, where
interactions between those two systems are heavily isolated to prevent
privilege escalation.

This concern with the interface between the control plane and the data plane
belies another fundamental property of the control plane: the control plane
is the trust grantor for the entire network. Due to its far-reaching control of
the network’s behavior, the control plane’s trustworthiness is critical. This
need to have an actor on the network with a highly privileged role presents
a number of interesting design requirements.



Figure 2-5. A zero trust client interacting with the control plane in order to access a resource

The first requirement is that the trust granted by the control plane to another
actor in the data plane should have limited real-time value. Trust should be
temporary, requiring regular check-ins between the truster and trustee to
ensure that the continued trust is reasonable. When implementing this tenet,
leased access tokens or short lifetime certificates are the most appropriate
solution. These leased access tokens should be validated not just within the
data plane (e.g., when the control plane grants a token to an agent to move
through the data plane), but also between the interaction between the data
plane and the control plane. By limiting the window during which the data
plane and control plane can interact with a particular set of credentials, the
possibility for physical attacks against the network is mitigated.

Summary
This chapter discussed the critical systems and concepts that are needed to
manage trust in a zero trust network. Many of these ideas are common in
traditional network security architectures, but it is important to lay the
foundation of how trust is managed in a network without any.



Trust originates from humans and flows into other systems via trust
mechanisms that a computer can operate against. This approach makes
logical sense: a system can’t be considered trusted unless the humans who
use it feel confident that it is faithfully executing their wishes.

Security has frequently been viewed as a set of best practices, which are
passed down from one generation of engineers to the next. Breaking out of
this cycle is important, since each system is unique, and so we discussed the
idea of threat models. Threat models attempt to define the security posture
of a system by enumerating the threats against the system and then defining
the mitigating systems and processes which anticipate those threats. While a
zero trust network assumes a hostile environment, it is still fundamentally
grounded in the threat model, which makes sense for the system. We
enumerated several present-day threat-modeling techniques so that readers
can dig deeper. We also discussed how the zero trust model is based on the
internet threat model and expands its scope to the endpoints that are under
the control of zero trust system administrators.

Having trust in a system requires the use of strong authentication
throughout the system. We discussed the importance of this type of
authentication in a zero trust network. We also briefly talked a bit about
how strong authentication can be achieved in today’s technology. We will
discuss these concepts more in later chapters.

In order to effectively manage trust in a network, you must be able to
positively identify trusted information, particularly in the case of
authentication and identity. Public key infrastructure (or PKI) provides the
best methods we have today for asserting validity and trust in a presented
identity. We discussed why PKI is important in a zero trust network, the
role of a certificate authority, and why private PKI is preferred over public
PKI.

Least privilege is one of the key ideas in these types of networks. Instead of
constructing a supposedly safe network over which applications can freely
communicate, the zero trust model assumes that the network is
untrustworthy, and as a result, components on the network should have



minimal privileges when communicating. We explained what the concept of
least privilege is and how it is similar and different than least privilege in
standalone systems.

One of the most exciting ideas of zero trust networks is the idea of variable
trust. Network policy has traditionally focused on which systems are
allowed to communicate in what manner. This binary policy framework
results in policy that is either too rigidly defined (creating human toil to
continually adjust) or too loosely defined (resulting in security systems that
assert very little). Additionally, policy that is defined based on concrete
details of interactions will invariably be stuck in a cat-and-mouse game of
adjusting policy based on past threats. The zero trust model leans on the
idea of variable trust, a numeric value representing the level of trust in a
component. Policy can then be written against this number, effectively
capturing a number of conditions without complicating the policy with edge
cases. By defining policy in less concrete details, and considering the trust
score while making an authorization decision, the authorization systems are
able to adjust to novel threats.

Zero trust networks make a clear distinction between the control plane
systems and the data plane systems. We discussed at a high level how these
two systems interact with each other to allow expected communication to
flow through the network. In later chapters we will flesh out more of the
control and data plane systems that manage communication in the network.

The next chapter digs into a fundamental entity in zero trust networks that is
used to authorize actions on the network.



Chapter 3. Network Agents

Imagine you’re in a security-conscious organization. Each employee is
given a highly credentialed laptop to do their work. With today’s work and
personal life blending together, some also want to view their email and
calendar on their phone. In this hypothetical organization, the security team
applies fine-grained policy decisions based on which device the user is
using to access a particular resource.

For example, perhaps it is permissible to commit code from the employee’s
company-issued laptop, but doing so from their phone would be quite a
strange thing. Since source code access from a mobile device is decidedly
riskier than from an enrolled laptop, the organization blocks such access.

The story described here is a fairly typical application of zero trust, in that
multiple factors of authentication and authorization take place, concerning
both the user and the device. In this example, however, it is clear that one
factor has influenced the other—a user which might “normally” have
source code access won’t enjoy such access from their mobile device.
Additionally, this organization does not want authenticated users to commit
code from just any trusted device—they expect users to use their own
device.

This marriage of user and device is a new concept that zero trust introduces,
which we are calling a network agent. In a zero trust network, it is
insufficient to treat the user and device separately, because policy often
needs to consider the two together to accurately enforce desired behavior.
By defining a network agent formally in the system, we are able to capture
this relationship and use it to drive policy decisions.

This chapter will define what a network agent is and how it is used. In
doing that, we will discuss the types of data that are included in an agent,
some of which is potentially sensitive. Given the nature of that data, we will
discuss when and how an agent should be exposed to data plane systems. A



network agent, being a new concept, could benefit from standardization. We
will explore the benefits of standardizing this agent.

What Is an Agent?
A network agent is the term given to the combination of data known about
the actors in a network request, typically containing a user, application, and
device. Traditionally, these entities have been authorized separately, but
zero trust networks recognize that policy is best captured as a combination
of all participants in a request. By authorizing the entire context of a
request, the impact of credential theft is greatly mitigated.

It’s best to think of a network agent as an ephemeral entity that is formed on
demand to evaluate a policy. The data that is used to form an agent—user or
device information—will typically be stored in persistent storage and
queried to form an agent. When this data is queried, the union of the data at
that point in time is what we call an agent.

Agent Volatility
Some fields in the agent are made available specifically to mitigate against
active attacks, and are therefore expected to change rapidly relative to the
infrequent changes that IT organizations normally expect. Trust scores are
an example of this type of dynamic data. Trust score systems can evaluate
each request in the network, using that activity feed to update the trust
scores of users, applications, and devices. Therefore, in order for a trust
score to mitigate a novel attack, it needs to be updated as close to real time
as possible.

In addition to rapidly changing data, agents will frequently have sparse
data. A device undergoing bootstrapping is an example scenario where the
agent will have less data when compared to a mature device. During the
bootstrapping process, little is known about the device, yet it must still
interact with corporate infrastructure to perform tasks like device
enrollment and software installation. In this case, the bootstrapping device



is not yet assigned to a user and can run into problems if policy expects an
assigned user to be present in the agent. This scenario should be expected
and reflected in authorization policy.

Sparse data isn’t just found in bootstrapping scenarios. Autonomous
systems in a zero trust network will frequently have sparse data when
compared to human-operated systems. These systems, for example, will
likely not authenticate the user account the application runs under, relying
instead on the security of the configuration management system that created
that user.

What’s in an Agent?
The granularity of data contained within an agent can vary based on needs
and maturity. It can be as high level as a user’s name or a device’s
manufacturer, or as low level as serial numbers and place of residence or
issue. It should be noted that the more detailed data is more likely to have
data cleanliness issues, which must be dealt with.

AGENT DATA FIELDS
The type of data stored in an agent can greatly vary in both presence and granularity.
Here are some examples of data that one might find in an agent:

Agent trust score

User trust score

User role or groups

User place of residence

User authentication method

Device trust score

Device manufacturer

TPM manufacturer and version

Current device location

IP address



Another point of consideration is if the data contained in the agent is trusted
or not. For instance, device data populated during the procurement process
is more trusted than device data which is reported back from an agent
running on it. This difference in trust arises from difficulties in ensuring the
accuracy and integrity of the reported information in the event that the
device is compromised.

How Is an Agent Used?
When making an authorization decision in a zero trust network, it is the
agent that is in fact authorized. While it is tempting to authorize the device
and user separately, this approach is not recommended. Since the agent is
the entity which is authorized, it is also the thing against which policy is
written.

As noted in the previous section, the agent carries many pieces of
information. So while more “traditional” authorization information like IP
address can still be used, leveraging the agent also unlocks the use of
“nontraditional” authorization information like device type or city of
residence. As such, zero trust network policy is written against the agent as
a whole, as opposed to crafting disjoint user and device policy.

Using an agent to drive authorization policy encourages authors to consider
the totality of the communication context. The marriage of user and device
is very important in zero trust authorization decisions, and colocating the
data in an agent makes it difficult to ignore one or the other. As with other
portions of the zero trust architecture, lowering barrier to entry is key, and
colocating the data to make device/user comparisons easier is no different.

An agent, being the primary actor in the network, plays an additional role in
the calculation of trust scores. The trust engine can use recorded actions, in
addition to data contained within the agent itself, to score agents for their
trustworthiness. This trust score will then be exposed as an additional
attribute on the agent against which most policy should be defined. We’ll
talk more about how the trust score is calculated in the next chapter.



Not for Authentication
It is  important to understand the difference between authentication and
authorization in the context of an agent. Agents serve solely as
authorization components and do not play any part in authentication. In
fact, authentication is a precursor to agent formation and is generally
performed separately for user and device. For example, devices could be
authenticated with X.509 certificates, while users might be authenticated
through a traditional multifactor approach.

Following successful authentication, the canonical identifiers for users and
devices can be used to form an agent and its details. A device-specific
certificate might be used as the canonical identifier for the device and
therefore be used to populate information like device type or device owner.
Similarly, a username might serve as the lookup key to populate user
information like their role in the company.

Typically authentication is session oriented, but in the case of authorization,
it is best to be request oriented. As a result, caching the outcome of an
authentication request is permissible, but caching an agent or the result of
an authorization request is ill advised. This is because details in the agent,
which are used to make authorization decisions, can change rapidly based
on a number of factors, and it is desirable to make authorization decisions
using the latest data. This is in contrast to authentication materials, which
change much less often and don’t directly affect authorization itself.

Finally, the act of generating an agent should be as lightweight as possible.
If agent generation is expensive, it will discourage frequent authorization
requests due to performance reasons. We will talk more about how
performance affects authorization in the next chapter.



REVOKE AUTHORIZATION FIRST, CREDENTIALS
SECOND

Successful authentication is the act of proving one’s identity to a remote system. That
verified identity is then used to determine if the user actually has rights to access the
resource in question (the authorization). In the event that access must be revoked,
updating authorization is more effective than changing authentication credentials. This
is doubly so when considering that authentication results are typically cached and
assigned to session identifier. The act of validating an authenticated session is really an
authorization decision.

How to Expose an Agent?
The data contained in a network agent is potentially sensitive. Personally
identifiable user information (e.g., name, address, phone number) will
usually be present on the agent to facilitate detailed authorization decisions.
This data should be treated with care to protect the privacy of users.

The sensitive nature of the data extends beyond users, however. Device
details can also be sensitive data when it falls into the hands of a
determined attacker. An attacker with detailed knowledge of a user’s device
could use that data to craft a targeted remote attack, or even learn a pattern
of that user’s physical location to steal the device.

To adequately secure the sensitive agent details, the entirety of the agent
lifecycle should be contained to trusted control plane systems, which
themselves are heavily secured. These systems should be logically and
physically separated from the data plane systems, have clear boundaries,
and change infrequently.

Most policy decisions will be made in the control plane systems, since the
agent data is needed to make those decisions. However, it will often be the
case that the authorization engine in the control plane is not in the best
position to enforce application-centric policy, despite its ability to enforce
authorization on a request-by-request basis. This is especially so in user-
facing systems. As a result, some agent details will need to be exposed to
data plane systems.



Let’s look at an example. An administrative application stores details on all
the customers of a particular company. This system exposes that data to
employees based on their role within the company. A search feature allows
employees to search within the subset of data that they are allowed to
access. The application needs to implement this logic, and it needs access to
the role of the user in order to do so.

In order to allow applications to implement their own fine-grained
authorization logic, agent details can be exposed to applications via a
trusted communication channel. This could be as simple as injecting
headers into network requests that flow through a reverse proxy. The proxy,
being a zero trust control plane system, can view the agent to enforce its
own authorization decisions and expose a subset of the data to the
downstream application for further authorization.

Exposing agent details to the downstream application can also be useful to
enable compatibility with pre-existing applications that have a rich
authorization system. This compatibility goal highlights that agent details
should be exposed to the application in a format that is is preferred by the
application. For third-party applications, the format of the agent data will
vary. For first-party applications, a common structure for the agent data will
ease management of the system.

No Standard Exists
A zero trust network comprises many systems that concern themselves with
the agent. In order to make room for reusability in these systems,
standardization of the agent must occur. At the time of this writing, most
zero trust networks consist of systems built in-house; and while those
systems have developed their own agent standards, a public standard would
unlock the control plane, allowing components to be mixed and matched.

Rigidity and Fluidity, at the Same Time



Knowing the format of an agent, and where to find particular pieces of data
within it, is very important when considering how and by what it will be
consumed. The “coordinates” of certain pieces of data must be fixed and
well known in order to ensure consistency across control plane systems. A
good analogy here is the schema of a relational database, which
applications accessing the data must have knowledge of in order to extract
the right pieces of information.

This data compatibility is extremely important when it comes to
implementing and maintaining zero trust control plane systems. Zero trust
networks, particularly more mature ones, are likely to construct an agent
from multiple systems and data sources. Without a schema of sorts, not only
will it be difficult to surface the data in a consistent manner, but it will also
contribute negatively to the amount of effort required to introduce new
control plane systems or agent data, something which is considered critical
for a maturing zero trust network.

One thing to keep in mind, however, is that agent data is likely to be fairly
sparse, thanks to the practically unavoidable data cleanliness issues
encountered in source systems like device inventories. The result is a “best-
effort” agent, where many fields may be unpopulated for one reason or
another. Rather than seeking data cleanliness (a problem that only gets
harder with scale), it is best to accept reality and craft policy that
understands that not all data may be present. So while one may still require
a particular piece of data to be present in the agent, it is a useful thought
exercise to consider alternative pieces of data in its absence.

Standardization Desirable
One might wonder how it would be possible to standardize a data format
that is so seemingly inextricably tied to the organization consuming it. After
all, an agent is likely to contain information types that relate to business
logic or other proprietary/local information. Is standardization even feasible
in such a case?



Luckily, there are already some standards out there defining data formats
that behave in such a way. One of the best examples is the Simple Network
Management Protocol (SNMP), and its associated management information
base (MIB).

SNMP is a protocol frequently used for network device management,
allowing devices to expose data to operators and management systems in a
standard yet flexible way. The MIB component describes the format of the
data itself, which is a collection of OIDs, or object identifiers. Each OID
describes (and is reserved for) a particular piece of data and is registered
with ISO, a global standardization body. This lends itself well to widely
accepted “coordinates” for certain pieces of data.

Let’s look at an example, shown in Figure 3-1, of a simplified set of nodes
in an OID tree.

Figure 3-1. A simplified diagram showing the organization of nodes in an object identifier (OID) tree

In this example, the “ip” node and associated data would be addressed as
1.3.6.1.1.1.4. A MIB arranges and gives color to a set of OIDs. For
example, a Cisco MIB might provide definitions for all OIDs under the
1.3.6.1.4.1.9 portion of the tree, including human-readable descriptions.



Of course, this registered list can be extended, and oftentimes chunks of
OID space are carved out for organizations or manufacturers. In this way,
an OID can be compared to an IP address, where an IP address globally
identifies a computer system and an OID globally identifies a piece of data.

Unfortunately, there is no good OID equivalent of private IP address space,
which would be useful for ad hoc or site-specific data. The best available
compromise is to register for a Private Enterprise Number with IANA,
which will give you a dedicated OID prefix for private use. Luckily, such
registration is free and with few questions asked. There have been some
efforts to create a private range similar to that found in IP. However, such
efforts have been unsuccessful.

Despite the lack of a truly free/private OID space for experimental or
internal use, SNMP remains a useful analogy to make when considering the
standardization of an agent. It describes the format and packaging of a set
of data—data that is easily found and identified using their unique OIDs—
and how that data can be transmitted and understood from one system to
another.

In the Meantime?
At the time of this writing, zero trust networks are still quite new, and the
field is under active development. As such, no standard describing an agent
exists today, and it will be some time before one can be ratified. In the
meantime, agents take the form of least resistance, given the needs of the
implementor. Whether it be a JSON blob or a custom binary format, it is
recommended to ensure that the data contained within it be flexible and
easily extensible. Loose typing or no typing should be preferred over strong
typing, as the latter will make introducting new data and systems more
difficult. Pluggable design patterns may help in moving to a standardized
agent in the future. However, this is far from required, and should not be
pursued if they impede the adoption of agent authorization in your network.

Summary

http://pen.iana.org/pen/PenApplication.page


This chapter introduced the concept of a network agent, a new entity in a
zero trust network against which authorization decisions are made. Adding
this concept is critical to realizing the benefits of a zero trust network.

We explored what goes into creating an agent. Agents contain rapidly
changing data and frequently have data that is unavailable or inconsistent.
Accepting that reality is important for success when introducing the agent
concept.

Agents are used purely for making authorization decisions. Authentication
is a separate concern, and the current authentication status is reflected in the
properties of an agent. Control plane systems use the agent to authorize
requests. These systems are the primary enforcers of authorization in a zero
trust network, but sometimes they must expose agent details to applications
that are better positioned to implement fine-grained authorization decisions.
We explored how to expose this data to applications while maintaining
privacy.

Zero trust network administration is still very new, and as a result, no
standard yet exists for network agents. Defining a standard would allow for
better reuse and interoperability of zero trust systems, aiding the adoption
of this technology. We discussed a possible approach for standardizing the
definition of an agent.

The next chapter will focus on the systems that are responsible for
authorizing all requests in a zero trust network.



Chapter 4. Making
Authorization Decisions

Authorization is arguably the most important process occurring within a
zero trust network, and as such, making an authorization decision should
not be taken lightly. Every flow and/or request will ultimately require a
decision be made.

The databases and supporting systems we will discuss here are the key
systems that come together to make and affect those decisions. Together,
they are authoritative for access control and thus need to be rigorously
isolated. Careful distinction should be made between these responsibilities,
particularly when deciding whether to collapse them into a single system,
which should generally be avoided if possible.

The zero trust model is still very new, and this area is undergoing rapid
evolution. Some of the content included in this chapter is considered state
of the art at the time of this writing. Known implementations still vary
wildly in their approaches, and most are not publicly available. That being
said, the major components and responsibilities are understood.

Taking reality into account, this chapter will focus on high-level
architectural arrangement of the components required to make zero trust
authorization decisions, as well as how they fit together and enforce said
decisions.

Authorization Architecture
The zero trust authorization architecture comprises four main components,
as shown in Figure 4-1:

Enforcement



Policy engine

Trust engine

Data stores

These four components are distinct in their responsibilities, and as a result,
we treat them as separate systems. From a security standpoint, it is highly
desirable that these components be isolated from each other. These systems
represent the practical crown jewels of the zero trust security model, so
special care should be taken in their maintenance and security posture.
Carefully evaluate any proposals that suggest collapsing these
responsibilities into a single system.

Figure 4-1. Zero trust authorization systems

The enforcement component will exist in large numbers throughout the
system and should be as close to the workload as possible. It is the one that
actually affects the outcome of the authorization decision. It is typically
manifested as a load balancer, proxy, or even a firewall. This component
interacts with the policy engine, which is the piece that we use to make the
actual decision. The enforcement component ensures that clients are



authenticated, and passes the context of each flow/request to the policy
engine. The policy engine compares the request and its context to policy,
and informs the enforcer whether the request will be permitted or not.

The trust engine is leveraged by the policy engine for risk analysis
purposes. It leverages multiple data sources in order to compute a risk
score, similar to a credit score. This score can be used to protect against
unknown unknowns, and helps keep policy strong and robust without
complicating it with edge cases and signatures. It is used by the policy
engine as an additional component by which an authorization decision can
be made. Google’s BeyondCorp is widely recognized as having pioneered
this technology.

Finally, we have the various data stores that represent the source of truth for
the data being used to inform authorization. This data is used to paint a full
contextual picture of a particular flow/request, using small authenticated
bits of data as the primary lookup keys (i.e., a username or a device’s serial
number). These data stores, be they user data, device data, or otherwise, are
heavily leveraged by both the policy engine and trust engine, and represent
the backing against which all decisions are measured.

Enforcement
The enforcement component (depicted in Figure 4-2) is a natural place to
start. It sits on the “front line” of the authorization flow and is responsible
for carrying out decisions made by the rest of the authorization system.



Figure 4-2. An agent receives a pre-authorization signal to grant access to a system using traditional
enforcement mechanisms. These systems together form the enforcement component.

Enforcement can be broken down into two primary responsibilities. First,
an interaction with the policy engine must occur. This is generally the
authorization request itself (e.g., a load balancer has received a request and
needs to know whether it is authorized or not). The second is the actual
installation and ongoing enforcement of the decision. While these two
responsibilities represent a single component in the zero trust authorization
architecture, you can choose whether they are fulfilled together or
separately.

The way you choose to handle this will likely depend on your use case. For
instance, an identity-aware proxy can call the policy engine to actively
authorize a request it has received, and in the same step use the response to
either service or reject the request. This is an example of treating the
concerns as unified. Alternatively, perhaps a pre-authorization daemon
receives a request for access to a particular service, which then calls the
policy engine for authorization. Upon successful authorization, the daemon
can manipulate local firewall rules to allow the specific request. With this
approach, we rely on “standard” enforcement mechanisms that are
informed/programmed by the zero trust control plane. It should be noted,



however, that this approach requires a client-side hook in order to notify the
control plane of the authorization request. This may or may not be
acceptable, depending on the level of control over your devices and
applications.

Placement of the enforcement component is very important. Since it
represents our control point within the data plane, we must ensure that
enforcement components are placed as close to the endpoints as possible.
Otherwise, trust can pool “behind” the enforcement component,
undermining zero trust security. Luckily, the enforcement component can be
modeled as a client of sorts and applied liberally throughout the system.
This is in contrast to the rest of the authorization components, which are
modeled as services.

Policy Engine
The policy engine is the component that has the power to make a decision.
It compares the request coming from the enforcement component against
policy in order to determine whether the request is authorized or not. Once
determined, the result is returned to the enforcement piece for actual
realization.

The arrangement of the enforcement layer and policy engine allows for
dynamic, point-in-time decisions to be made, allowing revocation to occur
rapidly. As such, it is important that these components be considered
separately and independently. That is not to say, however, that they cannot
be co-located.

Depending on a number of factors, a policy engine may be found hosted
side by side with the enforcement mechanism. An example of this might be
a load balancer that authorizes requests through inter-process
communication (IPC) instead of a remote call. The most attractive benefit
of this architecture is the lower latency to authorize the request. A low-
latency authorization system enables fine-grained and comprehensive
authorization of network activity; for example, individual HTTP requests



could be authorized instead of the session-level authorization that
commonly is deployed.

It should be noted that it is best to maintain process-level isolation between
the policy engine and enforcement layer. The enforcement layer, being in
the user’s data path, is more exposed; therefore, integrating the policy
engine in the same process could expose it to unwanted risk. Deploying the
policy engine as its own process goes a long way to ensure that bugs in the
enforcement layer don’t result in a policy engine compromise.

WHAT EVER HAPPENED TO RADIUS?
The relationship between the policy engine and the enforcement layer is a familiar one
for most network engineers. In 1997, the IETF ratified a standard describing the
RADIUS protocol, which provides authentication, authorization, and accounting for
network services. RADIUS stands for Remote Authentication Dial-In User Service—the
name alone shows its age. While the protocol itself is hopelessly insecure (it uses MD5
for authenticity assertions), it is specifically written for the task at hand. What would it
look like to use RADIUS between the enforcement layer and the policy engine?
RADIUS could be protected with other protocols discussed in this book, but that feels
like a kludge. Perhaps there is an opportunity to create a RADIUS-like project, which
takes into account the threat reality of today’s systems.

Policy Storage
The rules referenced by the policy engine need to be stored. These policy
rules are ultimately loaded into the policy engine, but it is strongly
recommended that the rules are captured outside of the policy engine itself.
Storing the policy rules in a version control system is ideal and provides
several benefits:

Changes to policy can be tracked over time.

Rationale for changing policy is tracked in the version control system.

The expected current policy state can be validated against the actual
enforcement mechanisms.



Many of these benefits have historically been implemented using rigorous
change management procedures. In that system, changes to the system’s
configuration are requested and approved before ultimately being applied.
The resulting change management log can be used to determine why the
system is in the current state.

Moving policy definitions into version control is the logical conclusion of
change management procedures when the system can be configured
programmatically. Instead of relying on human system administrators to
load desired policy into the system, we can instead capture the policy as
data that a program can read and apply. In many ways, loading policy is
then similar to deployable software. As a result, system administrators can
use standard software development procedures (namely code review and
promotion pipelines) to manage the changes in policy.

What Makes Good Policy?
Policy in a zero trust network is in some ways similar to traditional network
security, and in other ways substantially different.

ZERO TRUST POLICY IS STILL NOT
STANDARDIZED

The reality today is that zero trust policy is still not standardized in the same way as a
network-oriented policy. As a result, defining the standard policy language used in a
zero trust network is a great opportunity.

Let’s look at what’s similar first. Good policy in a zero trust network is fine-
grained. The level of granularity will vary based on the maturity of the
network, but the desired goal is policy that is scoped to the individual
resource being secured. This is not very different than a traditional network
security model that aims to segment the network to decrease attack surface
area.



The zero trust model starts to diverge from traditional network security in
the control mechanisms that are used to define policy. Instead of defining
policy in terms of network implementation details (IP addresses and
ranges), policy is best defined in terms of logical components in the
network. These components will generally consist of:

Network services

Device endpoint classes

User roles

Defining policy from logical components that exist in the network allows
the policy engine to calculate the enforcement decisions based on its
knowledge of the current state of the network. To put this in concrete terms,
a web service running on one server today might be on a different server
tomorrow, or might even move between servers automatically as directed
by a workload scheduler. The policy that we define needs to be divorced
from these implementation details to adapt to this reality. An example of
this style of policy from the Kubernetes project is shown in Figure 4-3.



Figure 4-3. A snippet from a Kubernetes network policy. These policies use workload labels,
computing the underlying IP-based enforcement rules when and where necessary.

Policy in a zero trust network also leans on trust scores to anticipate
unknown attack vectors. By defining policy with a trust score component,
administrators are able to mitigate risk that otherwise can’t be captured with
a specific policy. Therefore, most policy should include a trust score
component. We’ll talk more about the score component in the next section.



NO STANDARD EXISTS
Currently,  mature zero trust networks implement their own policy language/format on a
case-by-case basis, typically being developed fully in-house. Simpler zero trust
networks may embed policy in an existing structure, such as in Figure 4-3. While the
latter is generally acceptable, it is typically outgrown as the network evolves and adds
features. The advantages of a standardized/interoperable policy language can be clearly
seen. However, such work remains an open research question.

Policy should not rely on trust score alone. Specific characteristics of the
request being authorized can also be part of the policy definition. An
example of this might be certain user roles should only have access to a
particular service.

Who Defines Policy?
Zero trust network policy should be fine-grained, which can place an
extraordinary burden on system administrators to keep the policy up to date.
To help spread the load of this configuration burden, most organizations
decide to distribute policy definition across the teams so they can help
maintain policy for the services they own.

Opening up policy definition to an entire organization can present certain
risks, like well-meaning users who create overly broad policies, thereby
increasing the attack surface area of the system they intended to constrain.
Zero trust systems lean on two organizational workflows to counteract this
exposure.

First, since policy is typically stored under version control, having another
person review changes to the policy helps ensure that changes are well
considered. Security teams can additionally review the changes and ask
probing questions to ensure that the policy being defined is as tightly
scoped as possible. Since the policy is defined using logical intent instead
of physical components, the policy will change less rapidly than if it was
defined in physical terms.



The second organizational measure used is to layer broad infrastructure
policy on top of fine-grained policy. For example, an infrastructure group
might rightly require that only a certain set of roles be allowed to accept
traffic from the internet. The infrastructure team will therefore define policy
that enforces that restriction, and no user-defined policy will be allowed to
circumvent it. Enforcing this constraint could take several forms: an
automated test of proposed policy, or perhaps a policy engine that will
simply refuse overly broad policy assertions from untrusted sources. Such
enforcement can also be useful for compliance and regulatory requirements.

Trust Engine
The trust engine is the system in a zero trust network that performs risk
analysis against a particular request or action. This system’s responsibility
is to produce a numeric assessment of the riskiness of allowing a particular
request/action, which the policy engine uses to make an ultimate
authorization decision.

The trust engine will frequently pull from data contained in authoritative
inventory systems to check attributes of an entity when computing its score.
A device inventory, for example, could provide the trust engine with
information like the last time a device was audited, or whether it has a
particular hardware security feature.

Creating a numeric assessment of risk is a difficult task. A simple approach
would be to define a set of ad hoc rules that score an entity’s riskiness. For
example, a device that is missing the latest software patches could have its
score reduced. Similarly, a user who is continually failing to authenticate
could have their trust score reduced.

While ad hoc trust scoring might be simple to get started with, a set of
statically defined rules will be insufficient to meet the desired goal of
defending against unexpected attacks. As a result, in addition to using static
rules, mature trust engines use machine learning techniques to derive a
scoring function.



Machine learning derives a scoring function by calculating observable facts
from a subset of activity data known as training data. The training data is
raw observations that have been associated with trusted or untrusted
entities. From this data, features are extracted and used to derive a
computer-generated scoring function. This scoring function, a model in
machine learning terms, is then run against a set of data that is in the same
format as the training data. The resulting scores are compared against
human-defined risk assessments, and the model’s quality can then be
refined based on its ability to correctly predict risk of the data being
analyzed. A model that has sufficient accuracy can then be said to be
predictive of the riskiness of yet unseen requests in the network.

While machine learning is increasingly used to solve hard computational
problems, it does not obviate the need for more explicit rules in the trust
engine. Whether due to limitation of the derived scoring models or for
desired customization of the scoring function, trust engines will typically
use a mixture of ad hoc and machine learning scoring methods.

What Entities Are Scored?
Deciding which components of a zero trust network should be scored is an
interesting consideration. Should scores be calculated for each individual
entity (user, device, and application), for the network agent as a whole, or
for both? Let’s look at some scenarios.

Imagine a user’s credentials are being brute forced by a malicious third
party. Some systems will mitigate this threat by locking the user’s account,
which can present a denial-of-service attack against that particular user. If
we were to score a user negatively based on that activity, a zero trust
network would suffer the same problem. A better approach is to realize that
we’re authenticating the network agent, and so the attacker’s network agent
is counteracted, leaving the legitimate user’s network agent unharmed. This
scenario makes a case that the network agent is the entity that should be
scored.



But just scoring the network agent can be insufficient against other attack
vectors. Consider a device that has been associated with malicious activity.
A user’s network agent on that device may be showing no signs of
malicious behavior, but the fact that the agent is being formed with a
suspected device should clearly have an impact on the trust score for all
requests originating from that device. This scenario strongly suggests that
the device should be scored.

Finally, consider a malicious human user (the infamous internal threat) is
using multiple kiosk devices to exfiltrate trade secrets. We’d like the trust
engine to recognize this behavior as the user hops across devices and to
reflect the decreasing level of trust in their trust score for all future
authorization decisions. Here again, we see that scoring the network agent
alone is insufficient for mitigating common threats.

Taken as a whole, it seems like the right solution is to score both the
network agent itself and the underlying entities that make up the agent.
These scores can be exposed to the policy engine, which can choose the
correct component(s) to authorize based on the policy being written.

Presenting so many scores for consideration when writing policy, however,
can make the task of crafting policy more difficult and error prone. In an
ideal world, a single score would be sufficient, but that approach presents
extra availability requirements on the trust engine. A system that tries to
create a single score would likely need to move to an online model, where
the trust engine is interactively queried during the policy decision making.
The engine would be given some context about the request being authorized
so it could choose the best scoring function for that particular request. This
design is clearly more complex to build and operate. Additionally, for
policy where a system administrator specifically wishes to target a
particular component (say, only allow deploys from devices with a score
above X), it seems rather roundabout.

Exposing Scores Considered Risky



While the scores assigned to entities in a zero trust network are not
considered confidential, exposing the scores to end users of the system
should be avoided. Seeing one’s score could be a signal to would-be
attackers that they are increasing or decreasing their trustworthiness in the
system. This desire to withhold information should be balanced against the
frustration of end users’ ability to understand how their actions are affecting
their own trust in the system. A good compromise from the fraud industry is
to show users their scores infrequently, and to highlight contributing factors
to their score determination.

Data Stores
The data stores used to make authorization decisions are very simply the
sources of truth for the current and past state of the system. Information
from these data stores flows through the control plane systems, providing a
large portion of the basis on which authorization decisions are made, as
demonstrated in Figure 4-4.

We previously spoke about the trust engine leveraging these data stores in
order to produce a trust score, which in turn is considered by the policy
engine. In this way, information from control plane data stores has flowed
through the authorization system, finally reaching the policy engine where
the decision was made. These data stores are used by the policy engine,
both directly and indirectly, but they can be useful to other systems that
need authoritative data about the state of the network.



Figure 4-4. Authoritative data stores are used by the policy engine both directly and indirectly
through the trust engine

Zero trust networks tend to have many data stores, organized by function.
There are two primary types: inventory and historical. An inventory is a
single consistent source of truth, recording the current state of the
resource(s) it represents. An example is a user inventory that stores all user
information, or a device inventory that records information about devices
known to the company.

In an inventory, a primary key exists which uniquely represents the tracked
entity. In the case of a user, the likely choice is the username; for a device,
perhaps it’s a serial number. When a zero trust agent undergoes
authentication, it is authenticating its identity against this primary key in the
inventory. Think about it like this: a user authenticates against a given
username. The policy engine gets to know the username, and that the user
was successfully authenticated. The username is then used as the primary
key for lookup against the user inventory. Keeping this flow and purpose in



mind will help you choose the right primary keys, depending on your
particular implementation and authentication choices.

A historical data store is a little bit different. Historical data stores are kept
primarily for risk analysis purposes. They are useful for examining
recent/past behavior and patterns in order to assess risk as it relates to a
particular request or action. Trust engine components are most likely to be
consuming this data, as trust/risk determinations are the engine’s primary
responsibility.

One can imagine many types of historical data stores, and when it comes to
risk analysis, the sky’s the limit. Some common examples include user
accounting records and sFlow data. Regardless of the data being stored, it
must be queryable using the primary key from one of the inventory systems.

We will talk about various inventory and historical data stores as we
introduce related concepts throughout this book.

Summary
This chapter focused on the systems that are responsible for making the
ultimate decision of whether a particular request should be authorized in a
zero trust network. This decision is a critical component of such a network,
and therefore should be carefully designed and isolated to ensure it is
trustworthy.

We broke this responsibility down into four key systems: enforcement,
policy engine, trust engine, and data stores. These components are logical
areas of responsibility. While they could be collapsed into fewer physical
systems, the authors prefer an isolated design.

The enforcement system is responsible for ensuring that the policy engine’s
authorization decision takes effect. This system, being in the data path of
user traffic, is best implemented in a manner where the policy decision is
referenced and then enforced. Depending on the architecture chosen, the
policy engine might be notified before a request occurs, or during the
processing of that same request.



The policy engine is the key system that computes the authorization
decision based on data available to it and the policy definitions that have
been crafted by the system administrators. This system should be heavily
isolated. The policy that is defined should ideally be stored separately from
the engine and should use good software development practices to ensure
that changes are understood, reviewed, and not lost as the policy moves
from being proposed to being implemented. Furthermore, since zero trust
networks expect to have much finer-grained policy, mature organizations
choose to distribute the responsibility of defining that policy into the
organization with security teams reviewing the proposed changes.

The trust engine is a new concept in security systems. This engine is
responsible for calculating a trust score of components of the system using
static and inferred algorithms derived from past behavior. The trust score is
a numerical determination of the trustworthiness of a component and allows
the policy writers to focus on the level of trust required to access some
resource instead of the particular details of what actions might reduce that
trust.

The final component of this part of the system is the authoritative data
sources that capture current and historical data that can be used to make the
authorization decision. These data stores should focus on being sources of
truth. The policy engine, the trust engine, and perhaps third-party systems
can leverage this data so the collection of this data will have a decent return
on investment from capturing it.

The next chapter will dig into how devices gain and maintain trust.



Chapter 5. Trusting Devices

Trusting devices in a zero trust network is extremely critical; it’s also an
exceedingly difficult problem. Devices are the battlegrounds upon which
security is won or lost. Most compromises involve a malicious actor
gaining access to a trusted device; and once that access is obtained, the
device cannot be trusted to attest to its own security.

This chapter will discuss the many systems and processes that need to be
put in place to have sufficient trust of devices deployed in the network. We
will focus on the role that each of these systems plays in the larger goal of
truly trusting a device. Each technology is complicated in its own right.
While we can’t go into exhaustive detail on each protocol or system, we
will endeavor to give enough details to help you understand the technology
and avoid any potential pitfalls when using it.

We start with learning how devices gain trust in the first place.

Bootstrapping Trust
When a new device arrives, it is typically assigned an equal level of trust as
that of the manufacturer and distributor. For most people, that is a fairly
high level of trust (whether warranted or not). This inherited trust exists
purely in meatspace though, and it is necessary to “inject” this trust into the
device itself.

There are a number of ways to inject (and keep) this trust in hardware. Of
course, the device ecosystem is massive, and the exact approach will differ
on a case-by-case basis, but there are some basic principles that apply
across the board. These principles reduce most differences to
implementation details.

The first of those principles has been known for a long time: golden images.
No matter how you receive your devices, you should always load a known-



good image on them. Software can be hard to vet; rather than doing it many
times hastily (or not at all), it makes good sense to do it once and certify an
image for distribution.

Loading a “clean” image onto a device grants it a great deal of trust. You
can be reasonably sure that the software running there is validated by you,
and secure. For this reason, recording the last time a device was imaged is a
great way to determine how much trust it gets on the network.

SECURE BOOT
There are of course ways to subvert devices in a manner that they retain the implant
across reimaging and other low-level operations, as the implant in these cases are
usually themselves fairly low level.

Secure Boot is one way to help fend against these kinds of attacks. It involves loading a
public key into the device’s firmware, which is used to validate driver and OS loader
signatures to ensure that nothing has been slipped in between. While effective, support
is limited to certain devices and operating systems. More on this later.

Being able to certify the software running on a device is only the first step.
The device still needs to be able to identify itself to the resources that it is
attempting to access. This is typically done by generating a unique device
certificate that is signed by your private certificate authority. When
communicating with network resources, the device presents its signed
certificate. This certificate proves not only that it is a known device, but it
also provides an identification method. Using details embedded in the
certificate, the device can be matched with data from the device inventory,
which can be used for further decision making.

Generating and Securing Identity
In providing a signed certificate by which a device may be identified, it is
necessary to store the associated private key in a secure manner. This is not
an easy task. Theft of the private key would enable an attacker to



masquerade as a trusted device. This is the worst possible scenario for
device authentication.

A simple yet insecure way to do this is to configure access rights to the key
in such a way that only the most privileged user (root or administrator) can
access it. This is the least desirable storage method, as an attacker who
gains elevated access can exfiltrate the unprotected key.

Another way to do this is to encrypt the private key. This is better than
relying on simple permissions, though it presents usability issues because a
password (or other secret material) must be furnished in order to decrypt
and use the key. This may not pose a problem for an end-user device, as the
user can be prompted to enter the password, though this is usually not
feasible for server deployments; human interaction is required for every
software restart.

The best way by far to store device keys is through the use of secure
cryptoprocessors. These devices, commonly referred to as a hardware
security module (HSM) or a trusted platform module (TPM), provide a
secure area in which cryptographic operations can be performed. They
provide a limited API that can be used to generate asymmetric encryption
keys, where the private key never leaves the security module. Since not
even the operating system can directly access a private key stored by a
security module, they are very difficult to steal.

Identity Security in Static and Dynamic Systems
In relatively static systems, it is common for an operator to be involved
when new hosts are provisioned. This makes the injection story easy—the
trusted human can directly cut the new keys on behalf of the hosts. Of
course, as the infrastructure grows, this overhead will become problematic.

In automating the provisioning and signing process, there is an important
decision to make: should a human be involved when signing new
certificates? The answer to this largely depends on your sensitivity.



A signed device certificate carries quite a bit of power, and serves to
identify anything with the private key as an authentic and trusted device.
Just as we go through measures to protect their theft locally, we must also
protect against their frivolous generation. If your installation is particularly
sensitive, you might choose to involve a human every time a new certificate
is signed.

PWNING THE SIGNING SERVICE
In 2011, a company named DigiNotar suffered a security breach. This breach was
significant because DigiNotar was a publicly trusted certificate authority. The attackers
managed to compromise the certificate signing infrastructure, and used this position to
sign certificates of their choosing. It is estimated that over 300,000 users had their
private data exposed by these fraudulent certificates. DigiNotar’s certificates were
immediately blacklisted by browsers around the world, and the company declared
bankruptcy not long after. This breach underscores the importance of a secure signing
infrastructure and process.

If provisioning is automated, but still human-driven, it makes a lot of sense
to allow the human driving that action to also authorize the associated
signing request. Having a human involved every time is the best way to
prevent unauthorized requests from being approved. Humans are not perfect
though. They are susceptible to fatigue and other shortcomings. For this
reason, it is recommended that they be responsible for approving only
requests that they themselves have initiated.

It is possible to accomplish provisioning and signature authorization in a
single step through the use of a temporal one-time password (TOTP). The
TOTP can be provided along with the provisioning request and passed
through to the signing service for verification, as shown in Figure 5-1. This
simple yet strong mechanism allows for human control over the signing of
new certificates while imposing only minimal administrative overhead.
Since a TOTP can only be used once, a TOTP verification failure is an
important security event.



Figure 5-1. A human providing a TOTP can safely authorize the signature of a certificate.

It goes without saying that none of this applies if you want to fully automate
the provisioning of new hosts. Frequently referred to as “auto-scaling,”
systems that can grow and shrink themselves are commonly found in large,
highly automated installations. Allowing a system to scale itself decreases
the amount of care and feeding required, significantly reducing
administrative overhead and cost.

Signing a certificate is an operation that requires a great deal of trust; and
just as with other zero trust components, this trust must be sourced from
somewhere. There are three common choices:

A human

The resource manager

The image or device



The human is an easy and secure choice for relatively static infrastructure
or end user devices, but is an obvious nonstarter for automated
infrastructure. In this case, you must choose the resource manager or the
image...or both.

The resource manager is in a privileged position. It has the ability to both
grow and shrink the infrastructure, and is likely able to influence its
availability. It provides a good analog to a human in a more static system. It
is in a position to assert, “Yes, I turned this new host on, and here is
everything I know about it.” It can use this position to either directly or
indirectly authorize the signing of a new certificate.

Depending on your needs, it might be desirable to not grant this ability
wholly to the resource manager. In this case, credentials can be baked into
an image. This is generally not advised as a primary mechanism, as it places
too much responsibility on the image store; and protecting and rotating
images can be fraught with peril. In a similar way, HSMs or TPMs can be
leveraged to provide a device certificate that is tied to the hardware. This is
better than baking material into the image, though requiring a TPM-backed
device to sign a new certificate is still not ideal, especially when
considering cloud-based deployments.

One good way to mitigate these concerns is to require both the resource
manager and a trusted image/device. Generic authentication material baked
into the image (or a registered TPM key) can be used to secure
communication with the signing service and can serve as a component in a
multifaceted authorization. The following are examples of components for
authorization consideration:

Registered TPM key or image key

Correct IP address

Valid TOTP (generated by resource manager)

Expected certificate properties (i.e., expected common name)



By validating all of these points, the certificate signing service can be
relatively certain that the request is legitimate. The resource manager alone
cannot request a certificate, and since it does not have access to the hosts it
provisions, the most an attacker could do is impact availability. Similarly, a
stolen image alone cannot request a certificate, as it requires the resource
manager to validate that it has provisioned the host and expects the request.

By splitting these responsibilities and requiring multiple systems to assert
validity, we can safely (well, as safely as is possible) remove humans from
the loop.

RESOURCE MANAGERS AND CONTAINERS
Sometimes it all comes down to terminology. In host-centric systems, resource
managers create auto-scaling systems, making decisions about when and where capacity
is needed. In containerized environments, the same decisions are made and executed by
a resource scheduler. For the purposes of zero trust application, these components are
practically identical, and the principles apply equally to host-centric and container-
centric environments.

Authenticating Devices with the Control
Plane
Now that we know how to store identity in a new device or host, we have to
figure out how to validate that identity over the network. Luckily, there are
a number of open standards and technologies available through which to
accomplish this. Here, we’ll discuss two of those technologies and why they
are so important to device authentication: first we’ll cover X.509 before
moving on to look at TPMs.

These technologies enjoy widespread deployment and support, though this
was not always the case. While we discuss real-world approaches to
securing legacy devices in Chapter 8, we’ll additionally explore here what
the future might hold for zero trust support in legacy hardware.



X.509
X.509 is perhaps the most important standard we have when it comes to
device identity and authentication. It defines the format for public key
certificates, revocation lists, and methods through which to validate
certification chains. The framework it puts forth aids in the formation of
identity used for secure device authentication in nearly every protocol we’ll
discuss in this book.

One of the coolest things about X.509 is that the public/private key pairs it
uses to prove identity can also be used to bootstrap encrypted
communication. This is just one of many reasons that X.509 is so valuable
for internet security.

Certificate chains and certification authorities
For a certificate to mean anything, it has to be trusted. A certificate can be
created by anyone, so just having one with the right name on it does not
mean much. A trusted party must endorse the validity of the certificate by
digitally signing it. A certificate without a “real” signature is known as a
self-signed certificate and is typically only used for testing purposes.

It is the responsibility of the registration authority (a role commonly filled
by the certificate authority) to ensure that the details of the certificate are
accurate before allowing it to be signed. In signing the certificate, a
verifiable link is created from the signed certificate to the parent. If the
signed certificate has the right properties, it can sign further certificates,
resulting in a chain. The certificate authority lies at the root of this chain.

By trusting a certificate authority (CA), you are trusting the validity of all
the certificates signed by it. This is quite a convenience, because it allows
us to distribute only a small number of public keys in advance—the CA
public keys, namely. All certificates furnished from there on can be linked
back to the known trusted CA, and therefore also be trusted. We spoke more
about the CA concept and PKI in general in Chapter 2.

Device identity and X.509



The primary capability of an X.509 certificate is to prove identity. It
leverages two keys instead of one: a public key and a private key. The
public key is distributed, and the private key is held by the owner of the
certificate. The owner can prove they are in presence of the private key by
encrypting a small piece of data, which can only be decrypted by the public
key. This is known as public key cryptography, or asymmetric
cryptography.

The X.509 certificate itself contains a wealth of configurable information. It
has a set of standard fields, along with a relatively healthy ecosystem of
extensions, which allow it to carry metadata that can be used for
authorization purposes. Here is a small sample of typical information found
within an X.509 certificate:

Certificate: 

    Data: 

        Version: 3 (0x2) 

        Serial Number: 

            ea:78:b1:33:90:2e:2b:a0 

        Signature Algorithm: sha1WithRSAEncryption 

        Issuer: C=US, ST=California, L=San Francisco, 

                O=production, OU=web, CN=web01.example.com 

        Validity 

            Not Before: Oct 27 23:33:33 2016 GMT 

            Not After : Oct 27 23:33:33 2017 GMT 

        Subject: C=US, ST=California, L=San Francisco, 

                 O=production, OU=web, CN=web01.example.com 

        Subject Public Key Info: 

            Public Key Algorithm: rsaEncryption 

            RSA Public Key: (512 bit) 

                Modulus (512 bit): 

                    00:d1:e2:54:b1:26:b1:49:64:72:6d:eb:54:fe:0a: 

                    fc:74:56:a8:86:f2:54:32:7e:09:fa:06:ae:94:2b: 

                    de:a5:9d:3b:9d:c3:d9:ad:08:3b:ed:b8:96:a7:0d: 

                    2f:65:61:49:7f:f0:b0:85:95:af:39:e2:64:82:4c: 

                    ff:97:76:12:6b 

                Exponent: 65537 (0x10001) 

        X509v3 extensions: 

            X509v3 Subject Key Identifier: 

                DD:92:3E:9E:A8:28:F0:85:FC:A6:4D:C1:1A:2A:BE:35:2D:F7:7A:55 

            X509v3 Authority Key Identifier: 

                

keyid:DD:92:3E:9E:A8:28:F0:85:FC:A6:4D:C1:1A:2A:BE:35:2D:F7:7A:55 



                DirName:/C=US/ST=California/L=San 

Francisco/O=production/OU=web ... 

                serial:EA:78:B1:33:90:2E:2B:A0 

 

            X509v3 Basic Constraints: 

                CA:TRUE 

    Signature Algorithm: sha1WithRSAEncryption 

        33:41:f4:22:72:aa:7b:e9:d2:07:a0:e7:aa:5d:21:89:66:84: 

        8e:11:87:8f:1b:c1:b8:dd:6b:76:6d:24:55:eb:20:61:6d:89: 

        15:90:78:8c:81:e1:48:e4:45:3d:fe:0e:fd:92:78:84:2c:bc: 

        0c:6e:06:03:80:95:5f:5d:1b:41 

One of the fields in the code snippet is called the Subject field. The Subject
field stores information about the owner, which in our case is a device (or
host). Traditionally, fields like Organization (O) and Organizational Unit
(OU) are exactly as they sound; but in datacenter applications, they can be
repurposed to provide richer identity.

The example shows one approach, where O is mapped to the environment,
and OU is mapped to the role of the host. Since the certificate is signed and
trusted, we can use this information to make authorization decisions.
Leveraging X.509 fields in this way means that device access may be
authorized without a call to an external service, so long as the server knows
who/what it should be expecting.

Public and private components
As mentioned earlier, X.509 deals with key pairs rather than a single key.
While it is overwhelmingly common that these are RSA key pairs, they
don’t necessarily have to be. X.509 supports many types of key pairs, and
we have recently begun to see the popularization of other key types (such as
ECDSA).

Private key storage
X.509 is incredibly useful for device authentication, but it doesn’t solve all
the problems. It still has a private key, and that private key must be
protected. If the private key is compromised, the device’s identity and
privacy will be vulnerable as well. While other zero trust measures help



guard against the damage this might cause (like user/application
authentication or authorization risk analysis), this is considered a worst-case
scenario and should be avoided at all costs.

Private keys can be encrypted when they are stored, requiring a password to
decrypt. This is a good practice because it would require more than just disk
access to successfully steal, but is only practical for user-facing devices. In
the datacenter, encrypting the private key doesn’t solve the problem because
you still have to store the password, or somehow transmit it to the server, at
which point the password becomes just as cumbersome as the private key
itself.

Hardware security modules (HSMs) go a good distance in attempting to
protect the private key. They contain hardware that can generate a
public/private key pair and store the private key in secure memory. It is not
possible to read the private key from the HSM. It is only possible to ask the
HSM to do an operation with it on your behalf. In this way, the private key
cannot be stolen as it is protected in hardware. We’ll talk more about TPMs,
a type of HSM, in the next section.

X.509 for device authentication
The application of X.509 to device authentication in a zero trust network is
immense. It is a foundational cornerstone in proving device identity for just
about every protocol we have and is instrumental in enabling end-to-end
encryption. Every single device in a zero trust network should have an
X.509 certificate.

There is one important consideration to make, however. We are using X.509
to authenticate a device, yet the heart of the whole scheme—the private key
—is decidedly software-based. If the private key is stolen, the whole device
authentication thing is a sham!

These certificates are often used as a proxy for true device authentication
because the keys are so long and unwieldy that you would never write one
down or memorize one. They are something that would be downloaded and



installed, and because of that, they don’t tend to follow users around—they
more typically follow devices.

While it might be determined that the risk associated with the private key
problem is acceptable, it still stands as a serious issue, particularly for zero
trust. Fortunately, we can see some paths forward, and by leveraging TPMs
it is possible to inextricably marry a private key to its hardware.

TPMs
A trusted platform module (TPM) is a special chip that is embedded in a
compute device. Called a cryptoprocessor, these chips are dedicated to
performing cryptographic operations in a trusted and secure way. They
include their own firmware and are often thought of as a computer on a
chip.

This design enables a small and lean hardware API that is easily audited
and analyzed for vulnerability. By providing facilities for cryptographic
operations, and excluding interfaces for retrieving private keys, we get the
security we need without ever exposing secret keys to the operating
system. Instead, they are bound to the hardware.

This is a very important property and the reason that TPMs are so important
for device authentication in zero trust networks. Great software frameworks
for identity and authentication (like X.509) do a lot for device
authentication. But without a way to bind the software key to the hardware
device it is attempting to identify, we cannot really call it device identity.
TPMs solve this problem, providing the necessary binding.

Encrypting data using a TPM
TPMs generate  and store what is known as a storage root key, or an SRK.
This key pair represents the trust root for the TPM device. Data encrypted
using its public key can be decrypted by the originating TPM only.

The astute reader might question the usefulness of this function in the
application of bulk data encryption. We know asymmetric cryptographic
operations to be very expensive, and thus not suitable for the encryption of



relatively large pieces of data. Thus, in order to leverage the TPM for bulk
data encryption, we must reduce the amount of data that the SRK is
responsible for securing.

An easy way to do this is to generate a random encryption key, encrypt the
bulk data using known-performant symmetric encryption (i.e., AES), and
then use the SRK to encrypt the resulting AES key. This strategy, shown in
Figure 5-2, ensures that the encryption key cannot be recovered, unless in
the presence of the TPM that originally protected it.

Figure 5-2. The data is encrypted with an AES key, which in turn is encrypted by the TPM

Most TPM libraries available for open consumption perform these steps for
you, through the use of helper methods. It is recommended to inspect the
internal operation of such methods before using them.

Intermediary keys and passphrases

Many TPM libraries (such as TrouSerS) create intermediary keys when
encrypting data using the TPM. That is, they ask the TPM to create
a new asymmetric key pair, use the public key to encrypt the AES key, and
finally use the SRK to encrypt the private key. When decrypting the data,
you must first decrypt the intermediate private key, use it to decrypt the
AES key, then decrypt the original data.

This implementation seems strange, but there are some relatively sane
reasons for it. One reason is that the additional level of indirection allows
for more flexibility in the distribution of secured data. Both the SRK and



intermediate keys support passphrases, so the use of an intermediary key
enables the use of an additional, perhaps more widely known, passphrase.

This may or may not make sense for your particular deployment. For the
purposes of “This key should only be decryptable on this device only,” it is
OK (and more performant) to bypass the use of an intermediary key, if
desired.

The most important application of TPM-backed secure storage is in
protecting the device’s X.509 private key. This secret key serves to
authoritatively prove device identity, and if stolen, so is the identity.
Encrypting the private key using TPM means that while the key might still
be taken from disk, it will not be recoverable without the original
hardware. 

KEY THEFT IS STILL POSSIBLE
Encrypting the device’s private key and wrapping the key with the SRK does not solve
all of the theft vectors. It protects the key from being directly read from disk, though an
attacker with elevated privileges might still be able to read it from memory or simply
ask the TPM to perform the operation for them.

The following two sections provide additional information on how to further validate
hardware identity (beyond X.509 identity).

Platform configuration registers
Platform configuration registers (PCRs) are an important TPM feature.
They provide storage slots into which hashes of running software is stored.
It starts with the hash of the BIOS, then the boot record, its configuration,
and so on. This sequence of hashes can then be used to attest that the
system is in an approved configuration or state. Here is a truncated example
of the first few registers stored in the TPM:

PCR-00: A8 5A 84 B7 38 FC ...         # BIOS 

PCR-01: 11 40 C1 7D 0D 25 ...         # BIOS Configuration 

PCR-02: A3 82 9A 64 61 85 ...         # Option ROM 

PCR-03: B2 A8 3B 0E BF 2F ...         # Option ROM Configuration 



PCR-04: 78 93 CF 58 0E E1 ...         # MBR 

PCR-05: 72 A7 A9 6C 96 39 ...         # MBR Configuration

This is useful in a number of ways, including in ensuring that only
authorized software configurations are allowed to decrypt data. This can be
done by passing in a set of known-good PCR values when using the TPM to
encrypt some data. This is known as “sealing” the data. Sealed data can
only be decrypted by the TPM which sealed it, and only while the PCR
values match.

Since PCR values cannot be modified or rolled back, we can use TPM
sealing to ensure that our secret data is not only locked to the device, but
also locked to a specific software configuration and version. This helps to
prevent attackers from using device access to obtain the private key, since
only the unmodified and approved software can unlock it.

Remote attestation
We have learned many ways we can use embedded device security to
protect private keys and other sensitive device-related data. The unfortunate
truth is that so long as a private key is stored outside of a physical TPM, it
is still vulnerable to theft. This fact remains because all it takes to recover
the private key is to convince the TPM to unlock it once. This action
discloses the actual private key—something that is not possible when it is
stored on the TPM.

Luckily, the TPM provides a way for us to uniquely identify it. It’s another
key pair called the endorsement key (EK), and each TPM has a unique one.
The private component of an EK only ever exists on the TPM itself, and
thus remains completely inaccessible by the operating system.

Remote attestation is a method by which the TPM generates something
called a “quote,” which is then securely transmitted to a remote party. The
quote includes a list of current PCR values, signed using the EK. A remote
party can use this to assert both host identity (since the EK is unique to the
TPM) and software state/configuration (since PCRs cannot be modified).
We’ll talk more about how the quote can be transmitted in Chapter 8.



WHY NOT JUST TPM?
You may find yourself wondering: why not use the TPM exclusively for device identity
and authentication, and why include X.509 at all?

Currently, TPM access is cumbersome and non-performant. It can provide an X.509
certificate to confirm its identity, but it is limited in its interaction with the private key.
For instance, the key used for attestation is only capable of signing data that originates
in the TPM. For a protocol like TLS, this is a deal-breaker.

There have been some attempts to coerce the TPM attestation protocols into a more
flexible form (like IETF draft draft-latze-tls-tpm-extns-02, which defines a TLS
extension for device authentication via TPM), though none of them have gained
widespread adoption at the time of this writing.

There are a few open source implementations of remote attestation,
including one in the popular IKE daemon strongSwan. This opens the doors
for leveraging TPM data to not only authenticate an IPsec connection, but
also authorize it by using PCR data to validate that the host is running
authentic and unmodified software.

TPMs for device authentication
It is  clear that TPMs present the best option for strong device
authentication in mature zero trust networks. They provide the linchpin
between software identity and physical hardware. There are, however, a
couple limitations.

Many datacenter workloads are heterogeneous and isolated, like virtual
machines or containers, both of which need to resort to TPM virtualization
to allow the isolated workload to accomplish similar goals. While there are
implementations available (such as vTPM for Xen), trust must still be
rooted in a hardware TPM, and designing a secure TPM-based system that
is capable of live migration is challenging.

Additionally, TPM support is still sparse despite its many uses and
strengths. While TPM use would be expected in the context of device
authentication in mature zero trust networks, it should not be considered a
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requirement. Adopting TPM support is no small feat, and there are much
lower-hanging fruits in terms of zero trust adoption and migration.

Hardware-Based Zero Trust Supplicant?
The  most common approach for supporting legacy devices in a zero trust
network is to use an authentication proxy. The authentication proxy
terminates the zero trust relationship and forwards the connection to the
legacy host.

While it is possible to enforce policy between the authentication proxy and
the legacy backend, this mode of operation is less than ideal and shares a
handful of attack vectors with traditional perimeter networks. When dealing
with legacy devices, it is desirable to push the zero trust termination point
as close to the device as possible.

At the time of this writing, an authentication proxy is likely the best and
most reasonable option, although it does seem that there is some room for a
dedicated hardware device. This device can act as a zero trust supplicant,
carrying a TPM chip, and plug directly into a legacy device’s Ethernet port.
Pairing the two in your inventory management system can allow for
seamless integration between legacy devices and a zero trust network.

There are many applications that would significantly benefit from such a
device. SCADA and HVAC systems, for instance, come to mind. While
such a device is admittedly pure fantasy at present, it remains an interesting
thought experiment.

Inventory Management
Authenticating a device’s identity and integrity goes a long way in
providing strong zero trust security, but being able to identify a device as
belonging to the organization is only part of the challenge. There are lots of
other pieces of information we need in order to calculate policy and make
enforcement decisions.



Inventory management involves the cataloging of devices and their
properties. Maintaining these records is equally important for both servers
and client devices. It is sometimes more helpful to think of these as network
entities rather than physical devices. While they indeed are commonly
physical devices, they might also be logical entities on the network.

For instance, it is conceivable that a virtual machine or a container could be
considered a “device,” depending on your needs. They have lots of the
same descriptive properties that a real server might have, after all. Lumping
all of the virtual machine traffic from a single host into one policy gets us
right back to the perimeter model. Instead, the zero trust model advocates
that the workloads be tracked in order to drive the network policies they
require. This inventory (or workload) database in this case can be
specialized in order to accommodate the high rates of change that
virtualized/containerized environments experience. So, while the traditional
inventory management system and the workload scheduler might be
different systems, they can still work together; for the purposes of this book,
the scheduler service may act as an inventory management system of sorts,
as shown in Figure 5-3.

It is not uncommon to have more than one inventory management system.
As an example, many companies have both asset management and
configuration management software. Both of these store device metadata
that is useful to us; they just store different sets, collected in different ways.

CONFIGURATION MANAGEMENT AS AN
INVENTORY DATABASE

Many configuration management systems, such as Chef or Puppet, offer modes in which
data about the nodes they run on get persisted into a centralized database. Name, IP
address, and the “kind” of server are examples of the type of information typically
found in a CM-backed database. Using configuration management in this way is an easy
first step toward developing an inventory database if you don’t have one already.



Figure 5-3. A scheduler and a configuration management database serve as inventory stores for the
control plane

Knowing What to Expect
One of the great powers of a zero trust network is that it knows what to
expect. Trusted entities can push expectations into the system, allowing all
levels of access to be denied by default—only expected actions/requests are
permitted.

An inventory database is a major component in realizing this capability. A
huge amount of information about what to expect can be generated from
this data; things like which user or application should be running on it, what
locations we might expect it to be in, or even the kind of operating system
are all pieces of information that can be used to set expectations.

In the datacenter, these expectations can be very strong. For instance, when
provisioning a new server, we often know what IP address it will be
assigned and what purpose it will serve. We can use that information to



drive network ACLs and/or host-based firewalls, poking holes for that
specific IP address only where necessary. In this way, we can have all traffic
denied, allowing only the very specific flows we are expecting. The more
properties that can be expected, the better.

This is not such an easy prospect for client-facing systems, however. Clients
operate in new and unexpected ways all the time, and knowing exactly what
to expect from them and when is very difficult. Servers in the datacenter
often have relatively static and long-lived connections to a well-defined set
of hosts or services. By contrast, clients tend to make many short-lived
connections to a variety of services, the timing, frequency, and patterns of
which can vary organically.

In order to address the wild nature of client-facing systems, we need a
slightly different approach. One way to do this is to simply allow global
access to the service and to protect it with mutually authenticated TLS,
forcing the client to provide a device certificate before it can communicate
with it. The device certificate can be used to look the device up in the
inventory database and determine whether or not to authorize it. The
advantage is that lots of systems support mutually authenticated TLS
already, and specialized client software is not strictly required. One can
provide reasonably strong security without too badly hindering accessibility
or usability.

A significant drawback to this approach, however, is that the service is
globally reachable. Requiring client certificates is a great way to mitigate
this danger. However, we have seen from vulnerabilities like Heartbleed
that the attack surface of a TLS server is relatively large. Additionally, the
existence of the resources can be discovered by simply scanning for them,
since we get to speak TCP to the resource before we authenticate with it.

How can we ensure that we don’t engage clients that are not trusted? There
has to be some untrusted communication, after all. What comes before the
authentication?

Secure Introduction



The very first connection from a new device is a precarious one. After all,
these packets must be admitted somewhere, and if they are not strongly
authenticated, then there is a risk. Therefore, the first system that a new
device contacts needs a mechanism by which it can authenticate this initial
contact.

This arrangement is commonly known as secure introduction. It is the
process through which a new entity is introduced to an existing one in a
way that trust is transferred to it. There are many ways in which this can be
effected; the method through which an operator passes a TOTP code to a
provisioner in order to authorize a certificate request is a form of secure
introduction.

The best (and perhaps only) way to do secure introduction is by setting an
expectation. Secure introduction practically always involves a trusted third
party. This is a system that is already introduced, and it holds the ability to
introduce new systems. This trusted third party is the system that then
coordinates/validates the specifics of the system to be introduced and sets
the appropriate expectations.

SECURE INTRODUCTION FOR CLIENT SYSTEMS
Secure introduction of client-facing systems can be difficult due to the hard-to-predict
nature of wild clients. When publicly exposing a client-facing endpoint is considered
too risky, it is necessary to turn to more complicated schemes. The currently accepted
approach is to use a form of signaling called pre-authentication, which announces a
client’s intentions just prior to taking action. We’ll talk more about pre-authentication in
Chapter 8.

What Makes a Good Secure Introduction System?

Single-use

Credentials and privileges associated with the introduction should be
single use, preventing an attacker from compromising and reusing the
key.



Short-lived

Credentials and privileges associated with the introduction should be
short-lived, preventing the accumulation of valid but unused keys.

Third-party

Leveraging a third party for introduction allows for separation of duty,
prevents the introduction of poor security practice, and alleviates
operational headaches.

While these requirements might at first seem rigorous, they can be met
through fairly simple means. A great example can be found in the way Chef
implements host introduction. Originally, there was a single secret (deemed
the “validation certificate”) which was qualified to admit any host that
possessed it as a new node. Thus, the introduction would involve copying
this secret to the target machine (or baking it into the image), using it to
register the new node, then deleting it.

This approach is neither single-use nor short-lived. Should the secret be
recovered, it could be used by a malicious actor to steer application traffic
to attacker-controlled hosts, or even trigger a denial of service.

Modern Chef takes a new approach. Instead of having a static validation
certificate, the provisioning system (via Chef client utility “knife”)
communicates with the Chef server and creates a new client and associated
client certificate. It then creates the new host, and passes in its client
certificate. In this way, an expectation for the new client has been set. While
these credentials are not short-lived, it remains as a superior approach.

Renewing Device Trust
It is important to accept the fact that no level of security is perfect—not
even yours. Once this fact is acknowledged, we can begin to mitigate its
consequences. The natural progression is that the longer a device is
operating, the greater its chances of being compromised. This is why device
age is a heavily weighted trust signal.



For this reason, rotation is very important. We earlier spoke at length about
the importance of rotation, and devices are no different. Of course, this
“rotation” is manifested in different ways depending on your definition of
“device.” If your infrastructure is run in a cloud, perhaps a “device” is a
host instance. In this case, rotation is easy: just tear down the instance and
build a new one (you are using configuration management, right?). If
you’re running physical hardware, however, this prospect is a little more
difficult.

Reimaging is a good way to logically rotate a device. It is a fairly low-level
operation, and will succeed in removing the majority of persistent threats
seen in the wild today. One can trust a freshly reimaged device more than
one that has been running for a year. While reimaging does not address
hardware attacks or other low-level attacks like those shown in Figure 5-4,
it serves as a reasonable compromise in places where physical rotation is
more difficult. Datacenter and supply chain security partially mitigate this
concern.



Figure 5-4. A disk image addresses the portions that house the vast majority of malware, but it’s
certainly not the whole picture

When it comes to managing client devices, the story changes quite a bit.
Reimaging a client device is extraordinarily inconvenient for users. They
customize the device (and its contents) over time in ways that are difficult
to effectively or securely preserve. Oftentimes, when given a new device,
they want to transfer the old image! This is not great news for people trying
to secure client devices.

The solution largely depends on your use case. The trade-off between
security and convenience will be very clear in this area. Everyone agrees
that client devices should be rotated and/or reimaged every so often, but the
frequency is up to you. There is one important relationship to keep in mind:
the less often a device is rotated or reimaged, the more rigorous your
endpoint security must be.

Without the relatively strong assurances of device security that we get with
rotation, we must look for other methods to renew trust in a device that has



been operating for a long time. There are two general methods through
which this can be done: local measurement or remote measurement.

Local Measurement
Local measurement can be one of two types: hardware-backed or software-
backed. Hardware-backed measurement is more secure and reliable, but
limited in capability. Software-backed measurement is much less secure and
reliable, but practically unlimited in its measurement capabilities.

One good option for hardware-backed local measurement is leveraging the
TPM for remote attestation. Remote attestation uses a hardware device to
provide a signed response outlining the hashes of the software currently
running on that machine. The response is highly reliable and very difficult
to reproduce. However, it generally only gives a picture of the low-level
software or specifically targeted software. If an attacker has managed to get
an unauthorized process running in user space, the TPM will not be very
useful in its detection; thus, it has limited capability. See “Remote
attestation” for more information.

Software-backed local measurement involves some sort of agent installed
on the endpoint which is used to report health and state measurements. This
could be anything from a managed antivirus client to policy enforcement
agents. These agents go to great lengths in order to attest and prove validity
of the measurements they report, but even cursory thought quickly reaches
the conclusion that these efforts are generally futile. Software-backed
measurements lack the protection provided by hardware measurements, and
an attacker with sufficient privilege can subvert systems like this.

Remote Measurement
Remote measurement is the best of the two options for one simple reason: it
benefits from separation of duty. A compromised host can report whatever
it wants to, possibly falsifying information in order to conceal the attacker.
This is not possible with remote or passive measurement, since a



completely different system is determining the health of the host in
question.

Traditionally, remote measurement is performed as a simple vulnerability
scan. The system in question will be periodically probed by a scanning
device, which observes the response. The response gives some information
away, like what operating system might be running on that device, what
services might be active there, and maybe even what version of those
services.

The scan results can be cross-referenced with known-bad signatures, like
malicious software or vulnerable versions of legitimate software, producing
a report like the one shown in Figure 5-5. Detection of known-bad
signatures can then influence the trust of the device appropriately.

Figure 5-5. Greenbone web interface for OpenVAS showing three “medium” vulnerabilities for a
scan target

There are a number of open source and commercial options available in the
vulnerability scanning arena, including OpenVAS, Nessus, and Metasploit.

https://www.flickr.com/photos/xmodulo/9499759166


These projects are all fairly mature and relied on by many organizations.

Unfortunately, vulnerability scanning comes with the same fundamental
problem as local measurement: it relies on interrogation of the endpoint. It’s
the difference between asking someone if they robbed a bank, and watching
them rob a bank. Sure, sometimes you can get the robber to admit that they
did it, but a professional would never fall for that. Catching them in the act
is much more effective. See “Network Communication Patterns” for more
about how to solve this dilemma.

Software Configuration Management
Configuration management is the process of tightly controlling and
documenting all software changes. The desired configurations are typically
defined as code or data, and checked into a revision control system,
allowing changes to be audited, rolled back, and so on. There are many
commercial and open source options available, the most popular of which
being Chef, Puppet, Ansible, and CFEngine.

Configuration management software is useful in both datacenter and client
deployments, and simply becomes required beyond a certain scale.
Leveraging such software comes with many security wins, such as the
ability to quickly upgrade packages after vulnerability announcements or to
similarly assert that there are no vulnerable packages in the wild.

Beyond auditing and strict change control, configuration management can
also be used as an agent for dynamic policy configuration. If a node can get
a reliable and trusted view of the world (or part of it, at least), it can use it
to calculate policy and install it locally. This functionality is practically
limited to the datacenter though, since while dynamic, datacenter-hosted
systems are decidedly more static and predictable than client systems. We’ll
talk more about this mode of zero trust operation later on.

CM-Based Inventory



We have mentioned several times the idea of using a configuration
management database for inventory management purposes. This is a great
first step toward a mature inventory management system and can provide a
rich source of information about the various hosts and software running in
your infrastructure.

We like to think that CM-based inventory management is a “freebie” in that
configuration management is typically leveraged for the bevy of other
benefits it brings. Using it as an inventory database most often comes about
out of convenience.

Maintaining this view is important: configuration management systems
aren’t designed to act as inventory management systems...they’re designed
to act as configuration management systems! Using it as such will surely
bring a few rough edges, and you will eventually outgrow it. This is not to
say don’t do it. It is better to actually realize a zero trust network by
leveraging as much existing technology as possible than it is to never get
there due to high barrier to entry.

Once we accept this fact, we can begin to leverage the wealth of data
provided to us by the CM agents. Using Chef, for instance, we can calculate
trust score and write policy against more than 1,500 host attributes. Here
are some small snippets illustrating the kind of information the Chef agent
collects and stores:

languages: 

  c: 

    gcc: 

      description: gcc version 4.8.4 (Ubuntu 4.8.4-2ubuntu1~14.04) 

      version:     4.8.4 

  java: 

    hotspot: 

      build: 24.71-b01, mixed mode 

      name:  Java HotSpot(TM) 64-Bit Server VM 

    runtime: 

      build: 1.7.0_71-b14 

      name:  Java(TM) SE Runtime Environment 

    version: 1.7.0_71 

  perl: 

... <SNIP> ... 



dmi: 

  bios: 

    address:       0xE8000 

    all_records: 

      Address:                0xE8000 

      BIOS Revision:          4.2 

      ROM Size:               64 kB 

      Release Date:           12/03/2014 

      Runtime Size:           96 kB 

      Vendor:                 Xen 

      Version:                4.2.amazon 

      application_identifier: BIOS Information 

  chassis: 

    all_records: 

      Asset Tag:              Not Specified 

      Boot-up State:          Safe 

... <SNIP> ... 

fqdn:              foo.bar 

hostname:          foo 

idletime:          2 days 09 hours 48 minutes 37 seconds 

idletime_seconds:  208117 

init_package:      init 

ipaddress:         192.168.1.1 

kernel: 

  machine: x86_64 

  modules: 

    ablk_helper: 

      refcount: 6 

      size:     13597 

... <SNIP> ... 

network: 

  default_gateway:   192.168.1.254 

  default_interface: eth0 

  interfaces: 

    eth0: 

      addresses: 

        192.168.1.1: 

          broadcast: 192.168.1.255 

          family:    inet 

          netmask:   255.255.255.0 

          prefixlen: 24 

          scope:     Global 

        22:00:0A:1E:55:AD: 

          family: lladdr 

      arp: 

        192.168.1.2: fe:ff:ff:ff:ff:ff 

        192.168.1.3: fe:ff:ff:ff:ff:ff 



        192.168.1.254: fe:ff:ff:ff:ff:ff 

      encapsulation: Ethernet 

Searchable inventory
Some CM systems centrally store the data generated by their agents.
Typically, this data store is searchable, which opens lots of possibilities for
young zero trust networks. For instance, the agent can perform a search to
retrieve the IP address of all web servers in datacenter A and use the results
to configure a host-based firewall.

Audits and report generation are greatly enhanced through searchable
inventory as well. This applies not only to datacenter hosts, but also to
clients. By storing the agent data and making it searchable, you can ensure
that you changed the CM code to upgrade that vulnerable package, and that
the package did indeed update where it said it did.

Secure Source of Truth
One important thing to remember when using CM systems in the zero trust
control plane is that the vast majority of the data available to CM systems is
self-reported. This is critical to understand, since a compromised machine
could potentially misrepresent itself. This can lead to complete compromise
of the zero trust network if these facts are not considered during its design.

Thinking back to trust management, the trusted system in this case is the
provisioner. Whether it be a human or some automated system, it is in the
best position to assert the critical aspects of a device, which include the
following:

Device type

Role

IP address (in datacenter systems)

Public key



These attributes are considered critical because they are often used in
making authorization or authentication decisions. If an attacker can update
the device role, for instance, perhaps they can coerce the network to expose
protected services.

For this reason, restricting write access to these attributes is important. Of
course, you can still use self-reported attributes for making decisions, but
they should not be considered fact under any circumstance. It’s useful to
think of self-reported attributes as hints rather than truth.

Using Device Data for User Authorization
The zero trust model mandates authentication and authorization of both the
device and the user or application. Since device authentication typically
comes before user authentication, it must be done without information
gained through user authentication. This is not the case for user
authentication.

When user authentication occurs, device authentication has already
succeeded, and the network has knowledge of the device identity. This
position can be leveraged for all kinds of useful contextual knowledge,
enabling us to do much stronger user authentication than was previously
attainable.

One of the more common lookups one might make is to check whether we
would expect this user, given the type of device or place of issue. For
instance, you are unlikely to see an engineer’s credentials being used from a
mobile device that was issued to HR. So while the HR employee can freely
access a particular resource using their own credentials, user authentication
attempts using other credentials might be blocked.

Another good signal is user authentication frequency. If you have not seen a
user log in from one of their devices in over a year, and all of a sudden there
is a request from that device furnishing the user’s credentials—well, I think
it’s fair to be a bit skeptical. Could it have been stolen?



Of course, there is also a good chance that the request is legitimate. In a
case like this, we lower the trust score to indicate that things are a little
fishy. The lower score can then manifest itself in many ways, like still being
trusted enough to read parts of the internal wiki, but not enough to log into
financial systems.

Being able to make decisions like this is a big part of the zero trust
architecture and underscores the importance of a robust inventory
management database. While inventory management is strictly required for
device authentication reasons, the contextual advantage given to user
authentication is invaluable.

Trust Signals
This section serves as a reference for various trust signals that are useful in
calculating device trust score and writing policy.

Time Since Image
Over time, the likelihood that a device has been compromised increases
dramatically. Endpoint security practices aim to decrease the risk associated
with long-lived or long-running devices. Still, these practices are far from
perfect.

Imaging a device ensures that the contents of the hard drive match a known
good. While not effective against some lower-level attacks, it provides a
reasonably strong assurance of trust. In the moments immediately following
the image restore, a tremendous amount of trust exists in the device, as only
the hardware or the restore system itself would be able to taint the process.
Over time though, that trust wears off as the system goes through prolonged
exposure.

Historical Access
Device authentication patterns, similar to user authentication patterns, are
important in understanding risk and act as a nice proxy for behavioral



filtering. Devices which have not been seen in a while are more suspicious
than ones that come and go frequently. Maybe suspicious is the wrong
word, but it’s certainly unusual.

The request in question can also be tied to a resource, and it is wise to
consider the device and the resource together in this context. For instance, a
months-old device requesting access to a new resource is more suspicious
than a request to a resource it has been accessing weekly for some time.
This stands to say that the “first few” access attempts to a particular
resource will be viewed with more skepticism than subsequent attempts.

Similarly, frequency can be analyzed to understand if a resource is being
suspiciously over-utilized. A request from a device that has made 100
requests in the last day, but only 104 over the last month, is certainly more
suspicious than one with 0 in the last day and 4 in the last month.

Location
While network location is typically something we aim to not make strong
decisions on with regard to the zero trust model, it still provides reliable
trust signaling in many cases.

One such case might be a sudden location change. Since we are talking
about device authentication, we can set some reasonable expectations about
the way that device moves around. For instance, a device authentication
attempt from Europe might be pretty suspicious if we have authorized that
same device in the US office just a couple hours prior.

It should be noted that this is a bit of a slippery slope when it comes to the
zero trust model. Zero trust aims to eliminate positions of advantage within
the network, so using network location to determine access right can be
considered a little contradictory.

The authors recognize this and acknowledge that location-related data can
be valuable while making authorization decisions. That said, it is important
that this consideration not be binary. One should look for patterns in
locations, and never make an absolute decision based solely on location.



For instance, a policy which dictates that an application can only be
accessed from the office is a direct violation of the zero trust model.

Network Communication Patterns
For devices that are connected to networks owned by the operator, there is
an opportunity to measure communication patterns to develop a norm.
Sudden changes from this norm are suspicious and can affect how much the
system trusts such a device.

Network instrumentation and flow collection can quickly detect intrusions
by observing them on the network. Making authorization decisions
informed by this detection is very powerful. One example might be shutting
down database access to a particular web server because that web server
began making DNS queries for hosting providers on another continent.

The same applies to client devices. Consider a desktop that has never before
initiated an SSH connection but is now frequently SSHing to internet hosts.
It is fair to say that this change in behavior is suspicious and should result in
the device being less trusted than it was  previously.

Summary
This chapter focused on how a system can trust a device. This is a
surprisingly hard problem, so a lot of different technologies and practices
need to be applied to ensure that trust in a device is warranted.

We started with looking at how trust is injected into a device from the
human operators. For relatively static systems, we can have a person
involved in providing the critical credentials; but for dynamic
infrastructure, that process needs to be delegated. Those credentials are
incredibly valuable, and so we discussed how to safely manage them.

Devices  eventually need to participate in the network, and so
understanding how they authenticate themselves is important. We covered
several technologies, such as X.509 and TPMs, which can be used to



authenticate a device on the network. Using these technologies along with
databases of expected inventory can go a long way toward providing the
checks and balances that give devices trust.

Trust is fleeting and degrades over time, so we talked about the mechanisms
for renewing trust. Additionally, we discussed the many signals that can be
continually used to gauge the trustworthiness of a device over time. Perhaps
the most important lesson is that a device starts out in a trusted state and
only gets worse from there. The rate at which its trust declines is what we’d
like to keep a handle on.

The next chapter looks at how we can establish trust in the users of the
system.



Chapter 6. Trusting Users

It’s tempting to conflate user trust with device trust. Security-conscious
organizations might deploy X.509 certificates to users’ devices to gain
stronger credentials than passwords provide. One could say that the device
certificate strongly identifies the user, but does it? How do we know that the
intended user is actually at the keyboard? Perhaps they left their device
unlocked and unattended?

Conflating user identity with device identity also runs into problems when
users have multiple devices, which is increasingly becoming the norm.
Credentials need to be copied between several devices, putting them at
increased risk of exposure. Devices might need different credentials based
on their capabilities. In networks that have kiosks, this problem becomes
even more difficult.

Zero trust networks identify and trust users separately from devices.
Sometimes identifying a user will use the same technology that is used to
identify devices, but we must be clear that these are two separate
credentials.

This chapter will explore what it means to identify a user and store their
identity. We will discuss when and how to authenticate users. User trust is
often stronger when multiple people are involved, so we will discuss how to
create group trust and how to build a culture of security.

Identity Authority
Every user has an identity, which represents how they are known in a larger
community. In the case of a networked system, the identity of a user is how
they are recognized in that system.

Given the large number of individuals in the world, identifying a user can
be a surprisingly hard problem. Let’s explore two types of identity:



Informal identity

Authoritative identity

Informal identity is how groups self-assemble identity. Consider a real-
world situation where you meet someone. Based on how they look and act,
you can build up an identity for that person. When you meet them later, you
can reasonably assume that they are the same person based on these
physical characteristics. You might even be able to identify them remotely
—for example, by hearing their voice.

Informal identity is used in computer systems. Pseudonymous accounts—
accounts that are not associated with one’s real-world name—are common
in online communities. While the actual identity of an individual is not
necessarily known in these communities, through repeated interactions an
informal identity is created.

Informal identity works in small groups, where trust between individuals is
high and the risks are relatively low. This type of identity has clear
weaknesses when the stakes are higher:

One can manufacture a fictitious identity.

One can claim the identity of another person.

One can create several identities.

Multiple individuals can share a single identity.

When a stronger form of identity is required, an authority needs to create
authoritative identity credentials for individuals. In the real world, this
authority often falls to governments. Government-issued IDs (e.g., a
driver’s license or passport) are distributed to individuals to represent their
identity to others. For low-risk situations, these IDs alone are sufficient
proof of one’s identity. However, for higher risk situations, cross-checking
the credentials against the government database provides a better guarantee.

Computer systems often need centralized authority for user identity as well.
Like in the real world, users are granted credentials (of varying strength)



which identify them in the system. Based on the degree of risk, cross-
checking the credentials against a centralized database may be desired. We
will discuss how these systems should function later.

Credentials can be lost or stolen, so it is important that an identity authority
have mechanisms for individuals to regain control of their identity. In the
case of government-issued identification, a person often needs to present
other identifying information (e.g., a birth certificate or fingerprint) to a
government authority to have their ID reissued. Computer systems similarly
need mechanisms for a user to regain control of their identity in the case of
lost or stolen credentials. These systems often require presenting another
form of verification, say a recovery code or alternative authentication
credential. The choice of required material to reassert one’s identity can
have security implications which we will discuss later.

Bootstrapping Identity in a Private System
Storing and authenticating user identity is one thing, but how do you
generate the identity to begin with? Humans interacting with computer
systems need a way to digitally represent their identity, and we seek to bind
that digital representation as tightly to the real-world human as possible.

The genesis of a digital identity, and its initial pairing to a human, is a very
sensitive operation. Controls to authenticate the human outside of your
digital system must be strong in order to prevent an attacker from
masquerading as a new employee, for instance. Similar controls might also
be exercised for account recovery procedures where the user is unable to
provide their current credentials.



ATTACKING IDENTITY RECOVERY SYSTEMS
Users occasionally misplace or forget authentication material such as passwords or
smart cards. To recover the factor (i.e., reset the password), the user must be
authenticated by alternative and sometimes untraditional means. Attacks on such
systems are frequent and successful. For example, in 2012, a popular journalist’s
Amazon account was broken into, and the attacker was able to recover the last four
digits of the most recent credit card used. With this information, the attacker called
Apple support and “proved” his/her identity using the recovered number. Be sure to
carefully evaluate such reset processes—“secret” information is often less secret than it
appears.

Given the sensitivity of this operation, it is important to put good thought
and strong policy around how it is managed. It is essentially secure
introduction for humans, and the good news is, we know how to do that
pretty well!

Government-Issued Identification
It probably comes as no surprise that one of the primary recommendations
for accomplishing human authentication is through the use of government-
issued identification. After all, human authentication is precisely what they
were designed for in the first place!

In some implementations, it may even be desirable to request multiple
forms of ID, raising the bar for potential forgers/imposters. It goes without
saying that staff must be properly trained in validating these IDs, lest the
controls be easily circumvented.

Nothing Beats Meatspace
Despite our best efforts, human-based authentication schemes remain
stronger than their digital counterparts. It’s always a good idea to bootstrap
a human’s new digital identity in person. Email or other “blind”
introductions are heavily discouraged. For instance, shipping a device
configured to trust the user on first use (sometimes referred to as TOFU) is



not uncommon. However, this method suffers from physical weakness since
the package is vulnerable to interception or redirection.

Oftentimes, the creation of the digital identity is preceded by a lengthy
human process, such as a series of interviews or the completion of a
business contract. The result is that the individual has been previously
exposed to already-trusted individuals who have learned some of his/her
qualities along the way. This knowledge can be leveraged for further
human-based authentication, as shown in Figure 6-1.



Figure 6-1. A trusted administrator relies on a trusted employee and a valid ID to add a new user to
an inventory system

For instance, a hiring manager is in a good position to escort a new hire to
helpdesk for human authentication, since the hiring manager is presumably
already familiar with the individual and can attest to their identity. While
this would be a strong signal of trust, just like anything else in a zero trust
network, it should not be the only method of authentication.

Expectations and Stars



There are usually many pieces of information available prior to
bootstrapping a digital identity. It is desirable to use as many pieces of
information as is reasonable to assert that all of the stars line up as
expected. These expectations are similar to ones set in a typical zero trust
network; they are simply accrued and enforced by humans.

These expectations can range from the language(s) they speak to the home
address printed on their ID, with many other creative examples in between.
A thorough company may choose to even use information learned through a
background check to set real-world expectations. Humans use methods like
this every day to authenticate each other (both casually and officially), and
as a result, these methods are mature and reliable.

Storing Identity
Since we need to bridge identity from the physical world to the virtual
world, identity must be transformed into bits. These bits are highly sensitive
and oftentimes need to be stored permanently. Therefore, we will discuss
how to store this data to ensure its safety.

User Directories
To  trust users, systems typically need centralized records of those users.
One’s presence in such a directory is the basis by which all future
authentication will occur. Having all this highly sensitive data stored
centrally is a challenge which unfortunately cannot be avoided.

A zero trust network makes use of rich user data to make better
authentication decisions. Directories will store traditional information like
usernames, phone numbers and organization role, and also extended
information like expected user location or the public key of an X.509
certificate they have been issued.

Given the sensitive nature of the data being stored on users, it’s best to not
store all information together in a single database. Information about users
isn’t typically considered secret, but becomes sensitive when using such



data to make authorization decisions. Additionally, having broad knowledge
of all users in a system can be a privacy risk. For example, a system that
stores the last known location of all users could be used to spy on users.
Stored user data can also be a security risk, if that data can be leveraged to
attack another system. Consider systems that ask users fact-based
information as a means to further validate their identity.

Instead of storing all user information in a single database, consider
splitting the data into several isolated databases. These databases should
ideally only be exposed via a constrained API, which limits the information
divulged. In the best case, raw data is never divulged, but rather assertions
can be made about a user by the application that has access to the data. For
example, a system that stores a user’s previous known location could
expose the following APIs:

Is the user currently or likely to be near these coordinates?

How frequently does the user change locations?

Directory Maintenance
Keeping user directories accurate is critical for the safety of a zero trust
network. Users are expected to come and go over the lifetime of a network
system, so good onboarding and offboarding procedures should be created
to keep the system accurate.

As much as possible, it’s best to integrate technical identity systems (LDAP
or local user accounts) into organizational systems. For example, a
company might have human resource systems to track employees that are
joining or leaving the company. It is expected that these two sources of data
are consistent with each other, but unless there is a system that has
integrated the two or is checking their contents, the sets of data will quickly
diverge. Creating automated processes for connecting these systems is an
effort that will quickly pay dividends.

The case of two divergent identity systems raises an important point—
which system is authoritative? Clearly one system must be the system of



record for identity, but that choice should be made based on the needs of the
organization. It doesn’t much matter which system is chosen, only that one
is authoritative and all other identity systems derive their data from the
system of record.

MINIMIZING DATA STORED CAN BE HELPFUL
A system of record for identity does not need to contain all identity information. Based
on our earlier discussion, it can be better to purposefully segment user data. The system
of record needs to only store the information that is critical for identifying an individual.
This could be as simple as storing a username and some personal information for the
user to recover their identity should they forget it. Derivative systems can use this
authoritative ID to store additional user information.

When to Authenticate Identity
Even though authentication is mandatory in a zero trust network, it can be
applied in clever ways to significantly bolster security while at the same
time working to minimize user inconvenience.

While it might be tempting (and even logical) to adopt a position of “It’s
not supposed to be easy; it’s supposed to be secure,” user convenience is
among one of the most important factors in designing a zero trust network.
Security technologies that present a poor user experience are often
systematically weakened and undermined by their own users. A poor
experience will disincentivize the user from engaging with the technology,
and shortcuts to sidestep enforcement will be taken more often.

Authenticating for Trust
The act of authenticating a user is, essentially, the system seeking to
validate that the user is indeed who they say they are. As you’ll learn in the
next section, different authentication methods have different levels of
strength, and some are strongest when combined with others. Due to the



fact that these authentication mechanisms are never absolute, we can assign
some level of trust to the outcome of the operation.

For instance, you may need only a password to log into a subscription
music service, but your investment account probably requires a password
and an additional code. This is because investing is a sensitive operation:
the system must trust that the user is authentic. The music service, on the
other hand, is not as sensitive and chooses to not require an additional code,
because doing so would be a nuisance.

By extension, a user may pass additional forms of authentication in order to
raise their level of trust. This can be done specifically in a time of need. A
user whose trust score has eroded below the requirements for a particular
request can be asked for additional proof, which if passed will raise the trust
to acceptable levels.

This is far from a foreign concept; it can be seen in common use today.
Requiring users to enter their password again before performing a sensitive
operation is a prime example of this concept in action. It should be noted,
however, that the amount of trust one can gain through authentication
mechanisms alone should not be unbound. Without it, consequences of poor
device security and other undesirable signals can be washed out.

Trust as the Authentication Driver
Since authentication derives trust, and it is our primary goal to not
frivolously drag users through challenges, it makes sense to use trust score
as the mechanism that mandates authentication requirements. This means
that a user should not be asked to further authenticate if their trust score is
sufficiently high and, conversely, that a user should be asked to authenticate
when their score is too low. This is to say that, rather than selecting
particular actions which require additional authentication, one should assign
a required score and allow the trust score itself to drive the authentication
flow and requirements. This gives the system the opportunity to choose a
combination of methods in order to meet the goal, possibly reducing the



invasiveness by having context about the level of sensitivity and knowledge
of how much each method is trusted.

This approach is fundamentally different from traditional authentication
design approaches, which seek to designate the most sensitive areas and
actions and authenticate them the heaviest, perhaps despite previous
authentication and trust accumulation. In some ways, the traditional
approach can be likened to perimeter security, in which sensitive actions
must pass a particular test, after which no further protections are present.
Instead, leveraging the trust score to drive these decisions removes arbitrary
authentication requirements and installs adaptive authentication and
authorization that is only encountered when necessary.

The Use of Multiple Channels
When authenticating and authorizing a request, using multiple channels to
reach the requestor can be very effective. One-time codes provide an
additional factor, especially when the code-generating system is on a
separate device. Push notifications provide a similar capability by using an
active connection to a mobile device. There are many applications of this
idea, and they can take different forms.

Depending on the use case, one might choose to leverage multiple channels
as an integral part of a digital authentication scheme. Alternatively, those
channels might be used purely as an authorization component, where a
requestor might be prompted to approve a risky operation. Both uses are
effective in their own right, though user experience should (as always) be
kept in mind when deciding when and where to apply them.



CHANNEL SECURITY
Communication channels are constructed with varying degrees of authentication and
trust. When leveraging multiple channels, it is important to understand how much trust
should be placed on the channel itself. This will dictate which channels are selected for
use and when. For instance, physical rotating code devices are only as secure as the
system used to distribute them or the identification check required to physically obtain
one from your administrator. Similarly, a prompt via a corporate chat system is only as
strong as the credentials required to sign in to it. Be sure to use a different channel than
the one you are trying to authenticate/authorize in the first place.

Leveraging multiple channels is effective not because compromising a
channel is hard, but because compromising many is hard. We will talk more
about these points in the next section.

Caching Identity and Trust
Session caching is a relatively mature technology which is well
documented, so we won’t spend too much time talking about it, but it is
important to highlight some design choices that are important for secure
operation in a zero trust network.

Frequent validation of the client’s authorization is critical. This is one of the
only mechanisms allowing the control plane to effect changes in data plane
applications as a result of changes in trust. The more frequently this can be
done, the better. Some implementations authorize every request with the
control plane. While this is ideal, it may not be a realistic prospect,
depending on your situation.

Many applications validate SSO tokens only at the beginning of a session
and set their own tokens after that. This mode of operation removes session
control from the control plane and is generally undesirable. Authorizing
requests with control plane tokens rather than application tokens allows us
to easily revoke when trust levels fluctuate or erode.

How to Authenticate Identity



Now that we know when to authenticate, let’s dig into how to authenticate a
user. The common wisdom, which is also applicable in zero trust networks,
is that there are three ways to identify a user:

Something they know

Knowledge the user alone has (e.g., a password).

Something they have

A physical credential that they user can provide (e.g., a token with a
time-sensitive token).

Something they are

An inherent trait of the user (e.g., a fingerprint or retina).

We can authenticate a user using one or more of these methods. Which
method or methods chosen will depend on the level of trust required. For
high-risk operations, which request multiple authentication factors, it’s best
to choose methods that are not in the same grouping of something you
know, something you have, or something you are. This is because the attack
vectors are generally similar within a particular grouping. For example, a
hardware token (something you have) can be stolen and subsequently used
by anyone. If we pair that token with a second token, it’s highly likely that
both devices will be near each other and stolen together.

Which factors to use together will vary based on the device that the user is
using. For example, on a desktop computer, a password (something you
know) and a hardware token (something you have) is a strong combination
that should generally be preferred. For a mobile device, however, a
fingerprint (something you are) and passphrase (something you know)
might be preferred.



PHYSICAL SAFETY IS A REQUIREMENT FOR
TRUSTING USERS

This section focuses on technological means to authenticate the identity of a user, but
it’s important to recognize that users can be coerced to thwart those mechanisms. A user
can be threatened with physical harm to force them to divulge their credentials or to
grant someone access under a trusted account. Behavioral analysis and historical
trending can help to mitigate such attempts, though they remain an effective attack
vector.

Something You Know: Passwords
Passwords  are the most common form of authentication used in computer
systems today. While often maligned due to users’ tendency to choose poor
passwords, this authentication mechanism provides one very valuable
benefit: when done well, it is an effective method for asserting that a user’s
mind is present.

A good password has the following characteristics:

It’s long

A recent NIST password standard states a minimum of 8 characters, but
20+ character passwords are common among security-conscious
individuals. Passphrases are often encouraged to help users remember a
longer password.

It is difficult to guess

Users tend to overestimate their ability to pick truly random passwords,
so generating passwords from random number generators can be a good
mechanism for choosing a strong password, though convenience is
affected if it cannot be easily committed to memory

It is not reused

Passwords need to be validated against some stored data in a service.
When passwords are reused, the confidentiality of that password is only
as strong as the weakest storage in use.



Choosing long, difficult-to-guess passwords for every service or application
a user interacts with is a high bar for users to meet. As a result, users are
well served to make use of a password manager to store their passwords.
Using this tool will allow users to pick much harder-to-guess passwords and
thereby limit the damage of a data breach.

When building a service that authenticates passwords, it’s important to
follow best practices. Passwords should never be directly stored or logged.
Instead, a cryptographic hash of the password should be stored. The cost to
brute force a password (usually expressed in time and/or memory
requirements) is determined by the strength of the hashing algorithm. The
NIST periodically releases standards documents that include recommended
password procedures. As computers become more powerful, the current
recommendations change, so it’s best to consult industry best practices
when choosing algorithms.

Something You Have: TOTP
Time-based one-time password, or TOTP, is an authentication standard
where a constantly changing code is provided by the user. RFC 6238
defines the standard implemented in hardware devices and software
applications. Mobile applications are often used to generate the code, which
works well, since users tend to have their phones close by.

Whether using an application or hardware device, TOTP requires sharing a
random secret value between the user and the service. This secret and the
current time are passed through a cryptographic hash and then truncated to
produce the code to be entered. As long as the device and the server roughly
agree on the current time, a matching code confirms that the user is in
possession of the shared key.

The storage of the shared key is critical, both on the device and on the
authenticating server. Losing control of that secret will permanently break
this authentication mechanism. The RFC recommends encrypting the key
using a hardware device like a TPM, and then limiting access to the
encrypted data.

https://github.com/usnistgov/800-63-3
https://tools.ietf.org/html/rfc6238


Exposing the shared key to a mobile device places it in greater danger than
it is on a server. The device could connect to a malicious endpoint that
might be able to extract the key. To mitigate this vector, an alternative to
TOTP is to send the user’s mobile phone a random code over an encrypted
channel. This code is then entered on another device to authenticate that the
user is in possession of their mobile phone.

SMS IS NOT A SECURE COMMUNICATION
CHANNEL

Sending the user a random code for authentication requires that the authentication code
is reliably delivered to the intended device and is not exposed during transit. Systems
have previously sent random codes as an SMS message, but the SMS system does make
sufficient guarantees to protect the random code in transit. Using SMS for this system is
therefore not recommended.

Something You Have: Certificates
Another method to authenticate users is to generate per-user X.509
certificates. The certificate is derived from a strong private key and then
signed using the private key of the organization that provided the certificate.
The certificate cannot be be modified without invalidating the
organization’s signature, so the certificate can be used as a credential with
any service that is configured to trust the signature of the organization.

Since an X.509 certificate is meant for consumption by a computer, not by
humans, it can provide much richer details when presented to a service for
authentication. As an example, a system could encode metadata about the
user in the certificate and then trust that data since it has been signed by a
trusted organization. This can alleviate the need to create a trusted user
directory in less mature networks.

Using certificates to identify users relies heavily on those certificates being
securely stored. It is strongly preferred to both generate and store the
private key component on dedicated hardware so as to prevent digital theft.
We’ll talk more about that in the next section.



Something You Have: Security Tokens
Security tokens are hardware devices that are used primarily for user
authentication, but they have additional applications. These devices are not
mass storage devices storing a credential that was provisioned elsewhere.
Instead, the hardware itself generates a private key. This credential
information never leaves the token. The user’s device interacts with the
hardware’s APIs to perform cryptographic operations on behalf of the user,
proving that they are in possession of the hardware.

As the security industry progresses, organizations are increasingly turning
toward hardware mechanisms for authenticating user identity. Devices like
smart cards or Yubikeys can provide a 1:1 assertion of a particular identity.
By tying identity to hardware, the risk that a particular user’s credentials
can be duplicated and stolen without their knowledge is greatly mitigated,
as physical theft would be required.

Storing a private key in hardware is by far the most secure storage method
we have today. The stored private key can then be used as the backing for
many different types of authentication schemes. Traditionally, they are used
in conjunction with X.509, but a new protocol called Universal 2nd Factor
(U2F) is gaining rapid adoption. U2F provides an alternative to full-blown
PKI, offering a lightweight challenge-response protocol that is designed for
use by web services. Regardless of which authentication scheme you
choose, if it relies on asymmetric cryptography, you should probably be
using a security token.

While these hardware tokens can provide strong protections against
credential theft, they cannot guarantee that the token itself isn’t stolen or
misused. Therefore, it’s important to recognize that while these tokens are
great tools in building a secure system, they cannot be a complete
replacement for a user asserting their identity. If we want the strongest
guarantee that a particular user is who they claim to be, using a security key
with addtional authentication factors (e.g., a password or biometric sensor)
is still strongly recommended.



Something You Are: Biometrics
Asserting identity by recognizing physical characteristics of the user is
called biometrics. Biometrics is becoming more common as advanced
sensors are making their way into devices we use every day. This
authentication system offers better convenience and potentially a more
secure system, if biometric signals, such as the following, are used wisely.

Fingerprints

Handprints

Retina scans

Voice analysis

Face recognition

Using biometrics might seem like the ideal authentication method. After all,
authenticating a user is validating that they are who they say they are. What
could be better than measuring physical characteristics of a user? While
biometrics is a useful addition to system security, there are some downsides
that should not be forgotten.

Authenticating via biometrics relies on accurate measurement of a physical
characteristic. If an attacker is able to trick the scanner, they are able to gain
entry. Fingerprints, being a common biometric, are left on everything a
person touches. Attacks against fingerprint readers have been demonstrated
—attackers obtain pictures of a latent fingerprint and then 3D print a fake
one, which the scanner accepts.

Additionally, biometric credentials cannot be rotated, since they’re a
physical characteristic. They can also present an accessibility issue if, for
example, an individual is born without fingerprints (a condition known as
adermatoglyphia) or if they lost their fingers in an accident.

Finally, biometrics can present surprising legal challenges when compared
against other authentication mechanisms. In the United States, for example,
a citizen can be compelled by a court to provide their fingerprint to



authenticate to a device, but they cannot be compelled to divulge their
password, owing to their Fifth Amendment right against self-incrimination.

Out-of-Band Authentication
Out-of-band authentication purposefully uses a separate communication
channel than the original channel the user used to authenticate that request.
For example, a user logging into a website for the first time on a device
might receive a phone call to validate the request. By using an out-of-band
check, a service is able to raise the difficulty of breaking into an account,
since the attacker would need control of the out-of-band communication
channel as well.

Out-of-band checks can come in many forms. These forms should be
chosen based on the desired level of strength needed for each interaction:

A passive email can inform users of potentially sensitive actions that
have recently taken place.

A confirmation can be required before a request is completed.
Confirmation could be a simple “yes,” or it could involve entering a
TOTP code.

A third party could be contacted to confirm the requested action.

When used well, out-of-band authentication can be a useful tool to increase
the security of the system. As with all authentication mechanisms, some
level of taste is required to choose the right authentication mechanism and
frequency, based on the request taking place.

Single Sign On
Given the large number of services users interact with, the industry would
prefer to decouple authentication from end services. Having authentication
decoupled provides benefits to both the service and the user:

Users only need to authenticate with a single service.



Authentication material is stored in a dedicated service, which can have
more stringent security standards.

Security credentials in fewer locations means less risk and eased
rotations.

Single sign-on (SSO) is a fairly mature concept. Under SSO, users
authenticate with a centralized authority, after which they will typically be
granted a token of sorts. This token is then used in further communication
with secured services. When the service receives a request, it contacts the
authentication authority over a secure channel to validate the token
provided by the client.

This is in contrast to decentralized authentication. A zero trust network
employing decentralized authentication will use the control plane to push
credentials and access policy into the data plane. This empowers the data
plane to carry out authentication on its own, whenever and wherever
necessary, while still being backed by control plane policy and concern.
This approach is sometimes favored over a more mature SSO-based
approach since it does not require running an additional service, though it
introduces enough complexity that it is not recommended.

SSO tokens should be validated against the centralized authority as often as
possible. Every call to the control plane to authorize an SSO token provides
an opportunity to revoke access or alter the trust level (as known to the
caller).

A popular mode of operation involves the service performing its own sign
in, backed by SSO authentication. The primary drawback of this approach
is that it allows the control plane to authorize the request only once, and
leaves the application to make all further decisions. Trust variance and
invalidation is a key aspect of a zero trust network, so decisions to follow
this pattern should not be taken lightly.



EXISTING OPTIONS
SSO has been around for a long time, and as such, there are many mature
protocols/technologies to support it, including these popular ones:

SAML

Kerberos

CAS

It is critical that authentication remain a control plane concern in a zero
trust network. As such, when designing authentication systems in a zero
trust network, aim for as much control plane responsibility as possible, and
validate authorization with the control plane as often as is reasonably
possible.

Moving Toward a Local Auth Solution
Local authentication that is extended out into remote services is another
authentication mechanism that is increasingly becoming a possibility. In
this system, users authenticate their presence with a trusted device, and then
the device is able to attest to that identity with a remote service. Open
standards like the FIDO Alliance’s UAF standard use asymmetric
cryptography and local device authentication systems (e.g., passwords and
biometrics) to move trust away from a large number of services to relatively
few user-controlled endpoints.

UAF, in a way, looks a lot like a password manager. However, instead of
storing passwords, it stores private keys. The authenticating service is then
given the user’s public key and is thereby able to confirm that that the user
is in possession of the private key.

By moving authentication into a smart local device, a number of benefits
emerge:

Replay attacks can be mitigated via a challenge-and-response system.



Man-in-the-middle attacks can be thwarted by having the authentication
service refuse to sign the challenge unless it originated from the same
domain the user is visiting.

Credential reuse is nonexistent, since per-service credentials can be
trivially generated.

Authenticating and Authorizing a Group
Nearly every system has a small set of actions or requests that must be
closely guarded. The amount of risk one is willing to tolerate in this area
will vary from application to application, though there is practically no
lower limit.

One of the risks you pass as you approach zero is the amount of trust in any
single human being. Just like in real life, there are many times in which it is
desirable to gain the consent of multiple individuals in order to authorize a
particularly sensitive action. There are a couple ways that this can be
achieved in the digital realm, and the cool part is, we can cryptographically
guarantee it!

Shamir’s Secret Sharing
Shamir’s Secret Sharing is a scheme for distributing a single secret among a
group of individuals. The algorithm breaks the original secret into n parts,
which can then be distributed (Figure 6-2). Depending on how the
algorithm was configured when the parts were generated, k parts are needed
to recalculate the original secret value.

When protecting large amounts of data using Shamir’s Secret Sharing, a
symmetric encryption key is usually split and distributed instead of using
the algorithm directly on data. This is because the size of secret that is being
split needs to be smaller than some of the data used in the secret-sharing
algorithm.



Figure 6-2. An example ssss session

A Unix/Linux version of this algorithm is called ssss. Similar applications
and libraries exist for other operating systems or programming languages.

Red October
Cloudflare’s Red October project is another approach to implementing
group authentication to access shared data. This web service uses layered
asymmetric cryptography to encrypt data such that a certain number of
users need to come together to decrypt the data. Encrypted data isn’t
actually stored on the server. Instead, only user public/private key pairs
(encrypted with a user chosen password) are stored.

When data is submitted to be encrypted, a random encryption key is
generated to encrypt the data. This encryption key is then itself encrypted
using unique combinations of user-specific encryption keys, based on an
unlock policy that the user requests. In the simplest case, a user might
encrypt some data such that two people in a larger group need to collaborate
to decrypt the data. In this scenario, the original encrypted data’s encryption
key is therefore doubly encrypted with each unique pair of user encryption
keys.

http://point-at-infinity.org/ssss/
https://github.com/cloudflare/redoctober


ABOUT DNS ROOT ZONE SIGNING
The DNS Root Zone Signing Ceremony is an interesting example of a
group authentication procedure. This ceremony is used to generate the
root keys upon which all DNSSEC trust is based on. If the root key is
compromised, the entire DNSSEC system’s trustworthiness would be
compromised, so the root key ceremony is built specifically to mitigate
that risk.

The first ceremony occurred on June 16, 2010, and a new ceremony
occurs every quarter. The ceremony utilizes seven actors, each with a
different role. The ceremony mitigates the risk of compromise to a one-
in-a-million chance, assuming a dishonesty rate of 5% among the actors
in the ceremony. A strict procedural document is generated in order to
organize the ceremony. HSMs, biometric scanners, and air-gapped
systems are used to protect the digital key. In the end, a new
public/private key pair is generated and signed, continuing the internet’s
trust anchor for another quarter.

You can read more about the signing ceremony on Cloudflare’s website,
or you can view the materials for each ceremony on IANA’s website.

See Something, Say Something
Users in a zero trust network, like devices, need to be active participants in
the security of the system. Organizations have traditionally formed
dedicated teams to focus on the security of the system. Those teams, more
often than not, took that mandate to mean that they were solely responsible
for the system’s security. Changes needed to be vetted by them to ensure
that the system’s security was not compromised. This approach produces an
antagonistic relationship between the security team and the rest of the
organization, and as result, reduces security.

A better approach is to build a culture of collaboration toward the security
of the system. Users should be encouraged to speak up if something they do

https://www.cloudflare.com/dns/dnssec/root-signing-ceremony/
https://www.iana.org/dnssec/ceremonies


or witness looks odd or dangerous, even if it’s small. This sharing of
knowledge will give much better context on the threats that the security
team is working to defend against. Reporting phishing emails, even when
users did not interact with them, can let the security team know if a
determined attacker is attempting to infiltrate the network.

Devices which are lost or stolen should be reported immediately. Security
teams might consider providing ways for users to alert them day or night in
the event that their device has gone missing.

When responding to tips or alerts from users, security teams should be
mindful of how their response to the incident affects the organization more
broadly. A user who is shamed for losing a device will be less willing to
report the loss in a timely manner in the future. Similarly, a late-night false
alarm should be met with thanks to ensure that reporters don’t second-guess
themselves. As much as possible, try to bias the organization toward over-
reporting.

Trust Signals
Historical user activity is a rich source of data for determining the
trustworthiness of a user’s current actions. A system can be built which
mines user activity to build up a model of expected behavior. This system
will then compare current behavior against that model as a method for
calculating a trust score of a user.

Humans tend to have predictable access patterns. Most people will not try
to authenticate multiple times a second. They also are unlikely to try to
authenticate hundreds of times. These types of access patterns are extremely
suspicious and are often mitigated via active methods like CAPTCHAs
(automated challenges which only a human is able to answer) or locked
accounts. Reducing false positives requires setting fairly high bars to be
actively banned. Including this activity in an overall threat assessment score
can help catch suspicious, but not obviously bad, behavior.



Looking at access patterns doesn’t need to be restricted to authentication
attempts. Users’ application usage patterns can also reveal malicious intent.
Most users tend to have fairly limited roles in an organization and therefore
might only need to access a subset of data that is available to them. In an
attempt to increase security, organizations will begin removing access rights
from employees unless they definitely need the access to do their job.
However, this type of restrictive access control can impact the ability of the
organization to respond quickly to unique events. System administrators are
a class of users which are given broad access, thereby weakening this
approach as a defense mechanism. Instead of choosing between these two
extremes, we can score the user’s activity in aggregate and then use their
score to determine if they are still trusted to access a particularly sensitive
resource. Having hard stops in the system is still important—it’s the less
clear cases where the system should trust users, but verify their
trustworthiness via logged activity.

Lists of known bad traffic sources, like the one provided by Spamhaus, can
be another useful signal for the trustworthiness of a user. Traffic that is
originating from these addresses and is attempting to use a particular user’s
identity can point toward a potentially compromised user.

Geolocation can be another useful signal for determining trust of a user. We
can compare the user’s current location against previously visited locations
to determine if it is out of the ordinary. Has the user’s device suddenly
appeared in a new location in a timeframe that they couldn’t reasonably
travel? If the user has multiple devices, are they reporting conflicting
locations? Geolocation can be wrong or misleading, so systems shouldn’t
weight it too strongly. Sometimes users forget devices at home or
geolocation databases are simply incorrect.

Summary
This chapter focused on how to establish trust in users in a system. We
talked about how identity is defined and the importance of having an
authority to reference when checking the identity of a user in the system.



Users need to be entered into a system to have an identity, so we talked
about some ideal ways to bootstrap their identity.

Identity needs to be stored somewhere, and that system is a very valuable
target for attackers. We talked about how to store the data safely, the
importance of limiting the breadth of data being stored in a single location,
and how to keep stored identity up to date as users come and go.

With authoritative identity defined and stored, we turned our attention to
authenticating users that claim to have a particular identity. Authentication
can be an annoyance for users, so we discussed when to authenticate users.
We don’t want users to be inundated with authentication requests, since that
will increase the likelihood that they accidentally authenticate against a
malicious service. Therefore, finding the right balance is critical.

There are many ways that users can be authenticated, so we dug into the
fundamental concepts. We discussed several authentication mechanisms
that are in use today. We also looked at some authentication mechanisms
that are on the horizon as system security practices are responding to
threats.

Oftentimes, increasing trust in a system of users involves creating
procedures where multiple users play a role to accomplish a goal. We
discussed group authentication and authorization systems like “two person
rules,” which can be used to secure extremely sensitive data. We also talked
about building a culture of awareness in an organization by encouraging
users to report any suspicious activity.

Finally, zero trust networks can leverage user activity logs to build a profile
of users to compare against when evaluating new actions. We enumerated
some useful signals which can be used to build that profile.

The next chapter looks at how trust in applications can be built.



Chapter 7. Trusting
Applications

Marc Andreessen, a notable Silicon Valley investor, famously declared that
“software is eating the world.” In many ways, this statement has never been
truer. It is the software running in your datacenter that makes all of the
magic happen, and as such, it is no secret that we wish to trust its execution.

Code, running on a trusted device, will be faithfully executed. A trusted
device is a prerequisite for trusting code, which we covered in Chapter 5.
However, even with our execution environment secured, we still have more
work to do to trust that the code that’s running on a device is trustworthy.

As such, trusting the device is just half of the story. One must also trust the
code and the programmers who wrote it. With the goal being to ensure the
integrity of a running application, we must find ways to extend this human
trust from the code itself all the way to its actual execution.

Establishing trust in code requires that:

The people producing the code are themselves trusted

The code was faithfully processed to produce a trustworthy application

Trusted applications are faithfully deployed to the infrastructure to be
run

Trusted applications are continually monitored for attempts to coerce the
application with malicious actions

This chapter will discuss approaches to securing each of these steps, with a
focus on the inheritance of trust from human to production application.

Understanding the Application Pipeline



The creation, delivery, and execution of code within a computer system is a
very sensitive chain of events. These systems are an attractive target for
adversaries due to their ability to gain greater access. Attack vectors exist at
every step, and subversion at these stages can be very difficult to detect.
Therefore, we must work to ensure that every link of this chain (shown in
Figure 7-1) is secured in a way that makes subversion detectable.

This process is similar to supply chain security, the collective efforts of
governments around the world to enhance security. Ensuring that military
equipment is securely built/sourced is critical in ensuring the effectiveness
of the fighting force, and software creation and delivery is no different.

SUPPLY CHAIN CRITICALITY
In 2007, the Israeli government conducted an airstrike against a suspected nuclear
facility in Syria. One of many mysteries surrounding this strike is the sudden failure of
Syrian radar systems, providing the Israelis with cover. The failure of these radar
systems, which were supposedly state of the art, is now widely believed to be
attributable to a hardware kill switch hidden in a commercial chip used by the radar
equipment. While never fully verified, stories like this one highlight the importance of
secure supply chains, whether it be hardware or software.

In support of a secure software delivery chain, every step of the process
should be fully auditable with cryptographic validation occurring at each
critical point. Generally speaking, these steps can be broken down into four
distinct phases:

Source code

Build/compilation

Distribution

Execution

Let’s start with trusting the source code itself.

https://en.wikipedia.org/wiki/Operation_Orchard


Figure 7-1. A build pipeline depends on both the security of the engineers creating source and
configuring the system, as well as the security of the components of the pipeline

Trusting Source
Source code is the first step in running any piece of software. To put it very
simply, it’s difficult to trust source code that is written by an untrusted
human. Even with careful code auditing, it is still possible for a malicious
developer to purposefully encode (and hide!) a vulnerability in plain sight.
In fact, there is even a well-known competition dedicated to this dark art.
While even well-meaning developers can inadvertently add weakness to an
application, a zero trust network will focus on identifying malicious use
instead of removing trust from those users.

Setting the trusted developer problem aside for a minute, we still face the
problem of securely storing and distributing the source code itself.
Typically, source code is stored in a centralized code repository, against

http://www.underhanded-c.org/


which many developers interact and commit work. These repositories must
also fall under tight control, particularly if they are being used directly by
systems that build/compile the code in question.

Securing the Repository
Maintaining traditional security approaches when it comes to securing a
software repository is still effective, and does not prohibit the addition of
more advanced security features. This includes basic principles such as the
principle of least access, whereby users are only given as much access to
the repository as is required to complete the task at hand. In practice, this
usually manifests itself as heavily limited/restricted write access.

While this approach is still valid and recommended, the story has changed a
little bit with the introduction of distributed source control. With the code
repository living in multiple places, it is not always possible to secure a
single, centralized entity. In this circumstance, however, there remains an
analog for this centralized repository—the system storing the code from
which the build system reads.

In this case, it is still highly desirable to protect this system through
traditional means; however, the problem becomes more difficult since code
can enter the distributed repository in any number of ways. The logical
extension, then, is that securing the build source repository alone is not
enough.

Authentic Code and the Audit Trail
Many version control systems (VCS), particularly those which are
distributed, store source history using cryptographic techniques. This
approach, called content addressable storage, uses the cryptographic hash of
the content being stored as the identifier of that object in a database, rather
than its location or coordinates. It’s possible to see how a source file could
be hashed and stored in such a database, thereby ensuring that any change
in the source file results in a new hash. This property means that files are



stored immutably: it’s impossible to change the contents of the files once
stored.

Some VCS systems take this storage mechanism a step further by storing
the history itself as an object in the content addressable database. Git, a
popular distributed VCS project, stores the history of commits to the
repository as a directed acyclic graph (DAG). The commits are objects in
the database, storing details like the commit time, author, and identifiers of
ancestor commits. By storing the cryptographic hashes of ancestor commits
on each commit itself, we form a Merkle tree, which allows one to
cryptographically validate that the chain of commits are unmodified
(Figure 7-2).

If a commit in the DAG were to be modified, its update will affect all the
descendant commits in the graph, changing each commit’s content, and by
extension, its identifier. With the source history distributed to many
contributors, the system gains another beneficial property: it’s impossible to
change the history without other contributors noticing.



Figure 7-2. Git’s database makes unwanted changes difficult, since objects are referenced using a
hash of their contents

Storing the DAG in this manner gives us tamper-proof history: it’s
impossible to change the history subversively. However, this storage does
nothing to ensure that new commits in the history are authorized and
authentic. Imagine for a moment that a trusted developer is persuaded to
pull a malicious commit into their local repository before pushing it to the
official repository. This commit is now in the repository by leaning on the
trusted developer’s push access. Even more concerning, the authorship
metadata is just plain text: a malicious committer can put whatever details
they want in that field (a fact that was used amusingly to make commits
appear to be authored by Linus Torvalds on GitHub).

To guard against this attack vector, Git has the ability for commits and tags
to be signed using the GPG key of a trusted developer. Tags, which point to
the head commit in a particular history, can be signed using a GPG key to
ensure the authenticity of a release. Signed commits allow one to go a step
further and authenticate the entire Git history, making it impossible for an
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attacker to impersonate another committer without first stealing that
committer’s GPG key.

Signed source code clearly provides significant benefit and should be used
wherever possible. It provides robust code authentication not only to just
humans, but machines too. This is especially important if CI/CD systems
build and deploy the code automatically. A fully signed history allows build
systems to cryptographically authenticate the code as trusted before
compiling it for deployment.

IN THE BEGINNING, THERE WAS NOTHING
Many repositories begin with unsigned commits, transitioning to signed commits later
on. In this brownfield case, the first commit to be signed is essentially endorsing all
commits that came before it. This is important to understand, as you may wish to
perform an audit at this time. Having said that, the overhead or difficulty of performing
such an audit should not dissuade or delay the transition to signed code; the audit, if you
choose to do one, can be performed in due time.

Code Reviews
As we learned in Chapter 6, it can be dangerous to concentrate powerful
capabilities onto a single user. This is no different when considering source
code contributions. Signed contributions enable us to authenticate the
developer committing the code, but does not ensure that the code being
committed is correct or safe. Of course, we do place a nontrivial amount of
trust in the developer, though this does not mean that said developer should
unilaterally commit code to sensitive projects.

To mitigate this risk, most mature organizations implement a code review
process. Under code review, all contributions must be approved by one or
more additional developers. This simple process drastically improves not
just the quality of the software, but also reduces the rate at which
vulnerabilities are introduced, whether they be intentional or accidental.



Trusting Builds
Build servers are frequently targeted by persistent threats, and for good
reason. They have elevated access, and produce code that is executed
directly in production. Detecting artifacts that have been compromised
during the build stage can be very difficult, so it is important to apply strong
protections to these services.

The Risk
In trusting a build system, there are generally three things that we want to
assert:

The source code it built is the code we intended to build.

The build process/configuration is that which we intended.

The build itself was performed faithfully, without manipulation.

Build systems can ingest signed code and produce a signed output, but the
function(s) applied in between (i.e., the build itself) is generally not
protected cryptographically—this is where the most significant attack
vector lies.

This particular vector is a powerful one, as shown in Figure 7-3. Without
the right processes and validation, subversion of this kind can be difficult or
impossible to detect. For instance, imagine a compromised CI/CD system
that ingests signed C code, and compiles it into a signed binary, which is
then distributed and run in production. Production systems can validate that
the binary is signed, but would have no way of knowing if additional
malicious code has been compiled in during the build process. In this way, a
seemingly secure system can successfully run malicious code in production
without detection. Perhaps even worse, the consumers are fooled into
thinking the output is safe.



Figure 7-3. The build configuration and its execution is not protected cryptographically, in contrast
to the source code and the generated artifact. This break in the chain poses great threat, and is a

powerful attack vector.

Due to the sensitive nature of the build process, outsourcing the
responsibility should be carefully evaluated. Things like reproducible builds
can help identify compromises in this area (more on that in a bit), but can’t
always prevent their distribution. Is this really something you want a third-
party provider to do for you? How much do you trust them? Their security
posture should be weighed against your own chance of being a high value
target.

HOST SECURITY IS STILL IMPORTANT
This section focuses on securing various steps of the software build process, but it is
important to note that the security of the build servers themselves is still important. We
can secure the input, output, and configuration of the build, but if the build server is
compromised then it can no longer be trusted to faithfully perform its duties.
Reproducible builds, immutable hosts, and the zero trust model itself can help in this
regard.

Trusted Input, Trusted Output



If we think of the build system as a trusted operation, it’s clear that we need
to trust the input of that operation in order to produce trusted output.

Let’s start with trusting the input to the build system. We discussed
mechanisms for trusting the source control systems earlier. The build
system, as a consumer of the version control system, is responsible for
validating the trustworthiness of the source. The version control system
should be accessed over an authenticated channel, commonly TLS.
Additionally, for extra security guarantees, tags and/or commits should be
signed and the build system should validate those signatures—or chain of
signatures—before starting a build.

The build configuration is another important input to the build system.
Attacking the build configuration could allow an attacker to direct the build
system to link against a malicious library. Even seemingly safe optimization
flags can be malicious in security critical code, where timing attack
mitigation code can be accidentally optimized away. Putting this
configuration under source control, where it can be versioned and attested
to via signed commits, helps to ensure that the build configuration is also a
trusted input.

With the input sufficiently secured, we can turn our attention to the output
of the build process. The build system needs to sign the generated artifacts
so downstream systems can validate their authenticity. Build systems
typically also generate cryptographic hashes of the build artifacts to guard
against corruption or malicious attempts to replace the binaries once
produced. Securing the build artifacts and hashes, and then distributing
them to downstream consumers, completes the trusted output of the build
system.

Reproducible Builds
Reproducible builds are the best tool we have in guarding against
subversion of the build pipeline. In short, software supporting reproducible
builds is compiled in a deterministic way, ensuring that the resulting binary
is exactly the same for a given source code, no matter who built it. This is a
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very powerful property, as it allows multiple parties to examine the source
code and produce identical builds, thus gaining confidence that the build
process used to generate a particular binary was not tampered with.

This can be done in a number of ways, but it generally involves a codified
build process, and enables developers to set up their own build environment
to produce binaries that match the distributed versions bit-for-bit. With
reproducible builds, one can “watch” the output of a CI/CD system, and
compare its output to results compiled locally. In this way, malicious
interference or code injection during the build process can be easily
detected. When combined with signed source code, we arrive at a fairly
robust process that is able to authenticate both the source code and the
binary produced by it.

VIRTUALIZED BUILD ENVIRONMENTS ENABLE
REPRODUCIBLE BUILDS

Having reproducible builds sounds easy on paper, but reproducing a built binary so it’s
byte for byte identical is a very hard problem. Distributions have historically built
packages inside a virtual filesystem (a chroot jail) to ensure that all dependencies of the
build are captured in the build configuration. Virtual machines or containers can be
useful tools to ensure that the build environment is fully insulated from the host running
the build.

Decoupling Release and Artifact Versions
Immutable builds are critical in ensuring the security of a build and release
system. Without it, replacing a known good version is possible, opening up
the door for attacks that target the underlying build artifact. This would
enable an attacker to masquerade a “bad” version as a “good” version. For
this reason, artifacts generated by build systems should have Write Once
Read Many semantics.

Given the immutable artifact requirement, a natural tension arises with the
versioning of those artifacts. Many projects prefer to use meaningful
version numbers (e.g., semantic versioning) in their releases to



communicate the potential impact to downstream consumers with an
upgrade of their software. This desire to attach meaning to the version
number can be difficult to incorporate into a build system that needs to
ensure that every version is immutable.

For example, when working toward a major release, a project might have a
misconfigured build that causes the build system to produce incorrect
output. The maintainers now face a choice. They could republish the release
using a patch-level bump, or they might decide to bend the rules and
republish the same version using a new build artifact. Many projects choose
the latter option, preferring the benefit of a clearer marketing story than the
more correct reversion. This is a bad habit to get into when considering the
masquerade just described.

It’s clear from this example that in either case, two separate build artifacts
were produced, and the version number associated with the build artifact is
a separate choice for the project. Therefore, when creating a build system,
it’s better to have the build system produce immutable versions independent
of the publicly communicated version. A later system (the distribution
system) can manage the mapping of release versions to build artifact
versions. This approach enables us to maintain immutable build artifacts
without sacrificing usability or introducing bad security practices.

Trusting Distribution
The process of choosing which build artifacts to deliver to downstream
consumers is called distribution. The build system produces many artifacts,
some of which are meant for downstream consumption. Therefore, we need
to ensure that the distribution system maintains control over which artifacts
are ultimately delivered.

Promoting an Artifact
Based  on our earlier discussion on immutable build artifacts, promotion is
the act of designating a build artifact as the authoritative version without



changing the contents of that artifact. This act itself should be immutable:
once a version is assigned and released, it cannot be changed. Instead, a
new artifact needs to be produced and released under an incrementally
higher version number.

This constraint presents a chicken-and-egg scenario. Software typically
includes a way to report its version number to the user, but if the version
number isn’t assigned until later in the build process, how does one add that
version information without changing the build artifact?

A naive approach would be to subtly change the artifact during the
promotion process, for example, by having the version number stored in a
trivially modified location in the build artifact. This approach, however, is
not preferred. Instead, release engineers should make a clear separation
between the publicly released version number and the build number, which
is an extra component of the release information. With this model, many
build artifacts are produced which use the same public release version, but
each build is additionally tagged with a unique build number (Figure 7-4).
The act of releasing that version is therefore choosing the build artifact that
will be signed and distributed. Once such a version is released, all new
builds should be configured to use the next target version number.

Figure 7-4. This Firefox public release version is 51.0.1, but the package name retains a build ID

Of course, this promotion must be communicated to the consumer in a way
that they can validate they are in possession of the promoted build, and not
some intermediary and potentially flawed build. There are a number of
ways to do this, and it is largely a solved problem. One solution is to sign
the promoted artifacts with a release-only key, thus communicating to the



consumers that they have a promoted build. Another way to do this is to
publish a signed manifest, outlining the released versions and their
cryptographic hashes. Many popular package distribution systems, such as
APT, use this method to validate builds obtained from their distribution
systems.

Distribution Security
Software distribution is similar to electricity distribution, where electricity
is generated by a centralized source, and carried over a distribution network
in order to be delivered to a wide consumer base. Unlike electricity,
however, the integrity of the produced software must be protected while it
transits the distribution system, and allow the consumer to independently
validate its integrity. There are a number of widely adopted package
distribution and management systems, practically all of which have
implemented protections around the distribution process and allow
consumers to validate the authenticity of packages received through them.
Throughout this section, we will use the popular package management
software Advanced Packaging Tool (APT) as an example of how certain
concepts are implemented in real life, though it is important to keep in mind
that there are many options available to you—APT is merely one.

Integrity and Authenticity
There are two primary mechanisms used to assert integrity and authenticity
in software distribution systems: hashing and signing. Hashing a software
release involves computing and distributing a cryptographic hash
representing the binary released, which the consumer can validate to ensure
that the binary has not been changed since it left the hands of the developer.
Signing a release involves the author encrypting the hash of the release with
their private key, allowing consumers to validate that the software was
released by an authorized party. Both methods are effective, and are not
necessarily mutually exclusive. In order to better understand how these
methods can be applied in a distribution system, it is useful to look at the
structure and security of an APT repository.



An APT repository contains three types of files: a Release file, a Packages
file, and the packages themselves. The packages file acts as an index for all
of the packages in the repository. It stores a bit of metadata on every
package the repository contains, such as filenames, descriptions, and
checksums. The checksum from this index is used to validate the integrity
of the downloaded package before it is installed. This provides integrity,
assuring us that the contents have not changed in flight. It is, however,
mostly only effective against corruption, since an attacker can simply
modify the index hashes if the goal is to deliver modified software. This is
where the Release file comes in.

The Release file contains metadata about the repo itself (as opposed to the
Packages file, which stores metadata about the packages contained within
it). This includes things like the name and version of the OS distribution the
repo is meant for. It also includes a checksum of the Packages file,
allowing the consumer to validate the integrity of the index, which in turn
can validate the integrity of the packages we download. That’s great, except
still an attacker can simply modify the Release file with the updated hash
of the Packages file and be on their way.

So, we introduce cryptographic signatures (Figure 7-5). A signature
provides not only integrity for the contents of the signed file (since a hash is
included in the signature), but also authenticity, since successful decryption
of the signature proves that the generating party was in the presence of the
private key.

Using this principle, the maintainer of the software repo signs the Release
file with a private key, to which there is a well-known and well-distributed
public key. Any time the repo is updated, package file hashes are updated in
the index, and the index’s final hash is updated in the Release file, which is
then signed. This chain of hashes, the root of which is signed, provides the
consumer with the ability to authenticate the software they are about to
install.

In the event that you’re unable to sign a software release in some way, it is
essential to fall back to standard security practices. You will need to ensure



that all communication is mutually authenticated—this means traffic to,
from, and in between any distribution repository. Additionally, you’ll need
to ensure that the storage the repository leverages is adequately secured, be
it AWS S3 or otherwise.

Figure 7-5. The maintainer signs the Release file, which contains a hash of the Packages index,
which contains hashes of the packages themselves

Trusting a Distribution Network
When distributing software with a large or geographically disparate
consumer base, it is common to copy the software to multiple locations or
repositories in order to meet scaling, availability, or performance
challenges. These copies are often referred to as mirrors. In some cases,
particularly when dealing with publicly consumed software, the servers
hosting the mirrors are not under the control of the organization producing
the software. This is obviously a concern, and underscores the requirement



of a software repo to be authenticated against the author (and not the repo
owner).

Referring back to APT’s hashing and signing scheme, it can be seen that we
can, in fact, authenticate the Release file against the author using its
signature. This means that for every mirror we access, we can check the
Release signature to validate that the mirror is in fact a faithful copy of the
original release.

One might think that by signing the Release file, software can be
distributed through untrusted mirrors safely. Additionally, repositories are
often hosted without TLS under the assertion that the signing of the release
is sufficient for protecting the distribution network. Unfortunately, both of
these assertions are incorrect.

There are several classes of attacks that open up when connecting to an
untrusted mirror, despite the fact that the artifact you’re obtaining is
ultimately signed. For instance, a downgrade to an older (signed) version
can be forced, as the artifact served will still be legitimate. Other attack
vectors can include targeting the package management client itself. In the
interest of protecting your clients, always make sure they are connecting to
a trusted distribution mirror.

The dearth of TLS-protected repositories presents another vulnerability to
the distribution of software. Attackers that are in a position to modify the
unprotected response could perform the same attacks that an untrusted
mirror could. Therefore, the best solution to this problem is moving
package distribution to TLS-protected mechanisms. By adding TLS, clients
can validate that they are in fact connecting to a trusted repository and that
no tampering of the communication can occur.

Humans in the Loop
With a secure pipeline crafted, we can make considered decisions on where
humans are involved in that pipeline. By limiting human involvement only
to a few key points, the release pipeline stays secure while also ensuring



that attackers are not able to leverage automation in the pipeline to deliver
malicious software.

The ability to commit code to the version control system is a clear spot
where humans are involved. Depending on the sensitivity of the project,
requiring humans to only check in signed commits provides strong
confidence that the commit is authentic.

Once committed, humans needn’t be involved in the building of software
artifacts. Those artifacts should ideally be produced automatically in a
secured system. Humans should, however, be involved in the process of
choosing which artifact is ultimately distributed. This involvement could be
implemented using various mechanisms: copying an artifact from the build
database to the release database or tagging a particular commit in source
control, for example. The mechanism by which humans certify a releasable
binary doesn’t much matter, as long as that mechanism is secured.

It’s tempting when building secure systems to apply extreme measures to
mitigate any conceivable threat, but the burden placed on humans should be
balanced against the potential risk. In the case of software that is widely
distributed, the private signing key should be well guarded, since the effort
of rotating a compromised key would be extreme. Organizations that
release software like this will commonly use “code signing ceremonies,”
where the signing key is stored on a hardware security module (HSM) and
unlocked using authorization from multiple parties, as a mitigation against
the theft of this highly sensitive key. For internal use–only software, the
effort to rotate a key might be reasonably less, so more lax security
practices are reasonable. An organization might still prefer a code signing
ceremony for particularly sensitive internal applications—a system that
stores credit card details, for example.



HUMANS AND CODE SIGNING KEYS
Bit9 is a software security firm that develops an application enabling application
whitelisting. They had many high-profile clients, from government agencies to Fortune
100 companies. In 2013, an attack against their corporate network was able to recover
one of Bit9’s private code signing keys, which was then used to sign and install malware
into a handful of its customers. It is widely believed that this was done in order to
bypass the strong security provided by Bit9’s software itself, and underscores the
importance of securing code signing keys. If you carry high risk, as Bit9 did, it might be
a good idea to employ a code signing ceremony.

Trusting an Instance
Understanding what is running in your infrastructure is important when
designing a zero trust network. After all, how can you know what to expect
on your network if you don’t know what to expect on your hosts? A solid
understanding of the software (and versions) running in your datacenter will
go a long way in both breach detection and vulnerability mitigation.

Upgrade-Only Policy
Software versions are important constructs in determining exactly which
version of the code you have and how old it is. Perhaps most importantly,
they are used heavily in order to determine what vulnerabilities one might
be exposed to, given the version they are running.

Vulnerability announcements/discoveries are typically associated with a
version number (online service vulnerabilities being the exception), and
generally include the version numbers in which the vulnerability was fixed.
With this in mind, we can see that it might be desirable to induce a version
downgrade in order to expose a known vulnerability. This is an effective
attack vector as the software being coerced to run is frequently authorized
and trusted, since it is a perfectly valid release, albeit an older one.

If the software is built for internal distribution, perhaps the distribution
system serves only the latest copy. Doing this prevents a compromised or
misconfigured system from pulling down an old version that may contain a



known vulnerability. It is also possible to enforce this roll-forward
mentality in hardware. Apple iOS famously uses a hardware security chip
to validate software updates and to ensure that only signed software built
after the currently installed software can be loaded.

Authorized Instances
The importance of knowing what’s running is more nuanced than simply
understanding what is the latest version to have been deployed. There are
many edge cases that arise, such as a host that has fallen out of the
deployment system; one that has been previously authorized but is now
“rogue” by way of no longer receiving updates. In order to guard against
cases like this, it’s critical that running instances be individually authorized.

It is possible to use techniques described in Chapter 4 to build dynamic
network policy in an effort to authorize application instances, but network
policy is often host/device oriented rather than application oriented. Instead,
we can leverage something much more application-centric in the pursuit of
authorizing a running instance: secrets.

Most running applications require some sort of secret in order to do their
job. This secret can manifest itself in many ways: an API key, an X509
certificate, or even credentials to a message queue are common examples.
Applications must obtain the secret(s) in order to run, and furthermore, the
secret must be valid. The validity of a secret (as obvious as it sounds) is the
key to authorizing a running application, as with validation comes
invalidation.

Attaching a lifetime to a secret is extremely effective in limiting its abuse.
By creating a new secret for every deployed instance and attaching a
lifetime to the secret, we can assert that we know precisely what is running,
since we know precisely how many secrets we have generated, whom we
gave them to, and their lifetimes. Allowing secrets to expire mitigates the
impact of “rogue” instances by ensuring they will not operate indefinitely.

Of course, someone must be responsible for generating and injecting these
secrets at runtime, and this is no small responsibility. The system carrying



this responsibility is ultimately the system that is authorizing the instance to
run. As such, it makes sense for this responsibility to fall in the hands of the
deployment system, since it already carries similar responsibility.



TRUSTED THIRD PARTIES IN INSTANCE
AUTHORIZATION

Rather than giving your deployment system direct access to secrets, it is
possible to leverage a trusted third party, allowing the deployment
system to instead assign policy dictating which secrets the running
instance can access. Hashicorp’s Vault, for instance, has a feature called
response wrapping in which an authorized party can request a secret to
be generated and stored for later retrieval. In the context of a
deployment system, the deploy itself could contact Vault and direct the
creation of secrets on behalf of the authorized instances, injecting a one-
time-token into the runtime which the application can use to retrieve the
generated secrets, as shown in Figure 7-6.

In such a system, the deployment service notifies the secret
management service of the impending changes, authorizing the new
application instances. During the deploy itself, the deployment service
injects key(s), which the new instances use to identify themselves to the
secret management system, which is expecting their request. The secret
management system then provisions unique time-bound credentials,
returns them to the application, and further continues to manages their
lifecycle.



Figure 7-6. Example flow of a system that provisions per-deployment credentials

It doesn’t take much thought to realize the power of a system which can
create and (potentially) retrieve secrets. With great power comes great
responsibility. If allowing an autonomous system to generate and distribute
secrets comes with too much risk for your organization, you might consider
including a human at this step. Ideally, this would manifest as a human-
approved deployment in which a TOTP or other authenticating code is
provided. This code will, in turn, be used to authorize the creation/retrieval
of the secrets by the deployment system.

Runtime Security
Trusting that an application instance is authorized/sanctioned is only one
half of the concern. There is also the need to validate that it can run safely
and securely through its lifecycle. We know how to deploy an application



securely, and validate that its deployment is authorized, but will it remain
an authorized and trustworthy deployment for the entirety of its life?

There are many vectors which can compromise perfectly authorized
application instances, and it might be no surprise to learn that these are the
most commonly used vectors. For instance, it is typically easier to corrupt
an existing government agent than it is to masquerade as one or attempt to
become one. For this reason, individuals with outstanding debt are
commonly denied security clearance. They might be fully trusted at the
time they are granted clearance, but how susceptible are they to bribery if
they are in debt? Can they be trusted in this case?

Secure Coding Practices
Most (all?) application-level vulnerabilities start with a latent bug, which an
attacker can leverage to coerce the trusted application to perform an
undesirable action. Fixing each bug in isolation will result in a game of
whack-a-mole, where developers fix one security-impacting bug only to
find two more. Truly mitigating this exposure requires a shift in mindset of
the application developers to secure coding practices.

Injection attacks, where user-supplied data is crafted to exploit a weakness
in an application or related system, commonly occur when user data is not
properly validated before being processed. This type of attack is mitigated
by introducing several layers of defenses. Application libraries will
carefully construct APIs that avoid trusting user-supplied data. Database
querying libraries, for example, will provide APIs to allow the programmer
to separate the static query from variables that are provided by the user. By
instituting a clear separation between logic and data, the potential for
injection attacks is greatly reduced.

Having clear APIs can also support automated scans of application
software. Security-aware organizations are increasingly running automated
analysis tools against their source code to detect and warn application
developers of insecure coding practices. These systems warn about using
insecure APIs, for example, by highlighting database queries that are



constructed using string concatenation instead of the API discussed earlier.
Beyond warning about insecure APIs, application logic can be traced to
identify missing checks. For example, these tools might confirm that every
system transaction includes some authorization check, which mitigates
vulnerabilities that allow attackers to reference data that they should not be
allowed to access. These examples represent only a handful of the
capabilities possessed by code analysis tools.

Proactively identifying known vulnerabilities is useful, but some
vulnerabilities are too subtle to deterministically detect. As a result, another
mitigation technique in use is fuzzing. This practice sends random data to
running applications to detect unexpected errors. These errors, when
exposed, are often the sort of weaknesses that attackers use to gain a
foothold in the system. Fuzzing can be executed as part of a functional
testing suite early in the build pipeline, or even continuously against
production infrastructure.

There are entire books written on secure coding practices, some of which
are dependent on the type of application being created. Programmers should
familiarize themselves with the appropriate practices to improve the
security of their applications. Many organizations choose to have security
consultants inspect their applications and development practices to identify
problems.

Isolation
Isolating deployed applications by constraining the set of resources they can
access is important in a zero trust network. Applications have traditionally
been executed inside a shared environment, where a user’s applications are
running in an execution environment with very few constraints on how
those applications can interact. This shared environment creates a large
amount of risk should an application be compromised, and presents
challenges similar to the perimeter model.

Application isolation seeks to constrain the damage of a potentially
compromised application by clearly defining the resources that are available



to the application. Isolation will constrain capabilities and resources that the
operating system provides:

CPU time

Memory access

Network access

Filesystem access

System calls

When implemented at its best, every application is given the least amount
of access necessary to complete its work. A well-constrained application
that becomes compromised will quickly find that no additional leverage in
the larger system is gained. As a result, by isolating applications, the
potential damage from a compromised application is greatly reduced. In a
multiprocess environment (e.g., a server running several services), other
still-safe services are protected from attempts to move laterally on that
system.

Application isolation can be accomplished using a number of different
technologies:

SELinux, AppArmor

BSD jails

Virtualization/containerization

Apple’s App Sandbox

Windows’ Isolated Applications

Isolation is generally seen as breaking down into two types: virtualization
and shared kernel environments. Virtualization is often considered more
secure, since the application is contained inside a virtual hardware
environment, which is serviced by a hypervisor outside the VM’s execution



environment. Having a clear boundary between the hypervisor and the
virtual machine creates the smallest surface area of the two.

Shared kernel environments, like those used in containerized or application
policy systems, provide some isolation guarantees, but not to the same
degree as a fully virtualized system. A shared kernel execution environment
uses fewer resources to run the same set of applications, and is therefore
gaining favor in cost-conscious organizations. As virtualization tries to
address the resource-efficiency problem, by providing more direct access to
the underlying hardware, the security benefits of the virtualized
environment begin to look more like the shared kernel environment.
Depending on your threat model, you may choose to not share hardware at
all.

Active Monitoring
As with any production system, careful monitoring and logging is of the
utmost importance, and is particularly critical in the context of security.
Traditional security models focus their attention on external attack vectors.
Zero trust networks encourage the same level of rigor for internal activity.
Early detection of an attack could be the difference between complete
compromise and prevention altogether.

Apart from the general logging of security events throughout the
infrastructure such as failed or successful logins, which is considered
passive monitoring, there exists an entire class of active monitoring as well.
For instance, the fuzzing scans we previously discussed can take time to
turn up new vulnerabilities—perhaps more time than you’re willing to
spend early on in the release pipeline. An active monitoring strategy
advocates that the scans also be run against production, continuously.



DON’T DO THAT IN PRODUCTION!
Occasionally, the desire to take certain actions in production can be met with resistance
for fear of impacting availability or stability of the overall system. Security scans
frequently fall into this bucket. In reality, if a security scan can destabilize your system,
then there is a greater underlying problem, which might even be a vulnerability in and of
itself. Rather than avoiding potentially dangerous scans in production, ask why they
might be risky, and work to ensure that they can be run safely by resolving any system
deficiencies contributing to the concern.

Of course, fuzzing is just one example. Automated scanning can be a useful
tool for ensuring consistent behavior in a system. For example, a database
of anticipated listening services could be compared against an automated
scan of actual listening services so deviations can be addressed. Not all
scanning will result in such clear action, however. Scanning of installed
software, for example, will typically be used to drive prioritization of
upgrades based on the threats a network is exposed to or expects to see.

Effective system scanning requires multiple types of scanner, each of which
inspects the system in a slightly different manner:

Fuzzing (i.e., afl-fuzz)

Injection scanning (i.e., sqlmap)

Network port scanning (i.e., nmap)

Common vulnerability scanning (i.e., nessus)

So, what to do when all this monitoring actually discovers something? The
answer typically depends on the strength of the signal. Traditionally,
suspicious (but not critical) events get dumped into reports and periodically
reviewed. This practice is by far the least effective, as it can lead to report
fatigue, with reports going unnoticed for weeks at a time. Alternatively,
important events can page a human for active investigation. These events
have a strong enough signal to warrant waking someone up. In most cases,
this is the strongest line of defense.



APPLICATIONS MONITORING APPLICATIONS
One novel idea in the context of application security monitoring is the idea that
applications participating in a single cluster or service can actively monitor the health of
their peers, and gain consensus with others on their sanity. This might manifest itself as
TPM quotes, behavioral analysis, and everything in between. By allowing applications
to monitor each other, you gain a high signal-to-noise ratio while at the same time
distributing the responsibility throughout the infrastructure. This approach most
effectively guards against side-channel attacks, or attacks enabled through multi-
tenancy, since these vectors are less likely to be shared across the entire cluster.

In highly automated environments, however, a third option opens up: active
response. Strong signals that “something is wrong” can trigger automated
actions in the infrastructure. This could mean revoking keys belonging to
the suspicious instance, booting it out of cluster membership, or even
signaling to datacenter management software that the instance should be
moved offline and isolated for forensics.

Of course, as with any high-level automation, one can do a lot of damage
very quickly when utilizing active responses. It is possible to introduce
denial-of-service attacks with such mechanisms, or perhaps more likely,
shut down a service as a result of operator error. When designing active
response systems, it is important to put a number of fail-safes in place. For
instance, an active response that ejects a host from a cluster should not fire
if the cluster size is dangerously low. Being thoughtful about building
active response limitations such as this goes a long way in ensuring the
sanity of the active response process itself.

Summary
This chapter dove into how applications in a zero trust network are secured.
It might seem counter-intuitive that a zero trust network needs to be
concerned with application security. After all, the network is untrusted so
untrustworthy applications existing on the network should be expected.
However, while the network works to detect and identify malicious
application activity, that goal is made impossible if deployed applications



are not properly vetted before being authorized to run. As a result, most of
this chapter focused on how to securely develop, build and deploy
applications in a zero trust network, and then monitor the running instances
to ensure that they stay trustworthy.

The chapter introduced the concept of a trusted application pipeline, which
is the mechanism by which software written by trusted developers is
transformed into built applications that are then deployed into
infrastructure. This pipeline is a highly valuable target for would-be
attackers, and so it deserves special attention. We dug into secure source
code hosting practices, sound practices for turning source code into trusted
artifacts, and securely selecting and distributing those artifacts to
downstream consumers. The application pipeline can be visualized as a
series of immutable transformations on input from earlier in the pipeline, so
we explored how to meet the goals of that pipeline without introducing too
much friction in the process.

Human attention is a scarce but important resource in a secure system. With
the rate of software releases ever increasing, it’s important to mindfully
consider when humans are best introduced in the proces. We discussed
where to put humans in the loop to ensure that the pipeline remains secure.

Once applications are built, the process of securing their continued
execution in a production environment shifts a bit. Old trusted applications
may in the future become untrusted as vulnerabilities are discovered, so we
discussed the importance of an upgrade-only policy when running
applications. Secrets management is often a difficult task for security
engineers, where changing credentials is often very burdensome. With a
smooth credential provisioning process, however, a new opportunity
emerges to frequently rotate credentials, using the credentialing process
itself as a mechanism for ensuring only authorized applications continue to
run in a production environment.

We ended the chapter with a section discussing good application security
hygiene. Learning secure coding practices, deploying applications in



isolated environments, and then monitoring them aggressively is the final
leg in a trustworthy production environment.

With all the components of a zero trust network explored, the next chapter
focuses on how network communication itself is secured.



Chapter 8. Trusting the Traffic

Authenticating and authorizing network flows is a critical aspect of a zero
trust network. In this chapter, we’re going to discuss how encryption fits
into the picture, how to bootstrap flow trust by way of secure introduction,
and where in your network these security protocols best fit.

Zero trust is not a complete departure from everything we know. Traditional
network filtering still plays a significant role in zero trust networks, though
its application is nontraditional. We’ll explore the role filtering plays in
these networks toward the end of this chapter.

Encryption Versus Authentication
Encryption and authenticity often go hand in hand, yet serve distinctly
separate purposes. Encryption ensures confidentiality—the promise that
only the receiver can read the data you send. Authentication enables a
receiver to validate that the message was sent by the thing it is claiming to
be.

Authentication comes with another interesting property. In order to ensure
that a message is in fact authentic, you must be able to validate the sender
and that the message is unaltered. Referred to as integrity, this is an
essential property of message authentication.

Encryption is possible without authentication, though this is considered a
poor security practice. Without validation of the sender, an attacker is free
to forge messages, possibly replaying previous “good” messages. An
attacker could change the ciphertext, and the receiver would have no way of
knowing. There are a number of vectors opened by the omission of
authentication, so the recommendation is pretty much the same across the
board: use it.



Authenticity Without Encryption?
Message authenticity is a stated requirement of a zero trust network, and it
is not possible to build one without it. But what about encryption?

Encryption brings confidentiality, but it can also be an occasional nuisance.
Troubleshooting becomes harder when you can’t read packet captures
without complicated decryption processes. Intrusion detection becomes
difficult to impossible if the network traffic can’t be inspected. There are, in
fact, some legitimate reasons to avoid encryption.

That said, be absolutely certain that you do not care about
data confidentiality if you choose to not use encryption. While keeping data
unencrypted is convenient for administrators, it is never legitimate if the
data actually requires confidentiality. For instance, consider the scenario
shown in Figure 8-1.

Figure 8-1. Confidentiality within the datacenter is just as important as outside the datacenter



This is an exceedingly common architecture. Note that it only encrypts
traffic in certain areas, leaving the rest open (perhaps for the benefit of
system administrators). Clearly, however, this data requires confidentiality,
as it is encrypted in transit between sites.

This is a direct contradiction of the zero trust architecture, as it creates
privileged zones in the network. Thus, citing good reasons to not encrypt
traffic is a very slippery slope. In practice, systems that truly do not require
confidentiality are rare.

In addition to all of this, authentication is still required. There are few
network protocols which provide strong authentication but not encryption,
and all of the transport protocols we discuss in this book provide
authentication as well as encryption. If you look at it this way, encryption is
attained “for free,” leaving few good reasons to exclude it.

Bootstrapping Trust: The First Packet
The first packet in a flow is oftentimes an onerous one. Depending on the
type of connection, or point of the device lifecycle, this packet can carry
with it very little trust.

We generally know what flows to expect inside the datacenter, but in client-
facing systems, it’s anyone’s guess. These systems must be widely
reachable, which greatly increases risk. We can use protocols like mutually
authenticated TLS to authenticate the device before it is allowed to access
the service; however, the attack surface in this scenario is still considerable,
and the resources are also publicly discoverable.

So how do you allow only trusted connections, silently dropping all others,
without answering a single unauthenticated packet? This is known as the
first packet problem, and it is mitigated through a method called pre-
authentication (Figure 8-2).

Pre-authentication can be thought of as the authorizing of an authentication
request by setting an expectation for it. It is often accomplished by
encrypting and/or signing a small piece of data and sending it to the



resource as a UDP packet. The use of UDP for pre-authentication is
important because UDP packets do not receive a response by default. This
property allows us to “hide,” exposing ourselves only once we passively
receive a packet encrypted with the right key.

Upon the passive receipt of a properly encrypted pre-authentication packet,
we know we can expect the sender to begin authentication with us, and we
can poke granular firewall holes allowing only the sender the ability to
speak with our TLS server. This mode of pre-authentication operation is
also known as Single Packet Authorization (SPA).

SPA is not a fully suited device authentication protocol. It merely helps to
mitigate the first packet problem. Without downplaying the importance of
the properties we gain by using pre-authentication, it must not be
substituted for a more robust mutually authenticating protocol like TLS or
IKE.

Figure 8-2. A client in possession of the pre-authorization key can send a signed packet in order to
set an expectation for a TCP connection. Without it, no acknowledgments are sent.



fwknop
fwknop is a popular open source SPA implementation. It supports a wide
variety of operating systems, and integrates directly with host firewalls to
coordinate the creation of tightly scoped and short-lived exceptions.

Short-lived exceptions
When fwknop receives a valid SPA packet, its contents are decrypted and
inspected. The decrypted payload includes protocol and port numbers
which the sender is requesting access to. fwknop uses this to create firewall
rules permitting traffic from the sender to those particular ports—rules that
are removed after a configurable period of time. The default value is 30
seconds, but in practice, you may only need just a few seconds.

As mentioned, the rule which fwknop creates is tightly scoped. It permits
only the sender’s IP address and only the destination ports requested by the
sender. The destination ports which may be requested can be restricted via
policy on a user-by-user basis. Additionally, it is possible for the sender to
specify a source port, restricting the scope of the rule even further.

SPA payload
The fwknop SPA implementation has seven mandatory fields and three
optional fields included in its payload. Among these are a username, the
access request itself (which port, etc.), a timestamp, and a checksum:

16 bytes of random data

Local username

Local timestamp

fwknop version

SPA message type

Access request

SPA message digest (SHA-256 by default)

http://www.cipherdyne.org/fwknop/


Once the client has generated the payload, it is encrypted, an optional
HMAC is added, and the SPA packet is formed and transmitted.

Payload encryption
Two modes of encryption are supported: AES and GnuPG. The former
being symmetric and the latter being asymmetric, two options are provided
in order to cater to multiple use cases and preferences.

Personal applications or small installations might prefer AES since it does
not require any GnuPG tooling. AES is also more performant with regard to
data volume and computational overhead. It does have some downsides
though, practically all of which originate from the fact that it is a symmetric
algorithm.

Symmetric encryption comes with difficult key distribution problems, and
beyond a certain scale, these challenges can grow to be untenable.
Leveraging the GnuPG encryption mode solves most of these problems and
is the recommended mode of operation, despite being less performant than
its counterpart.

HMAC
fwknop can be configured to add an HMAC to the end of its payload. A
hashed message authentication code (HMAC) prevents tampering by
guaranteeing that the message is authentic. This is important because
otherwise an attacker could arbitrarily modify the ciphertext, and the
receiver would be forced to process it.

You may have noticed that there is a message digest which is calculated and
stored along with the plain text. This digest helps to mitigate attacks in
which the ciphertext is modified, but is also less than ideal, as this method
(known as authenticate-then-encrypt or AtE) is vulnerable to a few niche
classes of attacks. Adding an HMAC to the encrypted payload prevents
these attacks from being effective.

In addition, decryption routines are generally much more complex than
HMAC routines, meaning they are more likely to suffer from a



vulnerability. Applying an HMAC to the ciphertext allows the receiver to
perform a lightweight integrity check, helping to ensure that we are only
sending trusted data to the decryption routines.

It is strongly recommended to configure fwknop to use HMAC.

A Brief Introduction to Network Models
Networking stacks have many different responsibilities in transmitting data
over a network. As such, it would be easy for a networking stack to become
a jumbled mess of code. Therefore, the industry long ago decided to spend
the effort to clearly define a set of standardized layers in a networking
stack. Each layer is responsible for some portion of the job of transmitting
data over the wire. Lower layers deliver functionality and guarantees to
higher layers in the stack.

Building up these layers isn’t just useful for organizing code. These layer
definitions are often used to describe where new technology operates in the
stack. For example, you might have heard of a layer 7 or layer 4 load
balancer. A load balancer distributes traffic load across a set of backend
machines, but the layer at which it operates greatly determines its
capabilities. A layer 7 load balancer, for example, can make decisions about
where to route traffic based on details in an HTTP request like the requested
path or a particular header. HTTP operates at layer 7, so this data is
available to inspect. A layer 4 load balancer, by contrast, does not consider
layer 7 data and therefore can only pass traffic based on simpler connection
details like the source IP and port.

There are many different network models. Most of these models can be
roughly mapped to equivalents in other network models, but sometimes the
boundaries can be a bit fuzzy. For this book, we will only focus on two
network models: the OSI network model and the TCP/IP network model.
Understanding the boundaries of these two models will help in later
discussions about where zero trust responsibilities should be handled in the
network model.



Network Layers, Visually
The idea of a layer might be strange at first, though a simplistic way to
understand the concept is by comparing them to Russian nesting dolls. Each
layer typically contains the next, encapsulated by it in a section known as
the payload (Figure 8-3).

Figure 8-3. Lower network layers transport higher-layer traffic in their payload fields, creating a
nested structure inside a single packet

OSI Network Model
The OSI network model was published in 1984 after being merged from
two separate documents started several years earlier. The model is
published by two separate standards bodies: the International Organization
for Standardization (ISO) published ISO 7498, while the
Telecommunications Standardization Sector of the International
Telecommunication Union (ITU-T) published X.200.

The model itself is extracted from the experiences building several
networks at the time, ARPANET being the most well known. The model



defines seven distinct layers (explained in the following sections), each of
which owns a portion of the responsibilities for transmitting data.

Layer 1—Physical Layer
The physical layer is defined as the interface between a network device and
the physical medium over which network transmission occurs. This can
include things like pin layout, line impedance, voltage, and frequency. The
parameters of the physical layer (sometimes referred to as a PHY) depend
on the kind of medium used. Twisted pair, coaxial cabling, and radio waves
are examples of mediums in common use today.

Layer 2—Data Link Layer
The data link layer is responsible for the transmission of data over the
physical layer. This layer only considers data transmission between directly
connected nodes. There is no concept of transmission between
interconnected networks. Ethernet (802.3) is the most well-known protocol
operating at this layer.

Layer 3—Network Layer
The network layer is responsible for transmitting data packets between two
interconnected nodes. At this layer, packets might need to transverse
multiple layer 2 segments to reach their destination, so this includes
concepts to allow routing data to its destination by inspecting a destination
address. IP is often said to operate at this layer, but the boundaries can be a
bit fuzzy, as we will explore later.

Layer 4—Transport Layer
The transport layer builds upon the simple packet transmission capabilities
of layer 3, usually as an intermediary protocol designed to augment layer 3
with many desirable services:

Stateful connections

Multiplexing



Ordered delivery

Flow control

Retransmission

These services might look similar to the services that a protocol like TCP
provides. In fact, TCP is a layer 4 protocol; however, in a way similar to IP,
this association can be a bit awkward.

Not all of these services need to be provided by a protocol operating at this
level. UDP, for example, is a layer 4 protocol which offers only one of these
services (multiplexing). It remains a layer 4 protocol because it is an
intermediary protocol which is directly encapsulated by layer 3.

Layer 5—Session Layer
The session layer isn’t commonly discussed in most networks. This layer
provides an additional layer of state over connections, allowing for a
communication resumption and communication through an intermediary.
Several VPN (PPTP, L2TP) and proxy protocols (SOCKS) operate at this
layer.

Layer 6—Presentation Layer
The presentation layer is the layer that application developers will most
commonly interact with. This layer is responsible for handling the
translation between application data (often represented as structural data)
and transmittable data streams. In addition to this serialization
responsibility, this layer is often responsible for cross-cutting concerns like
encryption and compression. TLS is a well-known protocol operating at this
layer, though it operates at layer 6 only after the session is established
(which happens at layer 5—the process of changing from a lower layer to a
higher layer is sometimes referred to as an upgrade).

Layer 7—Application Layer
The application layer is the highest layer in the OSI model. This layer
provides the high-level communication protocols that an application uses to



communicate on the network. Some common protocols at this layer are
DNS, HTTP, and SSH.

TCP/IP Network Model
The TCP/IP network model is another important network model. This
model deals with the protocols most often found on the internet today.

Unlike the OSI model, the TCP/IP model does not try to define strict layers
with clear boundaries. In fact, RFC 3439, which documents the
“philosophical guidelines” that internet architects use has a section entitled
“Layering Considered Harmful.” Still, the model is said to define the
following rough layers, from lowest to highest:

Link layer

Internet layer

Transport layer

Application layer

These layers can be roughly mapped to the OSI model, but the mappings
are only best effort. The application layer roughly covers layers 5–7 in the
OSI model. The transport layer roughly maps to layer 4, though its
introduction of the concept of a port gives it some layer 5 characteristics.
The internet layer is similarly generally associated with layer 3. The
abstraction is leaky, however, as higher-level protocols like ICMP (which
are transmitted via IP) concern themselves with details of how traffic is
routed around the internet.

Where Should Zero Trust Be in the Network
Model?
With a better understanding of network layer models, we can now take a
look at where to best apply zero trust controls in the network stack.

https://www.ietf.org/rfc/rfc3439.txt


There are two predominant network security suites: TLS and IPsec. TLS
(Transport Layer Security, to which SSL is a predecessor) is the most
common of the two. Many application layer protocols support TLS to
secure traffic. IPsec is an alternative protocol, more commonly used to
secure things like VPNs.

Despite having “transport” in its name, TLS does not live in the transport
layer of the TCP/IP model. It is found in the application layer (somewhere
between layer 5 and 6 in the OSI model), and as such, is largely an
application concern.

TLS AS AN INFRASTRUCTURE CONCERN
Perimeter networks frequently abstract TLS away from applications, shifting the
responsibility from the application to the infrastructure. In this mode, TLS is
“terminated” by a dedicated device at the perimeter, forwarding the decrypted traffic to
a backend service. While this mode of operation is not possible in a zero trust network,
there remain a handful of strategies for deploying TLS as an infrastructure concern
while still conforming to the zero trust model. More on that later.

IPsec, by contrast, is generally considered part of the internet layer in the
TCP/IP model (layer 3 or 4 in the OSI model, depending on interpretation).
Being further down the stack, IPsec is usually implemented in a host’s
kernel. IPsec was developed for the IPv6 specification. It was originally a
requirement for IPv6, but was eventually downgraded to a recommended
status.

With two alternatives to secure network transit, the question becomes, is
one preferred over the other? Zero trust’s goal is secure communication for
all traffic. The best way to accomplish this goal is to build systems that
provide secure communication by default. IPsec, being a low-level service,
is well positioned to provide this service.

Using IPsec, host-to-host communication can be definitively secured. Being
integrated deep in the network stack, IPsec can be configured to only allow
packet transmission once a secure communication channel has been



established. Furthermore, the receiving side can be configured to only
process packets that have been sent securely. In this system, we have
essentially created a “secure virtual wire” between two hosts over which
only secured traffic can flow. This is a huge benefit over traditional security
initiatives that add secure communication one application at a time.

Simply securing communications between two devices is not sufficient to
build a zero trust network. We need to ensure that each individual network
flow is authorized. There are several options for meeting this need:

IPsec can use a unique security association (SA) per application (see
RFC 4301, section 4.4.1.1). Only authorized flows are then allowed to
construct these security policies.

Filtering systems (software firewalls) can be layered on top of IPsec. We
will discuss the role of filtering in zero trust later in this chapter.

Application-level authorization should be used to ensure that
communications are authorized. This could use standard authorization
techniques, such as access tokens or X.509 certificates, while delegating
strong encryption and authentication responsibilities to the IPsec stack.

For a truly “belt and suspenders” system, mutually authenticated TLS
could be layered on top of the existing IPsec layer. This defense-in-depth
approach provides two layers of encryption (mTLS and IPsec),
protecting communication should one of them being compromised, at
the expense of complexity and increased  overhead.

Client and Server Split
While IPsec has a number of beneficial properties, its lack of popularity
presents real-world obstacles for its use in systems today. The issues one
will see can be broken down into three areas:

Network support issues

Device support issues

https://tools.ietf.org/html/rfc4301#section-4.4.1.1


Application support issues

Network support issues
Network support can hamper the use of IPsec in the wild. IPsec introduces
several new protocols, two of which (ESP and AH) are new IP protocols.
While these protocols are fully supported in simple LAN networks, on
some networks, getting these packets transmitted can be quite a challenge.
This could be due to misconfigured firewalls, NAT traversal, or routers
being purposefully configured to not allow traffic to flow. For example,
Amazon Web Services, a large public cloud provider, does not allow ESP or
AH traffic to be transmitted on its networks. Public hotspots like those
found at businesses or libraries also often have spotty support for IPsec
traffic.

To mitigate these issues, IPsec includes support for encapsulating traffic in
a UDP frame (depicted in Figure 8-4). This encapsulation allows an
inhospitable network to transmit the traffic, but it adds extra complexity to
the system.



Figure 8-4. IPsec supports encapsulating ESP packets in a UDP packet, making it look like normal
UDP traffic

Device support issues
Device support can also be a major factor in rolling out an IPsec-protected
network. The IPsec standard is complex, with many configuration options
and cipher suites. Both hosts in the relationship need to agree to a common
protocol and cipher suite before communication can flow. Cipher suites in
particular frequently need to be adjusted as compromises are revealed.
Finding that a stronger cipher suite has not been implemented is a real issue
in IPsec systems. To be fair, TLS needs to handle these same issues; but due
to the nature of having IPsec implemented in the system’s kernel, progress
on newer protocols and cipher suites is naturally slower.

IPsec also requires active configuration of the devices in the relationship. In
a client/server system with varying device capabilities, configuring the
client devices can be rather challenging. Desktop operating systems can



usually be configured to support the less popular protocol. Mobile operating
systems, however, are less likely to fully support IPsec in a way that
conforms to the zero trust model.

Application support issues
IPsec places additional requirements on the system configuration versus
typical TLS-based security. A system wanting to make use of IPsec needs to
configure IPsec policy, enable kernel support for the desired cipher suites,
and run an IKE daemon to facilitate the negotiation of IPsec security
associations. When compared to a library-based approach for TLS, this
extra complexity can be daunting. This is doubly so when many
applications already come with built-in TLS support, which seemingly
offers a turnkey solution for network security.

It should be noted that while the library approach seems more attractive on
first glance, in practice it presents quite a bit of hidden complexity. Being a
library, applications need to expose configuration controls to the TLS
library. Applications frequently support the more common server TLS, but
neglect to expose configuration for presenting a client certificate that is
required to create a mutually authenticated TLS connection. Additionally,
system administrators may need to adjust configuration in reaction to
recently exposed vulnerability. With a large set of applications, finding the
application-specific configuration that needs to be adjusted can hamper the
rollout of a critical fix.

The web browser is frequently the common access point into organizational
systems. Its support for modern TLS is generally very good (assuming
organizations stay up to date on the latest browser versions). This common
access point mitigates the issue of configuration, as there is a small set of
target applications that need to be adjusted.

On the server side, many organizations are turning toward a model where
network communication is secured via a local daemon. This approach
centralizes configuration in a single application and allows for a base layer
of network security to be supplied by the system administrator. In a way, it
looks very similar to the IPsec model, but implemented using TLS instead.



A pragmatic approach
Given all the pluses and minuses of the two approaches, a pragmatic
solution seems available to system administrators.

For client/server interactions, mutually authenticated TLS seems to be the
most reasonable approach to network security. This approach would
typically involve configuring a browser to present client certificates to
server-side access proxies which will ensure that the connection is
authenticated and authorized. Of course, this restricts the use of zero trust to
browser-based applications.

For server/server interactions, IPsec seems more approachable. The server
fleet is generally under more controlled configuration, and the network
environment is more well known. For networks which don’t support IPsec,
UDP encapsulation can be used to avoid network transit issues.

MICROSOFT SERVER ISOLATION
For environments which fully employ Microsoft Windows with Active Directory, a
feature called server isolation is particularly attractive. By leveraging Windows
Firewall, Network Policy, and Group Policy, server isolation provides a framework
through which IPsec configuration can be automated. Furthermore, server isolation can
be tied to Active Directory security groups, providing fine-grained access control which
is backed by strong IPsec authentication.

While complications surrounding IPsec transit over public networks still exist, server
isolation is perhaps the most pragmatic approach for obtaining zero trust semantics in a
Windows-based environment.

Since the IPv6 standard includes IPsec, the authors hope that it will become
a more viable solution for both types of network communication as network
adoption progresses.

The Protocols
We learned about mutually authenticated TLS and IPsec in the previous
section, as well as when you might use one versus the other. In this section,



we’ll discuss the two protocols in detail. It is very important to understand
the inner workings of these protocols as you deploy them, since there are
many configuration controls in them. Both are complicated in their own
right, and insecure configurations are common.

IKE/IPsec
Internet Key Exchange (IKE) is a protocol which performs the
authentication and key exchange components of IPsec. It is typically
implemented as a daemon and uses a pre-shared key or an X.509 certificate
to authenticate a peer and create a secure session. Inside this secure session,
another key exchange is made. The results of this second key exchange are
then used to set up an IPsec security association, the parameters of which
are leveraged for bulk data transfer. Let’s take a closer look.

IKEV1 VERSUS IKEV2
There are two versions of IKE, and most software suites support both. For all new
deployments, it is strongly recommended to use IKEv2. It is both more flexible and
more reliable than its predecessor, which was overly complicated and less performant.
For the purposes of this book, we will be talking about IKEv2 exclusively.

IKE and IPsec
There is frequent confusion around the relationship between IKE and IPsec.
The reality is that IPsec is not a single protocol; it is a collection of
protocols. IKE is often considered part of the IPsec protocol suite, though
its design makes it feel complimentary as opposed to a core component.
IKE can be thought of as the control plane of IPsec. It handles session
negotiation and authentication, using the results of the negotiation to
configure the endpoints with session keys and encryption algorithms.

Since the core IPsec protocols are embedded in the IP stack, IPsec
implementations are typically found in the kernel. With key exchange being
a relatively complex mechanism, IKE is implemented as a user space
daemon. The kernel holds state defining active IPsec security associations,



and traffic selectors defining which packets IPsec policy should be applied
to. The IKE daemon handles everything else, including the negotiation of
the IPsec security association (SA) itself (which is subsequently installed
into the kernel for use).

Authentication credentials
IKEv2 supports both pre-shared keys and X.509 public/private key pairs. In
addition, it supports the Extensible Authentication Protocol (EAP).
Supporting EAP means that IKEv2 supports a bevy of other authentication
methods (including support for multifactor authentication) by proxy. We
will avoid analyzing EAP directly, however, as the ecosystem is very large.

It goes without saying that X.509 certificates are the preferred method of
authentication for IKE. While pre-shared keys are supported, we strongly
recommend against them. They present major distribution and generation
challenges, but most importantly, they are meant for humans to remember.

X.509 certificates are not meant for humans; they’re meant for devices.
They carry with them not only proof of trust, but also signed metadata and a
way to strongly encrypt data using its identity. These are powerful
properties, and the reason certificates are the undisputed champion of
device authentication credentials.

IKE SA_INIT and AUTH
All IKEv2 exchanges begin with a pair of packets named IKE_SA_INIT.
This initial exchange handles cryptographic suite selection, as well as a
Diffie–Hellman exchange. The Diffie–Hellman key exchange provides a
method for two systems to negotiate a session key without ever transmitting
it.

The resulting session key is used to encrypt fields in the next pair of
messages: the IKE_AUTH packets. In this step, the endpoints exchange
certificates and generate what is known as a CHILD_SA. The CHILD_SA
contains the IPsec parameters for a security association between the two
endpoints, and the IKE daemon then programs these parameters into the



kernel. From this point forward, the kernel will encrypt all traffic matching
the selectors.

Cipher suite selection
Cipher choice with IPsec is slightly less trivial than TLS. This is because
IPsec is implemented in the kernel, making cipher support a little more
stringent than it would be if it were simply a software package. As a result,
a wide variety of devices and operating system versions will complicate
IPsec deployments.

RFC 6379 sets forth what is known as the Suite B Cryptographic Suite. It
was authored by the US National Security Agency, and is (at the time of
this writing) a widely accepted standard when it comes to selecting IPsec
cipher suites.

Much like TLS, IKE cipher suites include algorithms for key exchange,
bulk encryption, and integrity. Unlike TLS, it does not include
authentication, as IKE takes care of that outside of the crypto suite
selection.

RFC 6379 is fairly prescriptive with regard to these choices. All of the
suites defined in Suite B leverage varying strengths of the AES encryption
algorithm and the ECDH key agreement protocol. They leverage GCM and
SHA for integrity. For the majority of use cases, Suite B is recommended.

There are a couple instances in which Suite B might not be appropriate. The
first is that not all IPsec implementations support elliptic curve
cryptography, which is mandated. The second is concern around the
security of popularized elliptic curve implementations, as many believe that
state actors have interfered with them in order to subvert the security they
aim to provide.

In consideration of either of these cases, equivalent-strength DH is
recommended as a good alternative.

IPsec security associations

https://tools.ietf.org/html/rfc6379


IPsec security associations (SAs) are the end result of an IKE negotiation
and describe what is sometimes referred to as a “relationship” with the
remote endpoint. They are unidirectional, so for a relationship between two
endpoints, you will normally find two SAs (inbound and outbound).

An IPsec SA is uniquely identified by an SPI (Security Parameter Index,
not to be confused with an IKE SPI) and has a limited lifetime. As traffic
traverses the IP stack, the kernel finds packets matching the selector(s) and
checks to see if there is an active security association for the selector in
question. If there is an entry, the kernel encrypts the packet according to the
parameters defined in the SA, and transmits it. If there is no entry, the
kernel will signal the IKE daemon to negotiate one.

An IPsec SA has four distinct states in its lifecycle: larval, mature, dying,
and dead.

A larval SA is one that is still being negotiated by the IKE daemon and has
only part of its state installed. Once the negotiation is complete, the SA
progresses to the mature state, in which it begins encrypting traffic. As the
SA nears the end of its lifetime, a new SA is negotiated and installed with
the same policy. The original SA progresses to the dying state, and all
relevant traffic switches over to the new SA. After some time, the old SA
expires and is marked as dead.

IPsec tunnel mode versus transport mode
IPsec supports two modes of operation, tunnel mode and transport mode
(Figure 8-5). Tunnel mode is by far the most widely deployed variant.
When IPsec operates in tunnel mode, an SA is formed with the remote
endpoint which is used to encapsulate IP packets and secure it en route to
the endpoint. This encapsulation covers the entirety of the IP packet,
including the IP header. This means that in tunnel mode, the IPsec endpoint
can be different than the endpoint for which the IP traffic is destined, since
a new IP header will be exposed once the protected traffic is unpacked.



Figure 8-5. IPsec tunnel mode allows traffic from one network to be tunneled into another

This is why it is called tunnel mode. It is frequently used in VPNs, where
one wishes to make a secure connection to a remote network, enabling
administrators to tunnel flows destined for that network through the secure
channel. This brings an interesting realization though in the world of zero
trust networks: tunnel mode, by its very nature, strongly implies that the
traffic will become unprotected at some point in time. Security is ensured
between the sender and a network intermediary, but after that all bets are
off. It is the opinion of the authors that, for this reason, the use of tunnel
mode contradicts the zero trust architecture.

Transport mode, on the other hand, offers practically identical security
guarantees, just minus the tunnel part. Instead of encapsulating an entire IP
packet, it encapsulates only the IP payload. This is useful for direct host-to-
host IP communication. Rather than establishing a security association with
an intermediary network device, transport mode establishes a security
association directly with the endpoint to which the traffic is addressed,



ensuring security is applied end to end. This property allows transport mode
to fit nicely into the zero trust model.

While transport mode is the obvious choice for a full-blown zero trust
datacenter architecture, it is important to remain realistic. Zero trust
migrations are difficult, and IPsec tunnel mode is still a tool which can be
leveraged along the journey to a homogeneous zero trust architecture.

IKE/IPsec for device authentication
When it comes to device security in a zero trust network, we are looking to
provide not only authentication for the device, but also device-to-device
transport security. This is exactly what IPsec is designed to do, and the
reason that it is perhaps the best protocol for the job.

Since IPsec is implemented directly on top of IP, it can handle most
application traffic, not just TCP or UDP. Additionally, since it is
implemented in the kernel, the applications being protected need no
knowledge of the underlying security. They simply run as they would
normally, and the traffic gets encrypted “for free.”

This encryption and authenticity may come “for free” from the perspective
of the application, but that is certainly not the case for the device! As you
can see, the configuration of IPsec is nontrivial, and managing the multitude
of policies can be challenging (or impossible without automation).

Another consideration is how widely supported IPsec is as a network
protocol. Not all public networks (e.g., coffee shops) support IPsec and may
even actively block it. Difficulty in configuration and lack of universal
support make IPsec less desirable for client-side zero trust networks.
However, those pain points don’t typically exist inside the datacenter, where
IPsec remains a front contender with regard to device security protocols.

Mutually Authenticated TLS
Commonly referred to by the name of its predecessor, Transport Layer
Security (TLS) is the protocol most commonly used to secure web traffic. It
is a mature and well-understood protocol, is widely deployed and



supported, and is already trusted with some of the most sensitive tasks, like
banking transactions. It is the “S” in HTTPS.

When TLS is used to secure web sessions, the client validates that the
server certificate is valid, but the server rarely validates the client. In fact,
the client rarely presents a certificate at all! The “mutual” prefix for TLS is
meant to denote a TLS configuration in which client certificate validation is
required (and thus, mutually authenticated).

While a lack of client authentication may be acceptable for services that are
being published to the general public, it is not acceptable for any other use
case. Mutual authentication is a requirement for security protocols
conforming to the zero trust model, and TLS is no exception.

The basics of a TLS handshake are fairly straightforward, as shown in
Figure 8-6. A client initiates the session with a ClientHello message sent to
the server, which includes a compatibility list for things like cipher suites
and compression methods. The server chooses parameters from the
compatibility list and replies with a ServerHello defining the selections it
made, followed by the server’s X.509 certificate. It also requests the client’s
certificate at this time.

The client then generates a secret key and uses the server’s public key to
encrypt it. It sends the server this encrypted secret key, as well as its client
certificate, and a small bit of proof that it is in fact the owner of that
certificate. The secret key generated by the client is ultimately used to
derive several additional keys, including one which acts as a symmetric
session key. So, once the client sends these details off, it has enough
information to set up its side of the encrypted session. It signals the server
that it is switching to session encryption, the server validates the client,
sends a similar message in return, and the session is fully upgraded.



Figure 8-6. A simplified diagram showing a mutually authenticated TLS handshake using RSA key
exchange

Cipher suite negotiation and selection
TLS supports many different kinds of authentication and encryption. A
cipher suite is a named combination of these components. There are four
primary components in a TLS cipher suite:

Key exchange

Authentication

Bulk encryption

Message authenticity



Choosing the right set of supported cipher suites is important in ensuring
your TLS deployments remain secure. Many cipher suites are known to be
weak. At the same time, the strongest cipher suites are poorly supported
among clients in the wild.

Who gets to say

During the TLS handshake, the client presents its list of supported cipher
suites in order of preference. The server gets to choose one from this list,
assuming that there is shared support at all, in which case the session will
fail to establish. While the client gets to communicate its cipher preferences
to the server, it is ultimately the server which is allowed to choose. This is
important because it preserves the client/server, consumer/operator
relationship.

With this, the overall security of the system is limited to the strongest
negotiable cipher suite of the weakest client. Historically, many online
resources support weak cipher suites in a bid to maintain backward
compatibility with older clients. Knowing this, there have been many
attacks against cipher suite negotiation, including downgrade attacks which
enable an attacker to actively weaken the encryption algorithm used by a
client.

As a result, it is recommended that servers support only the strongest set of
cipher suites that is reasonable. In the case of datacenter deployments, this
list might be limited to only a few approved suites, as there is strict control
over the “clients.” This is not always reasonable for true client-facing
deployments, however.

NEGOTIATION AS A WEAKNESS
Cipher suite negotiation is, for the stated reasons, considered an anti-pattern in modern
cryptographic protocols. Newer protocols and frameworks such as Noise aim to
eliminate protocol negotiation. Work in this area is highly active at the time of this
writing, and the authors look forward to widespread adoption of cryptographic protocols
which lack weaknesses such as this one.



Key exchange

The TLS key exchange describes the process for securely generating an
encryption key over an insecure channel. Sometimes described as a key
agreement or exchange protocols, these protocols use mathematical
functions to agree on keys without ever transmitting them in the clear (or in
most cases, at all).

There are three primary key exchange/agreement protocols in popular use
with TLS. They are, in rough order of preference: ECDHE, DHE, and RSA.

ECDHE is based on a Diffie–Hellman exchange, using elliptic curves to
agree on a key. Elliptic curve cryptography is very strong, efficient, and is
based on a mathematical problem which remains difficult to solve. It is the
ideal choice for security and performance considerations.

DHE is also based on a Diffie–Hellman exchange, except it uses modular
arithmetic to agree on a key, rather than elliptic curves. In order for these
exchanges to be strong, they require larger keys than ECDHE. This is
because the math involved for regular DHE is well solved, and we are
getting better and better at solving those problems. So, while DHE can
provide security similar to that of ECDHE, it is less performant in doing so.

RSA key exchange is based on the same asymmetric operations that prove
identity for digital signatures (e.g., X.509 certificates). It uses the public
key of the server to encrypt the shared secret for transmission. This key
exchange protocol is widely supported, although it has two primary
limitations: it requires use of RSA-based authentication, and it does not
provide perfect forward secrecy.



QUANTUM VULNERABILITY
The security of practically all public key cryptography in popular use today is based on
the assumption that factoring large numbers is a hard, computationally expensive
problem. This assumption, however, is invalid when considering quantum computation.
Classical computing must rely on a technique known as the general number field sieve
in order to derive the factors of large numbers. It’s an algorithm that is relatively
inefficient. Shor’s algorithm, on the other hand, is a quantum algorithm that is
exponentially more efficient than the general number field sieve. It can be used to
rapidly break most asymmetric key exchanges, given a sufficiently powerful quantum
computer.

Quantum-resistant protocols are under active development at the time of this writing.
While none is quite ready for production, the looming quantum threat should not deter
one from implementing public key cryptography today. It remains the best tool we have,
and cryptographers are working hard to define a clear path forward. For more
information, check out the Post-Quantum Cryptography conference.

Perfect Forward Secrecy

PFS, or perfect forward secrecy, is a cryptographic property in which the
disclosure of a private key does not result in the compromise of previously
negotiated sessions. This is a valuable property because it ensures that an
eavesdropper cannot record your session data for later decryption. The RSA
key exchange does not support PFS because the session key is directly
encrypted and transmitted using the private key. DHE or ECDHE must be
used in order to obtain PFS.

Mind Your Curves

Cryptography experts have called into question the security of many elliptic
curve-based key agreement implementations. While the math and
fundamental principles are sound, a standardized set of curves are typically
used as the input for these functions. These standard curves rely on a set of
constants, which must remain secure in order to maintain the integrity of
cryptographic operations performed with the resulting curves.

It is these constants which have been questioned. It is believed by some of
the brightest minds in the industry that the constants which are widely
available for these purposes have been manipulated by state actors and are

https://pqcrypto.org/


compromised. If this is true, it stands to reason that any elliptic curve crypto
implementation leveraging these well-known constants has in fact been
secretly subverted.

For this reason, some experts recommend use of DHE key agreement over
ECDHE, despite its better math and performance properties. This is
problematic in some places, since not all clients fully support DHE (most
famously, Internet Explorer does not support DHE in combination with
RSA authentication). The recommended course of action in this case is to
curate server-side cipher suites to prefer DHE negotiation where available,
falling back to ECDHE when necessary.

Authentication

There are three common authentication methods, one of which is on it’s
way out: RSA, DSA, and ECDSA.

RSA authentication is overwhelmingly the most common, in use in over
99% of web-based TLS resources. Generally speaking, RSA is a safe bet so
long as a sufficiently-sized key is used. This caveat raises the concern that
the we are getting better at solving the mathematical problem at the heart of
the RSA algorithm, requiring key sizes to increase in order to keep up with
advances. Despite this, RSA remains the most popular and most often
recommended authentication method.

DSA authentication is no longer recommended. While it is (for the most
part) a sound technology at its core, a series of other problems have
artificially weakened it, including adoption and opinionated standardization.
ECDSA, on the other hand, is the newer cousin of DSA and uses elliptic
curves to facilitate public/private key pairs.

ECDSA is frequently touted as the future. It applies all the benefits of
elliptic curve cryptography to the authentication component, including
smaller key size and better performance and mathematical properties. It is
presumed, however, that ECDSA authentication is susceptible to the use of
malicious elliptic curves, as described in “Mind Your Curves”.



When making a decision between RSA and ECDSA authentication, the
brokenness of widely published elliptic curves should be carefully
considered. Identity compromise can be catastrophic. Additionally, ECDSA
is not nearly as widely supported as RSA is. With the acknowledgment of
these two points, it is fair to say that RSA authentication is still a good
choice at the time of this writing, despite the existence of a technologically
superior algorithm (ECDSA).

Separation of duty
For the purposes of a zero trust network, it is a good idea to separate the
encryption duties from the application itself (Figure 8-7). The resource we
are securing in this case is the device, and as such, it makes a lot of sense
for this piece to be independent of the workload itself.

Doing this also alleviates a number of pain points, including zero-day
mitigation, performance penalties, and auditing. For protocols like IPsec,
this separation of duty is part of the design, but this is not the case for TLS.
Historically, applications speak TLS directly, loading and configuring
shared TLS libraries for remote communication.

We have seen this pattern’s rough spots time and time again. Shared
libraries become littered throughout the infrastructure, being consumed by a
multitude of projects, all with independent versions and configurations.
Some languages have more flexible libraries than others, limiting your
ability to enforce the latest and greatest. Above all, it is very difficult to
ensure that all these applications are indeed consuming TLS the right way,
and remain up to date with regard to known vulnerabilities.



Figure 8-7. Traditional applications include TLS libraries and perform those duties themselves.
Using a local TLS daemon instead means better control and consistent performance.

To address the problem, it is useful to move the handling of TLS
configuration to the control plane. Connections to the service are brokered
by the TLS daemon then locally forwarded to the application. The TLS
daemon is configured with system certificates, trust authorities, and
endpoint information—that’s about it.

In this way, we can ensure that all software receives device authentication
and security with TLS, regardless of its support for it. Additionally, since
zero trust networks whitelist flows, we can ensure that application traffic is
protected by limiting whitelisted flows to known TLS endpoints.

Bulk encryption
All the TLS intricacies and components discussed up to this point apply
primarily to the initial TLS handshake. The TLS handshake serves two



primary purposes: authentication and the creation of session keys.

TLS handshakes are computationally expensive due to the mathematical
operations required to make and validate them. This is a distinct trade-off
between security and performance. While we strongly desire this level of
security, the performance impact is prohibitively expensive if we apply
these operations to all communications.

Asymmetric cryptography is extraordinarily important in the process of
secure introduction and authentication, but its strength can be matched by
symmetric cryptography so long as identity or authentication is not a
concern. Symmetric encryption uses a single secret key instead of a
public/private key pair, and is less computationally expensive than
asymmetric cryptography by orders of magnitude. This is where the concept
of a TLS handshake and session keys comes in.

Some very smart mathematicians and cryptographers realized that we can
use the strong yet expensive operations to securely generate a single secret
—one which can be shared between the parties (Figure 8-8). The key
exchange component of TLS is that which generates this shared key and
ensures that both parties have knowledge of it.

Figure 8-8. TLS handshake generates a symmetric encryption key for bulk transfer. IPsec uses a
similar mechanism.

This shared key is then used as the input for a symmetric encryption
algorithm, which is applied to all session traffic following the handshake.
This methodology ensures that the entire session benefits from the strength



of asymmetric cryptography without inheriting any of the performance
implications associated with asymmetric encryption schemes.

When it comes to choices for bulk encryption algorithms, TLS supports
many, but the recommendation is pretty well aligned across the board: just
use AES. It checks all the desirable boxes, including the fact that it is
unpatented, widely implemented in hardware, and practically universally
implemented in software. It is very performant, heavily vetted/scrutinized,
and remains unbroken to the best of public knowledge. Many people say
“AES is good enough,” and while that might be a tough pill to swallow
when it comes to security protocols, such a statement has never been so
close to the truth.

Message authenticity
When communicating securely, message authenticity is an important if not
required property. Encryption provides confidentiality, but without message
authenticity, how do you ensure the integrity of that message? Without an
error during decryption, it is difficult or impossible to distinguish a
tampered message from an authentic one.

Some encryption modes (such as AES-GCM) provide message
confidentiality and authenticity guarantees simultaneously. However, these
guarantees are only applicable during bulk encryption; there are several
TLS exchanges which are not protected by the bulk transfer specifications,
and the message authenticity scheme protects those as well.

EXPLICIT AUTHENTICITY SOMETIMES REQUIRED
Since some bulk encryption algorithms provide message integrity assurances, it is not
always necessary to perform explicit authenticity checks on every packet. Instead, TLS
will prefer built-in assurances for bulk transfers and rely on explicit authenticity checks
for all packets not associated with the bulk transfer (for instance, TLS control
messages).



As far as choice goes, the options are limited to MD5 and the SHA family
of hashes. The former has been cryptographically broken for quite some
time now, leaving the SHA family as the only reasonable choice for
ensuring message integrity under TLS. There are even concerns when using
the weaker SHA variant, SHA-1, as it is now considered vulnerable in the
face of ever-increasing compute power. As such, it is recommended to
choose the strongest SHA hash which can be reasonably deployed, given
hardware and software constraints.

It is additionally recommended to use bulk encryption with built-in
authenticity wherever possible, as it is generally more performant and
secure than relying on a disjoint authenticity mechanism. TLS version 1.3
mandates the use of authenticated encryption.

Mutually authenticated TLS for device authentication
Just like any other protocol used for device authentication, TLS comes with
its ups and downs.

The first is that, due to its position in the network stack, TLS is protocol-
dependent. It is most commonly implemented as a TCP-based protocol,
though a UDP-based variant dubbed DTLS is also available. The presence
of DTLS highlights the deficiency of the position of TLS in the stack. With
this, TLS suffers diminishing returns when used to secure IP protocols other
than those which it natively supports, like TCP or UDP.

Another thing to consider is the automation requirement. TLS is commonly
deployed as an infrastructure service in perimeter networks by leveraging
intermediaries which are typically positioned at the perimeter. This mode of
operation, however, is unsuitable for a zero trust network as long as the
intermediary and the upstream endpoint are separated by a computer
network. In a zero trust network, applications leveraging a TLS-speaking
intermediary must be on the same host as the intermediary itself. As a
result, protecting datacenter zero trust networks with TLS requires
additional automation to configure applications to speak through this layer
of external security. It does not come “for free” like other protocols such as
IPsec.



All of that said, it remains today’s best choice for protecting client-facing
zero trust networks. TLS is very widely supported in both software and
transit (i.e., intermediary networks worldwide), and can be relied upon for
straightforward and trustworthy operation. Most web browsers support
mutually authenticated TLS natively, which means that resources can be
protected using zero trust principles without the immediate need for
specialized client-side software.

Filtering
Filtering is the process by which packets are admitted or rejected by
systems on a network. When most people think of filtering, they typically
envision a firewall, a service or device which sits between the network and
application to filter traffic going to or coming from that device. Firewalls do
provide filtering, but they can provide other services like network address
translation (NAT), traffic shaping, and VPN tunnel services. Filtering can
be provided by other systems not traditionally considered, like routers or
managed switches. It’s important to remember that filtering is a simple
service which can be applied at many points in a networked system.

Filtering can be quite frustrating for users without a security mindset since
it blocks desired network communication. Wouldn’t it be better to get rid of
that nuisance and assume the user knows what they want? Unfortunately,
well-meaning users can trivially expose services that on further inspection
they would rather not expose. During the early days of always-on internet
connections, users’ computers routinely made the accident of exposing file
sharing and chat services on the public internet. Filtering provides a type of
checks and balances for network communication, forcing users to consider
whether a particular connection should really cross a sensitive boundary.

Many of the zero trust concepts so far have focused on advanced encryption
and authentication systems. This is because these aspects of network
security are not nearly as pervasive in network designs as they should be.
However, we should not downplay the importance of network filtering. It is



still a critical component of a zero trust architecture, and so we will explore
it in three parts:

Host filtering

Filtering of traffic at the host

Bookended filtering

Filtering of traffic by a peer host in the network

Intermediary filtering

Filtering of traffic by devices in between two hosts

Host Filtering
Host filtering deputizes a network endpoint to be an active participant in its
own security. The goal is to ensure that every host is configured to filter its
own network traffic. This is different than traditional network design, where
filtering is delegated to a centralized system away from the host.

Centralized filtering is most often implemented using a hardware firewall.
These firewalls make use of application-specific integrated circuits (ASICs)
to efficiently process packets flowing through the device. Since the device
is often a shared resource for many backend systems, these ASICs are
critical for it to accomplish the task of filtering the aggregate traffic of all
those systems. Using ASICs brings raw performance at the expense of
flexibility.

Software firewalls, like those found in modern operating systems, are much
more flexible than their hardware counterparts. They offer a rich set of
services like defining policies based on time of day and arbitrary offset
value. Many of these software firewalls can be further extended with new
modules to offer additional services.

Unlike the early days of the internet, all modern desktop and server
operating systems now offer some form of network filtering via a host-
based firewall:



Linux

IPtables

BSD systems

Berkley Packet Filter (BPF)

macOS

Application firewall and additional host firewalls available via the
command line

Windows

Windows Firewall service

Perhaps surprisingly, neither iOS nor Android ships with a host-based
firewall. Apple’s iOS Security Guide notes that it considers a firewall
unnecessary since the attack surface area is reduced on iOS “by limiting
listening ports and removing unnecessary network utilities such as telnet,
shells, or a web server.” Google does not publish an official security guide.
Android, perhaps owing to its ability to run non-Play Store approved
software, does have third-party firewalls available to install if a user
chooses to do so.

Zero trust systems assume the network is hostile. As a result, they filter
network traffic at every point possible, often using on-host firewalls.
Adding an on-host firewall reduces the attack surface of a host by filtering
out undesirable network traffic. While software-based firewalls don’t have
the same throughput capabilities as hardware-based systems, the fact that
the filtering is distributed across the system (and therefore sees a portion of
the aggregate traffic) often results in little performance degradation in
practice.

Using on-host filtering is simple to get started with. Configuration
management systems have very good support for managing on-host
firewalls. When writing the logic to install services, it’s easiest to capture
the allowed connections right alongside its installation and configuration



routines. Filtering in a remote system, conversely, is more difficult since the
exceptions are separated from the application that needs them.

On-host firewalls also offer opportunities for novel uses of programmable
filtering. Single packet authorization (SPA), which we discussed earlier in
this chapter, is a great example of this idea. SPA programmatically manages
the on-host firewall to reduce the attack surface of a service on a host. This
is advantageous because on occasion, carefully crafted malicious packets
can be constructed to exploit a weakness in network services. For example,
a service might require authentication and authorization before processing a
request, but the authentication logic could have a buffer overflow error
which an attacker can use to implement a remote code execution
vulnerability. By introducing a filtering layer, we can hide the more
complex service interface behind a simpler system which manages firewall
rules.

There are of course issues when using on-host firewalls exclusively for
network filtering. One such issue is the chance for a co-located firewall to
be rendered meaningless should a host become compromised. An attacker
who is able to gain access to a host and elevate their privilege could remove
the on-host firewall or adjust its configuration. Needless to say, this is a big
deal, as it removes a layer of defense in the system. This concern is why
filtering has traditionally been handled by a separate device, away from
potentially risky hosts.

This approach highlights the benefits of isolation in security design, which
on-host filtering could benefit from. As the industry moves toward isolation
techniques like virtualization and containerization, it becomes clear that
these technologies present an opportunity to further isolate on-host filtering.
Without these technologies, the only form of isolation that is available is
local user privilege. On a Unix-based system, for example, only the root
user is able to make adjustments to the firewall configuration. In a
virtualized system, however, one could implement filtering outside the
virtual machine, which provides strong guarantees against attacks on the
filtering system. In fact, this is how Amazon’s security group feature is
implemented, as shown in Figure 8-9.



Figure 8-9. EC2 Security Groups move filtering outside the virtual machine to improve isolation

Another issue with on-host filtering is the cost associated with pushing
filtering deep into the network. Imagine a scenario where a large percentage
of traffic is filtered away by on-host filtering. By applying filtering nearest
to the destination system, the network incurs extra cost to transmit those
packets, only for them to be ultimately thrown away. This situation also
raises the possibility of a denial-of-service attack forcing internal network
infrastructure to route large volumes of useless traffic, as well as
overwhelming the comparatively weaker software firewalls. For this reason,
while on-host firewalls are the best place to start thinking about filtering,
they present a risk if they are the only place filtering occurs. We will
discuss ways to push filtering out into the network in “Intermediary
Filtering”.

Bookended Filtering



Bookended filtering is the act of applying policy not just on the receipt of a
packet, but while sending them too. This mode of filtering is not commonly
found in traditional networks. It brings some interesting advantages to
network design, which we will now explore.

Egress (the opposite of ingress) is a term used to describe network traffic
that is leaving a host. This type of filtering is commonly used to manage
communication from a private network out to public networks, but it is
rarely used within a private network. There are a few reasons this is the
case:

Ingress filtering is easier to reason about, since listening services can be
enumerated when building firewall rules. Egress filtering requires more
bookkeeping to capture how hosts intend to communicate.

Ingress filtering is generally considered good enough to stop undesirable
communication in the network.

Egress filtering requires knowledge of every expected flow, something
not usually found in traditional networks.

Bookended filtering uses egress filtering within the zero trust network to
further harden the system. We can see how this hardening is beneficial with
the example shown in Figure 8-10. Let’s consider a system where a
database server has ingress filter rules set up to allow access from
application servers. A well-meaning administrator is investigating some
network connectivity issues. In the process of their investigation, the admin
loosens the database’s ingress filtering to rule out the possibility that it was
causing the issue. Crucially, this administrator forgets to revert their change
after disproving that theory. This error removes a layer of defense in the
system for some time. Worse yet, discovering this lost defense can be
difficult because the expected communication (from the app servers to the
database server) continues to work.



Figure 8-10. Bookended filtering can provide protection in unexpected circumstances

In this scenario, a network that has pervasive bookended filtering is
protected even when this critical misconfiguration is in the system. In a
way, it’s similar to herd immunity—the collective benefit that a community
provides to unvaccinated members when the vast majority of members are
vaccinated against a disease. Instead of preventing illness, bookended
filtering protects misconfigured systems from the potential impact of that
misconfiguration.

Building bookended filtering into a system isn’t as hard as it might seem,
given the right conditions. Communication flows need to be captured in a
way that can be consumed programmatically. The best way to capture these
flows is by defining fine-grained ingress rules. These ingress rules should
allow access to a service based on each client’s server role instead of
broadly opening access to a service. By capturing this detail, we have
constructed a dependency graph from which egress rules can be calculated
and applied throughout the system.

Like we discussed in host filtering, egress filtering is best applied when it is
isolated from the applications running within the system. The same insights
apply here: prefer implementing filtering on the other side of a virtualized
or containerized environment to have the most robust filtering mechanisms.
Looking beyond the filtering implementation, it’s important to consider the
isolation of the data used to build egress filtering rules. It might seem



attractive to calculate that data from a dynamic data source such as a service
discovery system, but bookended filtering is most effective when the flow
database is isolated from the running system. Instead use a slowly changing
database, especially one that requires a human to review changes.

PROJECT CALICO
Project Calico is a virtual network system for dynamically scheduled
workloads. A workload is a generic term that applies to any application
which needs to be run in a datacenter. This application could be inside a
container or a virtual machine. Calico takes the lessons learned in
operating the internet and brings them into the datacenter to create a
simpler network which can scale efficiently as the size of one’s network
grows.

Calico is not a full zero trust solution, but it does echo some of the ideas
of zero trust networks. Calico distributes filtering throughout the
network, which is enforced on the host machines. These hosts are
dynamically reconfigured based on changes in a database which
describes the entire network. This design looks very similar to the host
filtering we discussed earlier.

Calico also includes the bookended filtering concepts we discussed.
This means that hosts on both ends of a connection are filtering traffic
based on their knowledge of which connections should be allowed. This
double enforcement of network communication is seen as a secondary
defense in the network fabric.

Intermediary Filtering
Intermediary filtering is the idea that devices other than the sender or
receiver can and should participate in filtering traffic in a zero trust
network. This at a minimum means perimeter filtering can play a role in a
zero trust network, and at the maximum, intermediary devices within the
network’s fabric.

https://www.projectcalico.org/
http://docs.projectcalico.org/v2.0/reference/architecture/data-path


As we discussed in “Host Filtering”, filtering traffic only at the destination
incurs an extra cost on the network when the ratio of undesirable traffic is
very high. High throughput filtered traffic will most often originate from
internet ingress traffic. Ideally, we want to filter traffic as soon as possible
to reduce the impact and the cost of filtering. For this application, filtering
at the perimeter systems that sit between the zero trust network and the
internet is ideal. These devices typically need to be hardware based to
efficiently filter the packets coming into the system.

Perimeter filters can also be an important check and balance in a zero trust
network. The perimeter filters should be a combination of global rules and
coarse-grained host policy. By keeping global rules separate from host
policy, invariants about the external network configuration are defined.

Exceptions to this policy should be traceable back to host infrastructure that
relies on those exceptions, and the actions taken to instantiate them. The
best implementation derives these exceptions from the host policies
themselves. By tying the host policy to the exception policy, the system will
be more consistent as hosts come and go from the network. These
exceptions, however, must be verified to be as narrowly scoped as possible.
A review process should be exercised for all policy changes in order to
guard against overly broad exceptions which can compromise the system’s
security.

UPNP CONSIDERED HARMFUL
Deriving perimeter policies from host policies should not be conflated with UPnP, a
technology used to reconfigure consumer firewalls. UPnP is rightly criticized because
any application on the network can reconfigure the perimeter. In the zero trust model,
there is a chain of trust between the host policies and the exceptions that are created at
the perimeter.

It might seem odd that we’re discussing perimeter filtering in such a
positive light, given the failings of the perimeter model. The key detail to
understand here is that zero trust networks don’t throw out all perimeter
concepts. Instead, they encourage administrators to start at the host and



work their way outward. Perimeter devices eventually play a role in this
way, with denial-of-service mitigation being by far the most notable
application.

An exciting idea in zero trust networks is to use the host policy database to
dynamically program the network fabric itself. This would result in a
software-defined network (SDN) that does not blindly route packets to the
destination, but actively manages switching and routing policy based on
which flows are expected and allowed. This results in a few benefits:

Potentially malicious traffic is kept away from hosts, reducing the attack
surface.

Software firewalls on the hosts are augmented by the network itself,
adding additional layers of defense in the network.

Like the perimeter filtering discussed earlier, filtering in the network fabric
should be seen as an enhancement to the base layer of host-based filtering.
It must not act as a replacement for it.



FORWARDING AND ROUTING AUTHORIZATION
As we discuss filtering, there is a theme that arises—zero trust networks
leverage relatively slowly changing details of the network to distribute
enforcement, resulting in a network that is more secure. This
observation opens up an interesting opportunity: can we propagate
enforcement into the network infrastructure, effectively elevating those
pipes from a simple packet transmitting system to a smart network
fabric?

Imagine an SDN controller which only installed flow instructions based
on the result of a strong authentication and authorization process. A
client wishing to access a network resource can signal the control plane,
providing the network access request along with the appropriate
credentials. After successful request authorization, the network is
installed and available, but only for the specific flow which was
authorized.

Summary
This chapter focused on how traffic gains trust in a zero trust network. We
teased apart the distinctions between encryption and authenticity—two
concepts that are related but distinct. Zero trust networks require
authenticity in communication, and most networks also gain value in having
their traffic encrypted.

We explored the first packet problem in network communications. Modern
authentication systems are fairly complicated systems, which results in a
large surface area for attacks. We talked about hiding those services behind
a single packet authorization system, which is a relatively simple service
that can be used to hide a more complex authentication system like TLS.

We then talked about two competing protocols for encryption and
authentication of network traffic: TLS and IPsec. We discussed how these
systems differ and gave clear guidance that mutually authenticated TLS is



best suited for client/server interactions or in heterogeneous environments,
while IPsec seems well suited inside the datacenter (particularly so when
Network Address Translation is not present).

Zero trust networks still need packet  filtering capabilities, which they
deploy throughout the network. We described three types of filtering that
can be deployed in such a network: host, bookended, and intermediary
filtering. Each type of filtering adds additional robustness to the network
and can be deployed in the network using system automation and a shared
database of expected network communication.

The next chapter takes all the concepts we have learned thus far and lays
out a plan for creating your own zero trust network.



Chapter 9. Realizing a Zero
Trust Network

This chapter will help readers develop a strategy for taking the knowledge
in previous chapters and applying it to their system. Zero trust networks are
very likely to be built around existing systems, so this chapter will focus on
how to make that transition successfully.

It’s important to remember that zero trust is not a product that can be bolted
onto the network. It is a set of architectural principles which are applied
based on the needs and constraints of the network. Therefore, this chapter
cannot provide a checklist of changes to be made, but rather a framework
for how to approach realizing in a zero trust network in your own system.

Choosing Scope
Before setting out to build a zero trust network, it is important to choose the
proper scope for the effort. A very mature zero trust network will have
many interacting systems. For a large organization, constructing these
systems might be feasible, but for smaller organizations, the number and
complexity of those systems may make a zero trust network seem out of
reach.

It’s important to remember that the zero trust architecture is an ideal to
work toward instead of a list of requirements that must be met completely
from day one. This is no different than perimeter-based networks. Less
mature networks may initially choose a simple network design to reduce the
complexity of administration. As the network matures and the risk of a
breach increases, the network will need to be redesigned to further isolate
systems.



While the zero trust network design is an ideal, not all features of the design
have equal value. Determining which components are required and which
are nice to have will go a long way in ensuring the success of a zero trust
implementation.

What’s Actually Required?
Limiting the scope of a zero trust network necessarily requires prioritizing
the set of properties that were presented earlier in this book. This RFC-style
prioritization list is the authors’ opinion on how that work should be
prioritized:

All network flows MUST be authenticated before being processed.

All network flows SHOULD be encrypted before being transmitted.

Authentication and encryption MUST be performed by the endpoints in
the network.

All network flows MUST be enumerated so that access can be enforced
by the system.

The strongest authentication and encryption suites SHOULD be used
within the network.

Authentication SHOULD NOT rely on public PKI providers. Private
PKI systems should be used instead.

Devices SHOULD be regularly scanned, patched, and rotated.



RFC-STYLE PRIORITIZED LISTS
RFC documents are the lingua franca of proposed changes to internet
infrastructure. In these documents, language and structure is clearly
defined to allow readers to more quickly understand the changes
proposed in this document.

One aspect of that language which is very useful in prioritization
discussion is the standard terms defined in RFC 2119. This RFC defines
a set of terms (MUST/MUST NOT, SHOULD/SHOULD NOT,
MAY/MAY NOT) which, when used, carry greater weight than their
normal usage in common literature.

This book’s prioritized list uses these terms with a similar intention to
their definitions in RFC 2119. While architectural characteristics don’t
have quite the same requirements as protocol designs, the use of these
standard terms is intended to echo the usage presented in that RFC.

For completeness, here are the intended definitions of these standard
terms when used in this book:

MUST

This term is used for a requirement that is required for the
implemented system to be considered compatible with the zero trust
design.

MUST NOT

This is the opposite of MUST. A system intending to implement the
zero trust design is required to not have this characteristic.

SHOULD

This term denotes an architectural characteristic that is desired in a
zero trust network, but given cost constraints can be deprioritized.
When deprioritizing this feature, system administrators should be
aware that they are trading the security of their systems for reduced
cost in implementing them. When at all possible, system

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt


administrators should avoid compromising on these characteristics
because the benefit of not compromising on them is considered
worth the upfront cost of their implementation.

SHOULD NOT

This is the opposite of SHOULD.

MAY

This term is used for architectural characteristics of a zero trust
network that bring value, but are considered nice-to-haves. System
administrators should plan on implementing these aspects once they
have built a system that satisfies the MUST and SHOULD
definitions. It is important to note that these additional features
bring additional value to the network by hardening it, so they should
not be considered a net loss.

With this prioritized list of design requirements for building a zero trust
network, let’s dig into why particular requirements were categorized the
way they were.

All network flows MUST be authenticated before being
processed
In a zero trust network, all packets received by the system are immediately
suspicious. As such, they must be rigorously inspected before allowing the
data within them to be processed. Strong authentication is the primary
mechanism by which we accomplish this.

Authentication is absolutely required in order to gain confidence about the
provenance of network data. It is, perhaps, the single most important
component of a zero trust network. Without it we have nothing, and are
forced to place trust in the network.

All network flows SHOULD be encrypted before being
transmitted



A key lesson of this book is that a network link cannot be trusted to reliably
convey data or signals from one system to another. The physical
accessibility of a network link to unsafe actors makes it trivial for that
network to be compromised. Moreover, even in a physically secure
network, bad actors can digitally infiltrate a system and passively probe the
network for valuable data.

By encrypting data on a device before transmitting it on the network, we
reduce the attack surface of that communication to the trustworthiness of
the device itself, namely application and physical device security.

Authentication and encryption MUST be performed by the
application-layer endpoints
Since zero trust networks recognize the threat that trusting network links
pose to the security of a system, it is important that secure communications
be established between application-layer endpoints. Adding middleware
components that handle these responsibilities (like VPN concentrators or
TLS-terminating load balancers) can leave upstream network
communications exposed to physical and virtual threats.

As a result, a system that claims to be zero trust is required to implement
encryption and authentication at every application-layer endpoint on the
network.

All network flows MUST be enumerated so that access can be
enforced by the system
Zero trust networks depend on data that defines the expected characteristics
of the network. Therefore, defining every expected network flow is critical
to safeguarding the network.

We should be careful to note that enumerating flows does not require
onerous change management controls to provide value. A simple process
for defining expected flows brings enormous value in terms of network
enforcement and change auditing.



Without the list of expected network flows, zero trust systems are unable to
highlight unexpected communications which need attention from
administrators or should be denied.

It is the strongly held opinion of the authors that deferring the effort to
enumerate flows will ultimately result in a task list that is considered
infeasible. The authors feel that the best way to keep this database of
expected flows up to date is to distribute the responsibility of defining those
flows into the organization. When distributing this responsibility,
organizations should take caution to educate teams on best practices for
change management to guard against internal threats to the system. One
such threat is allowing a single person to update the flow database without
any oversight. A simple review system can mitigate this threat.

FLOW DATA AS THE SOURCE OF TRUTH
Building a database of expected flows is best accomplished by making the flow
database the data source for allowing that access. By setting up this dependency (and
disallowing external modification), the flow database will be consistent with the actual
allowed access.

When capturing flows, following these rules will improve the quality of the data:

Capture the intended use of a flow along with the policy details (e.g., LB access—
from LB hosts to web application).

Prefer narrowly defined flows over broad access.

The strongest authentication and encryption suites available
SHOULD be used within the network
Zero trust networks assume a hostile network environment, so strong
authentication and encryption suites are an important component in the
security of a zero trust network.

Which suites offer strong security unfortunately changes, so this book
cannot offer specific choices that will stand the test of time. Readers should



refer to security standards like the NIST encryption guidelines to pick
strong cipher suites.

System administrators should always aim for the strongest suites possible,
but device and application capabilities might limit the types of suites that
are available. In these cases, administrators should be aware that by
reducing the strength of these suites, security is being compromised in their
network.

Authentication SHOULD NOT rely on public PKI providers—
private PKI systems should be used instead
Public PKI systems provide trust assurances to unmanaged endpoints in a
secure communication. A certificate authority signs certificates used in
establishing secure communications. The endpoint receiving that signed
certificate is able to verify its authenticity by comparing the signing
material against the list of trusted certificate authorities already present on
the system. By seeding systems with a list of trusted public certificate
authorities, endpoints can establish secure communication channels with
systems they have not previously communicated with.

Given the benefit that the public PKI system provides to build secure
communication channels, why do zero trust networks prefer private PKI
systems? The reason, perhaps unsurprisingly given zero trust’s focus on
managing trust, is that trusting a third party places the system at increased
risk. There are several risks that the public PKI system brings to a zero trust
network.

One concern is the number of public certificate authorities that are
considered trusted. As internet traffic has grown, the number of trusted
public CAs has grown with it. Each one of those trusted CAs has the ability
to sign a fraudulent certificate that incorrectly asserts the trustworthiness of
a malicious system. Certificate pinning can help with this risk by giving an
endpoint the knowledge of which certificate to expect for a given endpoint,
but certificate pinning requires that the endpoint have prior knowledge of
the expected certificate, which presents a new challenge.



Using a public CA also presents another threat. State actors have become
more aggressive in using judicial powers to force organizations to act
against the trust guarantees that they provide to their customers. These
requests have increasingly used laws which prohibit involved parties from
disclosing their actions. Given this aggressive stance, allowing state actors
into the trust mechanisms of a zero trust network should give system
administrators pause.

Based on these concerns, zero trust networks should prefer privately held
PKI systems. Endpoints should be configured to only allow certificates
signed by the private PKI system. We discussed PKI in greater detail in
Chapter 2.

Devices SHOULD be regularly scanned, patched, and rotated
We learned in Chapter 5 that the security of devices is critical for building a
zero trust network. Administrators need to build with the assumption that
trusted devices on the network are compromised, and therefore build
defenses into device management to mitigate this threat.

To that end, devices should be regularly scanned to capture the software
that’s running or installed on the device at a given point in time. Scanning
can be used to discover and prevent known malicious software from
running on the device, but administrators should operate under the
assumption that malware prevention software (e.g., antivirus software) will
always be imperfect. Rather than focusing all energy on stopping malicious
software from running, administrators should focus on building forensics
capabilities so they can analyze the impact of an inevitable malware attack.

Keeping devices fresh is also very important. System administrators should
have a plan for regularly installing the latest security patches. Additionally,
a regular device rotation policy will help ensure that devices don’t accrue
cruft, which can compromise the security of that system.



PREFER REIMAGING OVER LONG-TERM
SCANNING AND PATCHING

Device trustworthiness degrades over time due to the increased risk that a device could
have been compromised. Regularly reimaging devices, while disruptive, ensures that the
trust in the fleet remains high. Aim to reimage servers once a quarter and personal
devices every two years.

Building a System Diagram
Building a system diagram is an important first step toward realizing a zero
trust network. Having a clear picture of how both internal and external
network communication is occurring will be useful when designing system
communication channels.

System diagrams, such as the one shown in Figure 9-1, are often maligned
for being horribly out of date. These diagrams are typically built by hand,
which requires a large amount of human effort. Given the speed at which
the diagrams fall out of date, there is a commonly held opinion that system
diagrams simply aren’t worth the investment. This viewpoint, however,
misses the benefit of having a human-focused view of how the system
should be constructed. While an engineer could read code or interrogate
existing systems to determine how the system is constructed, this doesn’t
give any insight into whether that state was desired or accidental.



Figure 9-1. A diagram like this is a good starting point for building a zero trust network.
Directionality is important.

So if system diagrams are useful, but often out of date, the natural question
is how much time and effort should we put into their creation. A good path
forward for an existing network is to first observe the communication that is
flowing through the network. You can capture this communication using
tools that log flows. Once flow information is captured, producing a system
diagram will be an exercise in categorizing classes of communication.

In the next section, we will talk about tools for capturing and categorizing
network flows, as well as a strategy for breaking down this large effort into
smaller chunks of work.



Understanding Your Flows
A network flow is a time-bound communication between a source system
and a destination. A single flow could be be directly mapped to an entire
conversation when using a bidirectional transport protocol (e.g., TCP). For
unidirectional transport protocols (e.g., UDP), a single flow might only
capture half of a network conversation. This is because while two UDP
flows might be logically related, an observer on the network may be unable
to make that association without a deep understanding of the application
data.

Capturing all the flow activity in an existing production network is a logical
first step for a system that wants to move to a zero trust model. Logging
flows in a network over a long period of time is a noninvasive way to
discover what network connections exist and should be considered in the
new security model. Without this up-front information gathering, efforts to
move to a zero trust model will result in frequent network communication
issues, causing the project to be deemed too invasive and disruptive.



WAYS TO DISCOVER FLOWS
There are many different mechanisms for logging and analyzing
network flows. Which system is used will largely depend on the type of
network being run (physical or virtual) and the level of access that an
administrator has over the endpoints.

Physical networks have rich capabilities for accessing the raw packets
that are flowing over the network. Business-class switches will
generally have the ability to mirror packets to a second port on the
switch (known as a SPAN or mirror port). This approach is relatively
safe to enable on a lightly loaded switch, but it will mask some types of
errors in the network. TAP devices, which are placed inline in the
network link, will guarantee that all data is transmitted to a monitoring
device. For the purposes of discovering logical flows in the network,
either approach will work.

Virtualized networks might have the ability to inspect network traffic,
but they generally operate on a coarser level. Amazon Web Services, for
example, has a feature that logs every flow in a network, which can be
used to analyze traffic on its systems (Figure 9-2).

Figure 9-2. Some cloud providers have flow logging features built in; this is a screenshot of the
AWS flow log feature (used with permission from Roy Feintuch)

While discovering flows via the network fabric gives perfect visibility
into the traffic that is flowing, tying that analysis back to individual
applications is difficult without some endpoint monitoring system. In
the case where control of endpoints is feasible, discovering network

http://bit.ly/aws-feintuch


flows on the endpoints themselves can provide a more detailed view of
the source of traffic in the system. Software firewalls operating in log-
only mode can be a useful tool to discover flows in the system without
impacting communication.

On Linux endpoints, there are several approaches to discovering and
cataloging network flows, which Harald Welte’s paper “Flow-based
network accounting with Linux” captures.

With all network flows logged, the next goal is to categorize flows based on
higher-level system connections. These connections should be defined at
the logical systems level instead of the individual IP/port level. The
connections being defined with this exercise are very valuable data. With
the definitions in hand, one is able to better enforce known connections and
gain awareness of changes to the communication patterns within a network.
Since many operations of secure network can be derived from this database
of connections, it’s clear that capturing this mapping is very useful.

For a very large network, capturing and categorizing all network flows
could be an enormous undertaking. The natural question is whether
capturing all network connections is a requirement for transitioning to a
zero trust network. Fortunately, a zero trust network can be incrementally
realized within an existing perimeter-based system. One can leverage the
existing perimeter or network boundaries to build a zero trust network on
either side of the boundary. The zero trust model can then spread from zone
to zone as in Figure 9-3, enhancing the network security of the existing
system while maintaining the operational security measures already in
place.

https://www.kernel.org/doc/ols/2005/ols2005v2-pages-273-278.pdf


Figure 9-3. Zero trust adoption can move zone by zone, giving an easy migration path away from the
traditional perimeter architecture

Controller-Less Architecture
A fully mature zero trust network will have at its core several control plane
systems which provide critical security services. While having these
systems is ideal, it is possible to iterate toward the idealized deployment
while using common infrastructure systems initially. We will explore some
of these systems now.

“Cheating” with Configuration Management
Many operationally mature organizations use configuration management
tools to manage their infrastructure. When using these systems, the desired
configuration state is captured and version controlled. After examining the
current state of the system, the configuration management system uses this



desired configuration to calculate modifications that will bring the system
to the desired state. Using a configuration management tool brings a
number of benefits over planned changes executed by humans:

Changes to the system are applied consistently across the entire fleet.

The configuration data can be stored in a version control system, which
provides a useful record of what changes were made and why.

Configuration drift is less likely to occur, since its state is policed by the
configuration management system.

The first way that configuration management is often deployed is to manage
the configuration of individual computers. The systems are started from a
known blank slate (usually just the initial installation of the operation
system) and then reconfigured to the desired state based on that machine’s
role in the infrastructure. Having this process automated makes it easy to
replace infrastructure.

While using configuration management for this task brings a lot of value,
these tools can also be used as a general-purpose automation framework.
For instance, they can be used to configure cryptographic primitives
between infrastructure hosts, or to poke tightly scoped holes in host-based
firewalls. In this way, configuration management (or CM) systems can be
used to drive a subset of the functions that are normally offered by a mature
zero trust control plane.

Similarly, CM systems can also be used to build up useful abstractions in
the network. Most CM tools support mechanisms for extending the set of
available resources or actions. Using this extension point, it’s possible to
build more complex resources into the system. For example, one could
define the concept of a service resource which would capture all the
standard infrastructure that should be used to make the service available on
the network.



CM IS A TEMPORARY STEPPING STONE
Configuration management systems are best deployed in a manner where the system
reaches a stable configuration. With this ideal in mind, using a configuration
management system to make frequent changes to the system would seem
counterproductive. We shouldn’t dismiss this concern, as it has some validity to it.
Instead, we should be mindful that leveraging a configuration management system to
build a zero trust network is just a stepping stone to the ideal solution, which would
move those responsibilities to a dedicated controller.

Application Authentication and Authorization
A typical organization makes use of many services, the client-side delivery
of which is increasingly browser-based. Since a zero trust network does not
infer trust based on the network address of a connection, every service
needs to handle authentication and authorization.

A simple solution is to to store username and passwords in each application.
This approach, however, is heavily discouraged, primarily due to
management complexity.

Instead of having each application implement its own authentication
systems, it is far better to have applications integrate with an identity
provider system which can provide centralized authentication and
authorization checks. SAML (Security Assertion Markup Language) is one
technology that can be used to integrate an application with an identity
provider. OAuth2 is another.

This is not to say that an application should have no authorization
responsibilities at all. To the contrary, it is expected that some application-
level authorization exist, particularly when considering things like varying
user permissions. The overhead of account management, user
authentication, and high-level authorization/access can be offloaded while
still allowing room for application-centric authorization.

When authenticating with an identity provider, multifactor authentication
must be used to ensure that the user credentials cannot be easily stolen. We
discussed multi-factor authentication in Chapter 6.



Authenticating Load Balancers and Proxies
Many service architectures call for the use of a load balancer to distribute
requests to a set of backend hosts. Oftentimes these load balancers represent
the boundary between a client-facing system and a datacenter system. This
can create confusion around how to properly apply zero trust controls in
such a system, since client-facing zero trust semantics can be fairly different
than server-side systems.

In Chapter 7, we spoke about how to manage application authentication and
authorization as an analog to user authentication and authorization. In
backend systems, the best way to authorize an application is to inject
ephemeral credentials at runtime, whether that be an API key, short-lived
certificate, or otherwise. Each credential uniquely represents a running
application instance.

In a load-balanced system, the load-balancing software itself can be viewed
as a server-side application. Each software instance is started with
ephemeral credentials identifying the instance to upstream hosts. This is in
addition to device authentication, which occurs between the load balancer
and upstream system using techniques discussed in Chapter 5.

With this architecture, the load balancer can then handle user and client
device authentication and authorization responsibilities, leveraging identity
providers if desired. Information from the resulting authentication and
authorization process (such as username) can then be sent along with the
original request to the backend hosts. In this way, the zero trust architecture
can be preserved as data crosses client-server boundaries and enters the
datacenter.



PREFER SECURITY TOKENS OVER TOTP
When  multifactor authentication was first deployed in organizations, users were given
simple devices which continuously generated time-based tokens. With the prevalence of
today’s smart phones, most users prefer to use a multifactor application on their smart
phone to generate codes.

Protocols which use security tokens, like U2F, are increasingly prefered over time-based
token systems due to their protection against phishing attacks. It’s a bonus that these
systems are generally also easier for users to work with. When possible, prefer security
tokens over TOTP systems. We discussed these technologies in Chapter 6.

Relationship-Oriented Policy
Zero trust advocates for a control plane that injects the results of
authorization decisions into the network to allow trusted communication to
occur. In that model, each network flow is individually authenticated and
authorized. Enforcement is obtained by reconfiguring or signaling the
network fabric to allow authorized communication.

In a scaled-down zero trust network, which lacks these control plane
systems, we are forced to scale back that ambition. Instead of building a
network that uses dynamic injection and signaling, we can build a system
that defines policies at the relationship level.

In relationship-oriented network policy, communication between two
devices is defined and controlled via traditional network filtering
mechanisms like firewalls and required TLS connections. These policy
enforcement mechanisms can seem very similar to a perimeter-based
model. The key difference in the relationship-oriented model is that the
policy is tightly scoped to communicating devices instead of
communicating network segments. This approach is sometimes referred to
as microperimeterization.

By capturing and enforcing which devices should be communicating with
each other, we build a database of expected communication which will be
of great value in the future when dynamic policy systems are deciding
whether to allow a network flow.



Policy Distribution
Distributing policy (as opposed to just enforcement) throughout the network
is a common characteristic of a scaled-down version of zero trust. Given the
fine-grained policy decisions we expect in the network, automation is
critical to making the network operable.

In a mature zero trust network, policy interpretation is fully handled by
control plane systems, which can dynamically reconfigure network
infrastructure and devices, or give authorization responses to signaling
enforcement components.

In a controller-less deployment, however, we must use a different
mechanism. Configuration management systems can be used to fill this void
in the network control plane.

Devices can be dynamically configured to implement their own
enforcement of expected network communication. Configuring an on-host
software firewall which is calculated from the relationship policy database
can provide per-host enforcement that is less difficult to operate than a
centralized, physical firewall. Communications can be similarly authorized
by hosts via mechanisms like mutually authenticated TLS, again controlled
by configuration management software.

The key realization here is that by using existing configuration management
systems, we are able to build a virtual control plane which can distribute
enforcement responsibilities into the network fabric. While this approach is
pragmatic, it isn’t without its downsides:

Requiring hosts to enforce policy risks having that policy removed or
altered should the host be compromised. In compatible environments,
pushing this responsibility across an isolation boundary (e.g., a
hypervisor, the host OS in containerized systems, or network security
groups) provides better protection.

Changes via configuration management systems often have a longer
period of inconsistency while policy is being rolled out into the system.



Defining and Installing Policy
Security policies need to be captured in a format that’s separate from the
individual devices that are used to implement those policies. There are a
few reasons for storing this data outside the implementing systems:

Having the policy captured separately allows for auditing of the
implementation against the desired policy.

The policy definitions can be reused when switching underlying
enforcement systems. For example, configuring a new vendor’s system
is made easier if the policy is captured in a non–vendor-specific format.

A separate database that captures intended policy can quickly fall out of
date unless mechanisms are put in place to ensure that it is consistent with
the implementation. The best way to ensure this happens is to generate
implementation configuration from this policy database using configuration
management systems.

Some system administrators may choose to capture policy directly in
configuration management code. In less mature networks, this approach is
considered sufficient, since the configuration management system will
consistently apply the policies defined on the target devices. As the network
matures, administrators may find that moving the definitions out to data
allows for them to be used in more locations. For example, host-based and
managed network firewalls could be configured from a shared policy
database if that data is extracted from configuration management code.

Defining variable trust policies is too difficult to attempt in less mature
networks. System administrators should instead focus on defining and
capturing known policies.

When building up policies, especially in an existing network, it is helpful to
have mechanisms for testing proposed policies. The gold standard is a
system which can take proposed policy changes and report on traffic which
would be denied by the enforcement of those policy changes. Building up
this policy preview system requires quite a few components: a database of



logged production flows, a policy simulator, and a system to identify
differences in current production policy and proposed policy. For many
organizations, that level of sophisticated policy simulation is simply out of
reach.

A simpler approach to safely introducing policy changes can be achieved
using the following rollout procedure:

1. Take a subset of the desired policy, which we will call the proposed
policy.

2. Deploy the proposed policy in a logging-only fashion.

3. Collect production traffic over a sufficient period of time.

4. Investigate traffic which would be rejected should the proposed policy
be enforced.

5. Enforce the proposed policy.

6. Repeat this process until all desired policy has been deployed.

7. When all the desired policy is in place, enable a policy which rejects
traffic by default.

This “log then enforce” procedure will provide ample time to discover
unforeseen issues in the production environment. In addition to this
approach, a phased rollout, where policy is enforced over a subset of the
production footprint, can also help identify issues without affecting the
entire production system.

Zero Trust Proxies
Zero trust proxies are application-level proxy servers which can be used to
secure a zero trust network. Proxies are deployed as infrastructure to handle
authentication, authorization, and encryption responsibilities. The manner
in which these proxies are deployed is critical to ensure the safety of a zero
trust network.



Zero trust proxies can operate in two different modes: reverse proxy or
forward proxy. Depending on the situation, one or both of these proxy
modes may be used, as shown in Figure 9-4.

In reverse proxy mode, the proxy is receiving connection requests from
zero trust-enabled clients. The proxy receives the initial connection,
validates that the connection should be allowed, and then passes the request
to the application for processing.

In forward proxy mode, a non-zero–trust-aware component needs to make a
network request to another zero trust system on the network. Since the non-
zero–trust-aware component is unable to work with the control plane to
initiate the request properly, it communicates through the authentication
proxy to handle that responsibility.

Figure 9-4. Co-located forward proxies can be used to connect to zero trust resources from legacy
systems, while co-located or centralized reverse proxies can allow access to legacy services by zero

trust clients.



Proxies can be used to build a zero trust network, but the proxies should be
deployed on the same device that the workload is running on. When a zero
trust network is built in this manner, all workload communication is
forcibly routed through the proxy before being emitted on the network.
Isolating this responsibility in a proxy brings advantages over incorporating
it in individual applications, which we covered in Chapter 8.

Placing proxies on dedicated devices is not recommended for building a
zero trust network. Trying to isolate zero trust responsibilities in an external
proxy goes against the model which seeks to secure all traffic, including
traffic between proxies/load balancers and backend services.

Building a zero trust network can be especially difficult for system
administrators who do not have complete control of all devices or services
on the network. For example, a network might have vendor-supplied
components which need to be secured without changing the device itself.

Zero trust proxies can help bridge the gap in this situation. Placing such a
proxy between the unmodifiable component and the zero trust network can
allow that component to participate in the network, though with a lesser
guarantee of its security.

It is critical that the non-zero–trust-aware component be completely
isolated. This isolation must ensure that all network communication to and
from that component can only occur through its authentication proxy. If
possible, direct mechanical connection should be preferred.

Client-Side Versus Server-Side Migrations
When realizing a zero trust network, deciding on whether client-to-server
interactions or server-to-server interactions should be undertaken first is
ultimately dependent on the needs of the organization and the level of effort
required to meet the goal.

Client-to-server interactions are usually the first to be focused on.
Oftentimes, the clients are physically mobile and accessing services from
uncontrolled networks. Additionally, with these devices being mobile, the



physical security of the device is reasonably called into question. Building
zero trust capabilities at this access point therefore brings a lot of value.

There are, however, real hurdles to building zero trust at the client/server
layer. Organizations don’t necessarily have existing automation systems
installed on client machines to allow the zero trust network to be built.
Additionally, the types of devices in use on the clients can be much more
diverse, which means that the required automation has to be compatible
with more systems.

Server-to-server interactions can be an easier initial target for zero trust
networks. These systems frequently have existing automation tools
installed. They also tend to have a less diverse set of providers in use.
Finally, they are often the systems which are housing sensitive data, and so
are an attractive target for would-be attackers.

Ultimately, the decision of where to start should focus on which target is the
weakest link in the system’s network defenses. Building a threat model can
help determine which systems are the most exposed. With that knowledge,
choosing where to invest time and resources is easier.

Case Studies
Since the exact architecture of a zero trust network is dependent on the
details of a particular organization’s network, it can be hard to see how all
the pieces fit together. To help visualize how these principles manifest
themselves in different situations, we are going to explore the experiences
of a couple organizations that have successfully transitioned to a zero trust
model.

Google’s BeyondCorp effort focused on bringing zero trust architecture to
the client-to-server interactions that their highly distributed and mobile
workforce uses every day.

PagerDuty’s Cloud Agnostic Network focuses on server-to-server and
cross-cloud interactions which needed to be secured from both external and
internal threats.



Case Study: Google BeyondCorp
Betsy Beyer

Starting in November 2014, Google published a series of articles in ;login:
describing a new and groundbreaking security model it was deploying to its
entire corporate network. The following case study is based on excerpts
from those three articles, with permission from Google and :login;.

We encourage you to read the original source material to learn more
details:

“BeyondCorp: A New Approach to Enterprise Security”

“BeyondCorp: Design to Deployment at Google”

“Beyond Corp: The Access Proxy”

By the early 2010s, Google was increasingly uncomfortable with the
perimeter model of network defense. Creating high, impregnable “castle
walls” was not going to protect us when tens of thousands of our employees
performed much of their work while physically outside our offices, while
on any given day we invited thousands of people inside. At the same time,
as the critical role Google plays in the lives of billions of users continued to
increase, so did the almost incalculable value we place on the user data
entrusted to us.

In light of the scope and scale of our employee base and our corporate
network, and the variety of ways in which our employees interact with
corporate resources (as a mobile workforce using cloud services and a
variety of client devices), it became obvious that the castle-wall metaphor
was unsustainable.We needed a strategy much more akin to a modern city
than a medieval castle: a system that mediates access to applications, data,
and services according to who you are, not which network you use.

With this security imperative in mind, Google revisited the state of the
enterprise with a fresh set of eyes. We knew that we could do better than

https://research.google.com/pubs/pub43231.html
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any of the conventional network security models deployed across the
industry, so we took the radical step of redesigning our entire approach.

Starting from square one in re-envisioning internal network security, we
invested over four years of design and iteration in creating a robust
implementation of the zero trust model. While most enterprises assume that
the internal network is a safe environment in which to expose corporate
applications, we assume that an internal network is as fraught with danger
as the public internet.

This new model dispenses with a privileged corporate network entirely.
Instead, access depends solely on device and user credentials, regardless of
a user’s network location—be it an enterprise location, a home network, or
a hotel or coffee shop. All access to enterprise resources is fully
authenticated, fully authorized, and fully encrypted based upon device state
and user credentials. We can enforce fine-grained access to different parts
of enterprise resources. As a result, all Google employees can work
successfully from any network, and without the need for a traditional VPN
connection into the privileged network. The user experience between local
and remote access to enterprise resources is effectively identical, apart from
potential differences in latency.

When reading the following case study, keep in mind that we’re well aware
that Google is unique both in terms of its scale and in the amount of
resources we were able to devote to this problem space. Because we
weren’t constrained by resources, we could act more or less purely
motivated by ambitious goals that did away with the conventional network
security paradigm.

Fast-forward from BeyondCorp’s inception to 2017: hacking tools have
advanced in sophistication and dropped massively in cost. Malicious efforts
that might once have been worthwhile only when turned against Google-
scale targets are now applicable to much smaller enterprises. While the risk
profile of small- to medium-sized organizations has increased, so too have
their options to protect themselves: the commercial network security
industry has likewise matured. While Google had to build its security



infrastructure from scratch, today there actually are enterprise network
security offerings your organization can employ in moving away from the
perimeter model. Regardless of individual components you’re considering
in this space, keep the core design principles and objectives that motivated
Google in mind as you develop a strategy.

While technical and implementation details of BeyondCorp may have
varying degrees of direct applicability to your enterprise or organization,
many of the risk factors we designed to protect against are widely germane,
and the fundamental design principles we employed should be directly
relevant to all.

The Major Components of BeyondCorp
As shown in Figure 9-5, BeyondCorp consists of many cooperating
components to ensure that only appropriately authenticated devices and
users are authorized to access the requisite enterprise applications. The
following sections describe individual components of BeyondCorp.

Figure 9-5. BeyondCorp components and access flow

Securely identifying the device



BeyondCorp securely identifies and tracks all managed devices using a
master Device Inventory Database and device certificates.

Device inventory database

BeyondCorp uses the concept of a “managed device,” which is a device that
is procured and actively managed by the enterprise. Only managed devices
can access corporate applications. A device tracking and procurement
process revolving around our Device Inventory Database is one cornerstone
of this model.

As a device progresses through its lifecycle, Google keeps track of changes
made to the device. This information is monitored, analyzed, and made
available to other parts of BeyondCorp. Because Google has multiple
inventory databases, we use a meta-inventory database to amalgamate and
normalize device information from these multiple sources, and to make the
information available to downstream components of BeyondCorp. With this
meta-inventory in place, we have knowledge of all devices that need to
access our enterprise.

Device identity

All managed devices need to be uniquely identified in a way that references
the record in the Device Inventory Database. One way to accomplish this
unique identification is to use a device certificate that is specific to each
device.

To receive a certificate, a device must be both present and correct in the
Device Inventory Database. We store the certificate on a hardware or
software Trusted Platform Module (TPM) or a qualified certificate store. A
device qualification process validates the effectiveness of the certificate
store, and only a device deemed sufficiently secure can be classed as a
managed device. These checks are also enforced as certificates and are
renewed periodically. Once installed, the certificate is used in all
communications to enterprise services. While the certificate uniquely
identifies the device, it does not single-handedly grant access privileges.
Instead, it is used as a key to a set of information regarding the device.



Securely identifying the user
BeyondCorp also tracks and manages all users in a User Database and a
Group Database. This database system tightly integrates with Google’s HR
processes that manage job categorization, usernames, and group
memberships for all users.

An externalized, single sign-on (SSO) system is a centralized user
authentication portal that validates primary and second-factor credentials
for users requesting access to our enterprise resources. After validating
against the User Database and Group Database, the SSO system generates
short-lived tokens that can be used as part of the authorization process for
specific resources.

Externalizing applications and workflows: The access proxy
All enterprise applications at Google are exposed to external and internal
clients via an internet-facing access proxy that enforces encryption between
the client and the application. The Access Proxy is configured for each
application and provides common features such as global reachability, load
balancing, access control checks, application health checks, and denial-of-
service protection. This proxy delegates requests as appropriate to the
backend application after the access control checks (described in the next
section) complete. See “Leveraging and Extending the GFE” for more
details about AP features.

Implementing inventory-based access control
The level of access given to a single user and/or a single device can change
over time. By interrogating multiple data sources, we are able to
dynamically infer the level of trust to assign to a device or user. The Access
Control Engine (described in more detail next) can then use this trust level
as part of its decision process, as in the following examples:

A device that has not been updated with a recent OS patch might be
relegated to a reduced level of trust.



A particular class of device, such as a specific model of phone or tablet,
might be assigned a particular trust level.

A user accessing applications from a new location might be assigned a
different trust level.

We use both static rules and heuristics to ascertain these levels of trust.

An Access Control Engine within the Access Proxy provides service-level
authorization to enterprise applications on a per-request basis. The
authorization decision takes several factors into account:

Information about the user, the groups to which the user belongs, the
device certificate, and artifacts of the device, as reported by the Device
Inventory Database

The inferred level of trust in the user and the device

If necessary, the Access Control Engine can also enforce location-based
access control

For example, the following policies are possible with the Access Control
Engine:

Restrict access to Google’s bug tracking system to fulltime engineers
using an engineering device.

Restrict access to a finance application to full- time and part-time
employees in the finance operations group using managed non-
engineering devices.

The Access Control Engine can also restrict parts of an application in
different ways. For example, viewing an entry in our bug tracking system
might require less strict access control than updating or searching the same
bug tracking system.

Leveraging and Extending the GFE



A conventional approach might integrate each backend with the device trust
inference service in order to evaluate applicable policies; however, this
approach would significantly slow the rate at which we’re able to launch
and change products. Instead, Google implemented a centralized policy
enforcement frontend Access Proxy (AP) to handle coarse-grained
company policies.

BeyondCorp leverages the existing Google Front End (GFE) infrastructure
as a logically centralized point of access policy enforcement. Funneling
requests in this manner led us to naturally extend the GFE to provide other
features, including self-service provisioning, authentication, authorization,
and centralized logging. The resulting extended GFE is called the Access
Proxy (AP). The following section details the features of the AP that are
particularly pertinent to this case study. For details about its other features,
see “Beyond Corp: The Access Proxy”.

The GFE provides some built-in benefits, such as load balancing for the
backends and TLS management, that weren’t designed specifically for
BeyondCorp. The AP extends the GFE by introducing authentication and
authorization policies.

User authentication
In order to properly authorize a request, the AP needs to identify the user
and the device making the request. Authenticating the device poses a
number of challenges in a multiplatform context, which we address in
“Challenges with Multiplatform Authentication”.

The AP verifies user identities by integrating with Google’s Identity
Provider (IdP). Because it isn’t scalable to require backend services to
change their authentication mechanisms in order to use the AP mechanism,
the AP needs to support a range of authentication options: OpenID Connect,
OAuth, and some custom protocols.

The AP also needs to handle requests without user credentials, for example,
a software management system attempting to download the latest security
updates. In these cases, the AP can disable user authentication.

https://research.google.com/pubs/pub45728.html


When the AP authenticates the user, it strips the credential before sending
the request to the backend. Doing so is essential for two reasons:

The backend can’t replay the request (or the credential) through the
Access Proxy.

The proxy is transparent to the backends. As a result, the backends can
implement their own authentication flows on top of the Access Proxy’s
flow, and won’t observe any unexpected cookies or credentials.

Authorization
Two design choices drove our implementation of the authorization
mechanism:

A centralized access control list (ACL) engine queryable via remote
procedure calls (RPCs)

A domain-specific language to express the ACLs that is both readable
and extensible

Providing ACL evaluation as a service enables us to guarantee consistency
across multiple frontend gateways (e.g., the RADIUS network access
control infrastructure, the AP, and SSH proxies). We chose to combine
coarse-grained, centralized authorization at the AP with fine-grained
authorization at the backend.

Mutual authentication between the proxy and the backend
Because the backend delegates access control to the frontend, it’s
imperative that the backend can trust that the traffic it receives has been
authenticated and authorized by the frontend. This is especially important
since the AP terminates the TLS handshake, and the backend receives an
HTTP request over an encrypted channel.

Meeting this condition requires a mutual authentication scheme capable of
establishing encrypted channels—for example, you might implement
mutually authenticated TLS authentication and a corporate public key
infrastructure. Our solution is an internally developed authentication and



encryption framework called LOAS (Low Overhead Authentication
System) that bidirectionally authenticates and encrypts all communication
from the proxy to the backends.

One benefit of mutual authentication and encryption between the frontend
and backend is that the backend can trust any additional metadata inserted
by the AP (usually in the form of extra HTTP headers). While adding
metadata and using a custom protocol between the reverse proxy and the
backends isn’t a novel approach (for example, see Apache JServe Protocol),
the mutual authentication scheme between the AP ensures that the metadata
is not spoofable.

As an added benefit, we can also incrementally deploy new features at the
AP, which means that consenting backends can opt in by simply parsing the
corresponding headers. We use this functionality to propagate the device
trust level to the backends, which can then adjust the level of detail served
in the response.

Challenges with Multiplatform Authentication
At minimum, performing proper device identification requires two
components:

Some form of device identifier

An inventory database tracking the latest known state of any given
device

Because BeyondCorp replaces trust in the network with an appropriate level
of trust in the device, each device must have a consistent, non-cloneable
identifier, while information about the software, users, and location of the
device must be integrated in the inventory database.

Desktops and laptops
Desktops and laptops use an X.509 machine certificate and a corresponding
private key stored in the system certificate store. Key storage, a standard
feature of modern operating systems, ensures that command-line tools (and



daemons) that communicate with servers via the AP can be consistently
matched against the correct device identifier. Since TLS requires the client
to present a cryptographic proof of private key possession, this
implementation makes the identifier non-spoofable and non-cloneable,
assuming it’s stored in secure hardware such as a Trusted Platform Module
(TPM).

Mobile devices
Instead of relying on certificates, we use a strong device identifier natively
provided by the mobile operating systems. For iOS devices, we use the
identifierForVendor, while Android devices use the device ID reported by
the Enterprise Mobility Management application.

Migrating to BeyondCorp
Like virtually every other enterprise in the world, Google maintained a
privileged network for its clients and applications for many years. This
paradigm gave rise to significant infrastructure that is critical to the day-to-
day workings of the company. While all components of the company will
migrate to BeyondCorp, moving every network user and every application
to the BeyondCorp environment in one fell swoop would be incredibly
risky to business continuity. For that reason, Google has invested heavily in
a phased migration that has successfully moved large groups of network
users to BeyondCorp with zero effect on their productivity.

Deploying an unprivileged network
To equate local and remote access, BeyondCorp defines and deploys an
unprivileged network that very closely resembles an external network,
although within a private address space. The unprivileged network only
connects to the internet, limited infrastructure services (e.g., DNS, DHCP,
and NTP), and configuration management systems such as Puppet. All
client devices are assigned to this network while physically located in a
Google building. There is a strictly managed access control list (ACL)
between this network and other parts of Google’s network.



Workflow qualification
All the applications used at Google are required to work through the Access
Proxy. The BeyondCorp initiative examined and qualified all applications,
which accomplish tasks ranging from the simple (e.g., supporting HTTPS
traffic) to the more difficult (e.g., SSO integration). Each application
required an AP configuration and, in many cases, a specific stanza in the
Access Control Engine. Each application went through the following
phases:

1. Available directly from the privileged network and via a VPN
connection externally.

2. Available directly from the privileged network and via the AP from
external and unprivileged networks. In this case, we used split DNS. The
internal name server pointed directly at the application, and the external
name pointed at the AP.

3. Available via the AP from external, privileged, and unprivileged
networks.

Cutting back on VPN usage
As more and more applications became available via the Access Proxy, we
started actively discouraging users from using the VPN, employing the
following strategy:

1. We restricted VPN access to users with a proven need.

2. We monitored use of the VPN and removed access rights from users
who did not use VPN over a well-defined period.

3. We monitored the VPN usage for active VPN users. If all of their
workflows were available through the AP, we strongly encouraged users
to give up their VPN access rights.

Traffic analysis pipeline



It was very important that we moved users to the unprivileged network only
when we were certain (or very close to certain) that all of their workflows
were available from this network. To establish a relative degree of certainty,
we built a traffic analysis pipeline. Our analysis proceeded as follows:

1. As input to this pipeline, we captured sampled netflow data from every
switch in the company.

2. We analyzed this data against the canonical ACL between the
unprivileged network and the rest of the company’s network. This
analysis allowed us to identify the total traffic that would have passed
the ACL, plus an ordered list of traffic that would not have passed the
ACL.

3. We could now attach the nonpassing traffic to specific workflows and/or
specific users and/or specific devices.

4. We progressively worked through the list of nonpassing traffic to make it
function in the BeyondCorp environment.

Unprivileged network simulation
To augment the traffic analysis pipeline, we also simulated unprivileged
network behavior across the company via a traffic monitor that we installed
on all user devices attached to Google’s network. The traffic monitor
examined all incoming and outgoing traffic on a per-device basis, validated
this traffic against the canonical ACL between the unprivileged network
and the rest of the company’s network, and logged the traffic that did not
pass the validations. The monitor had two modes:

Logging mode

Captured the ineligible traffic, but still permitted said traffic to leave the
device

Enforcement mode

Captured and dropped the ineligible traffic



Migration strategy
With the traffic analysis pipeline and the unprivileged simulation in place,
we defined and began implementing a phased migration strategy that entails
the following:

1. Identifying potential sets of candidates by job function and/or workflow
and/or location.

2. Operating the simulator in logging mode, identifying users and devices
that have >99.9% eligible traffic for a contiguous 30-day period.

3. Activating simulator enforcement mode for users and devices that have
>99.99% eligible traffic for that period. If necessary, users can revert the
simulator to logging mode.

4. After operating the simulator in enforcement mode successfully for 30
days, recording this fact in the device inventory.

5. Along with inclusion in the candidate set, successful operation in the
simulator’s enforcement mode for 30 days provides a very strong signal
that the device should be assigned to the unprivileged network.

Exemption handling
In addition to automating the migration of users and devices from our
privileged to our new unprivileged network as much as possible, we also
implemented a simple process for users to request temporary exemptions
from this migration:

We maintained a known list of workflows that were not yet qualified for
BeyondCorp.

Users could search through these workflows, and with the correct
approval levels, mark themselves and their devices as active users of a
certain workflow.

When the workflow was eventually qualified, its users were notified and
were again eligible to be selected for migration.



Lessons Learned
The migration to BeyondCorp came with a set of challenges and kinks to be
ironed out along the way. Hopefully the following lessons can save some
time and headaches for other organizations seeking to implement a similar
model.

Communication
Fundamental changes to the security infrastructure can potentially adversely
affect the productivity of the entire company’s workforce. It’s important to
communicate the impact, symptoms, and available remediation options to
users, but it can be difficult to find the balance between over-
communication and under-communication.

Under-communication results in the following problems:

Surprised and confused users

Inefficient remediation

Untenable operational load on the IT support staff

Over-communication is also problematic:

Change-resistant users tend to overestimate the impact of changes and
attempt to seek unnecessary exemptions.

Users can become inured to potentially impactful changes.

As Google’s corporate infrastructure is evolving in many unrelated
ways, it’s easy for users to conflate access issues with other ongoing
efforts, which also slows remediation efforts and increases the
operational load on support staff.

Engineers need support
Transitioning to a new network security paradigm doesn’t happen
overnight, and requires coordination and interaction among multiple teams.
At large enterprise scale, it’s impossible to delegate the entire transition to a



single team. The migration will likely involve some backward-incompatible
changes that need sufficient management support.

In our experience, the success of the transition largely depended on how
easy it was for teams to successfully set up their service behind the Access
Proxy. Making the lives of developers easier should be a primary goal, so
keep the number of surprises to a minimum. Provide sane defaults, create
walkthrough guides for the most common use cases, and invest in
documentation. Provide sandboxes for the more advanced and complicated
changes—for example, you can set up separate instances of the Access
Proxy that the load balancer intentionally ignores but that developers can
reach (e.g., temporarily overriding their DNS configuration). Sandboxes
have proven extremely useful in numerous cases, like when we needed to
make sure that clients would be able to handle TLS connections after major
changes to the X.509 certificates or to the underlying TLS library.

Data quality and correlation
Poor data quality in asset management can cause devices to unintentionally
lose access to corporate resources. Typos, transposed identifiers, and
missing information are common. Such mistakes may happen when
procurement teams receive asset shipments and add the assets to our
systems, or may be due to errors in a manufacturer’s workflow. Data quality
problems also originate quite frequently during device repairs, when
physical parts or components of a device are replaced or moved between
devices. Such issues can corrupt device records in ways that are difficult to
fix without manually inspecting the device.

The most effective solutions in this arena have been to find local workflow
improvements and automated input validation that can catch or mitigate
human error at input time. Double-entry accounting helps, but doesn’t catch
all cases. However, the need for highly accurate inventory data in order to
make correct trust evaluations forces a renewed focus on inventory data
quality. The accuracy of our data is at previously unseen levels, and this
precision has had secondary security benefits. For example, the percentage
of our fleet that is updated with the latest security patches has increased.



Sparse data sets
Upstream data sources don’t necessarily share overlapping device
identifiers. To enumerate a few potential scenarios:

New devices might have asset tags but no hostnames.

The hard drive serial might be associated with different motherboard
serials at different stages in the device lifecycle.

MAC addresses might collide.

A reasonably small set of heuristics can correlate the majority of deltas
from a subset of data sources. However, in order to drive accuracy closer to
100%, you need an extremely complex set of heuristics to account for a
seemingly endless number of edge cases. A tiny fraction of devices with
mismatched data can potentially lock hundreds or even thousands of
employees out of applications they need to be productive.

Conclusion
What began as an ambitious and long-term goal in late 2010 is in its final
stages of completion, and the majority of Google employees now work
completely within BeyondCorp. This process was an uphill battle at times,
and its success entailed a large amount of time and resources.

Fortunately, an organization seeking to implement a zero trust network
strategy today does have resources at hand to bootstrap this process. While
this journey will by no means be trivial, there are a number of enterprise
and commercial solutions available in this arena, and we hope that the
rough blueprint outlined in this case study is helpful as you contemplate
potential approaches. Keep the core motivations and design principles
outlined here in mind while weighing your options and choosing the
optimal security strategy for your needs.



Case Study: PagerDuty’s Cloud Agnostic
Network
Evan Gilman and Doug Barth

PagerDuty began building a zero trust network in 2013, and completed it in
2014. It has continued to evolve, and remains in production as of this
writing. The authors would like to thank PagerDuty for its permission to
use its name and describe some of the details behind its zero trust
implementation. All opinions are those of the authors, and PagerDuty is not
at fault for errors or inaccuracies contained herein.

PagerDuty is a platform that organizations use to power their incident
response. Users are able to integrate their existing tools like monitoring,
ticketing, and reporting systems using PagerDuty’s API. Most users first
configure their monitoring systems to route alerts through PagerDuty so
PagerDuty can manage on-call rotations and escalations. Given the critical
nature of the service being provided, a zero trust network was ideal to meet
both the reliability and data privacy requirements of that system.

PagerDuty’s zero trust network primarily deals with server-to-server
interactions purely within a multiprovider public cloud environment. Cloud
providers have varying network control plane capabilities. Some providers
give none of the controls that are normally required for a traditional
perimeter system like a stateful firewall, private addressing, network ACLs.
In the most extreme case, hosts are placed onto the public internet and the
host needs to secure itself. This disparity in provider capabilities makes
running a provider-agnostic network exceptionally difficult using traditional
perimeter concepts.

PagerDuty’s system also makes heavy use of WAN communication in its
normal operation. Business-critical systems are deployed across three
separate regions with the goal of surviving the loss of an entire region
without impacting normal business operations. Relying on the WAN for
normal application operation places some heavy requirements on the
system. The internet is generally a challenging network environment with



the potential for unexpected high latency and packet loss. In addition,
communications need to be encrypted and authenticated to ensure data
privacy and integrity. By deploying a perimeterless zero trust network,
failure isolation is achieved since each node in the cluster is responsible for
just its own communication.

Configuration Management as an Automation Platform
The key asset used to construct PagerDuty’s zero trust network is its
configuration management tool, Chef. Chef was already being used to
configure every virtual machine in the system, and so it is a readily
available automation layer which could be leveraged to build a zero trust
network. With configuration management, policy can be centrally managed
in code while distributing the enforcement into the entire fleet.

This approach has a number of benefits:

Network compute power scales as the number of instances increases.
This scaling property removes the need to buy ever larger shared
hardware as the network grows.

Failures tend to be more isolated. Instead of having “the firewall,” the
system ends up having many smaller firewalls. A failure of a single
firewall affects a much smaller set of traffic and oftentimes can be routed
around.

Distributing policy throughout the network isn’t without its downsides:

Constant validation of expected policy state is required to ensure that all
nodes are correctly enforcing the expected policy.

Changes to policy are eventually consistent across the fleet. This can be
a bit jarring if a system administrator expects to be able to make a
change and see it take effect immediately.

While configuration management was an ideal place to quickly iterate on
the zero trust ideas, it is not an ideal long-term solution. As these systems



have become more mature, they have graduated out of Chef and into their
own systems, which can be deployed and tuned for optimal performance.

Dynamically Calculated Local Firewalls
Without a consistent provider-supplied firewall solution, PagerDuty found it
needed to ensure that each host was secured without relying on provider
systems. To meet that need, Chef was taught how to generate IPtables
configuration based on its existing knowledge of the system.

Servers in the system are categorized by their role, which captures the set of
services and expected communication patterns that should exist for that
role. Each server of a given role is identical in its configuration.

IPtables chains are constructed on each individual host that enumerates the
IP addresses for servers of a particular role. These chains are then used to
define the rules which allow expected access by role. If a flow does not
match the whitelisted rules, its packets are dropped.

Here’s an example of an IPtables configuration representing this
arrangement:

Chain INPUT (policy ACCEPT 0 packets, 0 bytes) 

target   prot in  out  source         destination 

ACCEPT   all  lo  *    0.0.0.0/0      0.0.0.0/0 

ACCEPT   all  *   *    0.0.0.0/0      0.0.0.0/0   state RELATED,ESTABLISHED 

bastion  tcp  *   *    0.0.0.0/0      0.0.0.0/0   tcp dpt:22 

lb       tcp  *   *    0.0.0.0/0      0.0.0.0/0   tcp dpt:80 

lb       tcp  *   *    0.0.0.0/0      0.0.0.0/0   tcp dpt:443 

LOG      all  *   *    0.0.0.0/0      0.0.0.0/0   limit: avg 10/min burst 5... 

DROP     all  *   *    0.0.0.0/0      0.0.0.0/0 

 

Chain bastion (1 references) 

target   prot in  out  source         destination 

ACCEPT   all   *   *    192.168.0.55  0.0.0.0/0 

ACCEPT   all   *   *    192.168.5.4   0.0.0.0/0 

ACCEPT   all   *   *    10.0.2.78     0.0.0.0/0 

ACCEPT   all   *   *    172.16.0.132  0.0.0.0/0 

 

Chain lb (2 references) 

target   prot in  out  source         destination 



ACCEPT   all   *   *   192.168.1.221  0.0.0.0/0 

ACCEPT   all   *   *   192.688.1.222  0.0.0.0/0 

Distributed Traffic Encryption
For network encryption and authentication, PagerDuty decided to
implement an IPsec host-to-host mesh network. This network architecture
has a number of benefits:

All packets are encrypted and authenticated by every node in the system.

Since encryption and authentication is distributed throughout the system,
as the number of hosts grows, the capacity to provide this critical
function grows as well.

Network encryption and authentication is normally viewed as an
application-level concern, but requiring every application to provide these
safety controls results in a less secure or less operable system. Application
encryption can have issues with correctly implementing the encryption
specification, lack the configuration controls to respond to security
vulnerabilities, or introduce performance regressions into the system. For
these reasons, PagerDuty decided to rely on the kernel’s IPsec stack to
provide this bit of critical infrastructure.

A system utilizing mutually authenticated TLS could provide similar
benefits to an IPsec-based network. In order to provide the same guarantees,
system administrators should separate the TLS infrastructure from the
application.



OUT-OF-PROCESS ENCRYPTION IS
INCREASINGLY BECOMING THE STANDARD

In many systems, encryption and authentication is considered an application concern,
and applications usually provide this functionality using standard libraries. As the
number of applications in a system has grown, systems are increasingly using out-of-
process mechanisms for securing network communication.

By moving the encryption logic into a separate process, administrators gain a standard
set of controls to use to respond to security vulnerabilities. In addition, having a separate
process controlling the sensitive encryption process reduces the surface area for attacks
that might want to expose secret data.

PagerDuty’s network uses IPsec in transport mode. The phase 1 and phase 2
cipher suites use the strongest possible configuration available at the time.
When choosing the cipher suites, RFC 6379 was referenced to ensure that
the algorithms chosen were recommended to be used together.

IPsec communication is normally transmitted using ESP packets. Since
some cloud provider’s networks do not route ESP packets, all IPsec traffic
is encapsulated in UDP packets.

PagerDuty’s experience with operating an IPsec mesh network in
production has been a bit mixed. The network has handled production
throughput, and has grown with the fleet. During the initial rollout,
communication failures did occur, often due to inconsistent state on either
side of the IPsec relationship. Having metrics and logging to surface these
issues was critical to operating the network. While having these failures
was certainly frustrating, with a mesh network these failures were isolated
to pairs of hosts, which often reduced the impact of the failure.

PagerDuty’s initial rollout of the IPsec network utilized Chef and some
simple scripts to configure pre-existing IPsec packages. As the network
grew, the configuration of the system has moved out of Chef and into a
dedicated service that can handle the sole responsibility of configuring this
aspect of the system. Moving the logic into its own system was done to
lessen the convergence time for deploying a change to the network. The
Chef-based system required running an entire Chef convergence run to

https://tools.ietf.org/html/rfc6379


update all relevant hosts in the network—a heavyweight operation that
handles more than just the network configuration.

Decentralized User Management
PagerDuty’s user access control is deployed in a centralized fashion, much
like the networking systems previously discussed. Instead of relying on a
centralized LDAP system, local users and groups are programmatically
constructed on each host in the network. This approach removes a
dependency on the network, which helps the system continue to operate
even during challenging periods.

While the enforcement of user access control is distributed into the
network, the definitions of which users and groups should be created is
centralized. This information could be captured in an LDAP server or some
other database. In PagerDuty’s case, it used Chef databags to define users
and groups. Server roles are marked with the set of groups that should be
created on that role. Chef uses this data to only create the users and groups
on a particular server that need access to that infrastructure.

Rollout
PagerDuty’s network, like most networks, is an ever-evolving system. The
network transitioned from a traditional design to a zero trust network over
time, while production traffic was flowing.

Changing a network architecture while critical production traffic is flowing
can be difficult, so it was important that the rollout was planned to reduce
risk. PagerDuty followed a slow rollout pattern:

1. New policies are defined.

2. Policies are deployed in a manner that does not affect the production
system, but instead collects useful metrics or logs.

3. The metrics/logs are inspected over a long period of time to ensure that
the behavior is desired.



4. The policy is slowly enabled across the fleet, growing from a small
percentage to 100% coverage.

This simple procedure can be used to reduce the risk of most production
changes. It is much better than the common approach of using a scheduled
maintenance window.

The slow rollout pattern is used to deploy most changes in PagerDuty’s
systems. For the distributed firewall project, all hosts were initially
configured to log packets which would be dropped at a later date. Firewall
rules were created to classify traffic flows, which could be deployed
without the risk of blocking any production traffic. With the rules deployed,
the logged traffic was reduced; and once enough time had passed, the
system was reconfigured to drop all non-whitelisted traffic.

The distributed traffic encryption followed the same rollout procedure.
IPsec policies were first deployed into the fleet in a no-op configuration.
These policies control whether a particular traffic flow should use IPsec for
communication. IPsec supports three different states:

None

IPsec will not be used.

Use

IPsec will be optimistically used if a relationship can be negotiated.

Required

IPsec must be used for traffic to be processed.

The initial set of policies were deployed in the none state. The end goal was
to get the entire system to the required state by stepping through the use
state. Based on testing of the failure modes of the use state, it was
determined that intermediate stateful firewalls would block communication
if the IPsec relationship were broken, as packets would fall back to a none
policy. These packets would not be associated with an expected flow
(remember that previously they were encrypted and wrapped in a UDP
encapsulation packet) and so would be dropped.



Instead of configuring the entire network to a use state, smaller portions of
the network were transitioned to a use state and then reconfigured to a
required state. This phased approach minimized the amount of time the
network was in the potentially risky use state while still allowing hosts to
communicate as they reconfigured themselves. Chef calculated the
minimum policy between a pair of hosts based on their preferred state.

Value of a Provider-Agnostic System
It goes without saying that building a provider-agnostic system requires
significant engineering effort. For many system, this effort may not be
justified. In PagerDuty’s case, the business requirements determined that
the effort was justified.

Having this provider-agnostic network in place provided a significant return
on investment when PagerDuty decided to move off one of its cloud
providers. Normally an effort like this would be a several month effort with
many high-risk change windows.

In PagerDuty’s case, this change was relatively straightforward. It took
roughly six weeks from making the decision to having all production traffic
moved over. The bulk of that time was spent researching new providers,
testing the new provider’s systems, and reworking the Chef automation.
The actual changes were deployed to production in one week during normal
business hours without any customer impact.

Summary
This chapter focused on the considerations that an organization that wants
to move to a zero trust network needs to decide on. Where possible, it gave
real-world recommendations to help readers through making these
decisions.

It spent time discussing the importance of understanding the state of the
system using system diagrams and capturing network flows from real
production traffic. Building all the zero trust control plane systems as



standalone services can be a large up-front investment, so practical
alternatives were explored.

The most important detail to remember is that zero trust is an architectural
ideal, so this chapter discussed how to get started down the path by defining
and capturing policy in a manner which can be later reused. It explored
putting in place authentication proxies which can incorporate systems that
aren’t directly compatible with zero trust. It also explored whether
organizations should start with client/server interactions or server/server
interactions.

Finally, to help readers see how this type of endeavor played out in other
organizations’ systems, this chapter explored two concrete case studies.
These case studies explore the particular approaches and trade-offs that
were made to make zero trust a reality in existing production networks.

The next chapter focuses on how a hypothetical attacker might try to thwart
a zero trust network.



Chapter 10. The Adversarial
View

Most formal proposals in the technology industry include a section
commonly known as “security considerations.” In fact, the IETF mandates
a security consideration section for all submitted RFCs.

This section is crucial for many reasons. First, it clearly communicates
potential pitfalls, dangers, and caveats. This is extraordinarily important
during the implementation and deployment phases, as it will help to ensure
that the operator arrives at a design which retains the security properties
that the system was originally designed for.

Second, it demonstrates that the authors have put good thought into the
ways in which the system can be attacked. It is far too easy to design a
seemingly secure system which harbors a major vulnerability just under the
surface. And finally, it sets the stage for discussion on how to best approach
and manage the security risks presented. As a result, including a security
considerations section is generally considered best practice. Some might
even view the work as deceptive without such a section, since it might
indicate that the authors are trying to push a known-weak technology.

Even the strongest proposals will have some security considerations. For
instance, the latest RFC for the TLS protocol has 12 pages worth. It is
important to understand that a system is not inherently insecure simply
because there are security considerations associated with it; rather, it should
be a sign that the system as a whole is more secure.

In this chapter, we will discuss the potential pitfalls, dangers, and attack
vectors associated with the zero trust model. If you were trying to penetrate
a zero trust network, how might you do it?

https://tools.ietf.org/html/rfc7322#section-4.8.5


Identity Theft
Practically all of the decisions and operations performed within a zero trust
network are made on the basis of authenticated identity. In Chapter 6, we
discussed the difference between informal and authoritative identity, such as
the difference between your “human” identity and your government
identity. Computer systems implement authoritative identity similar to the
way governments do—and similar to the way your government identity can
be stolen, so can your identity within a computer system.

If your identity is stolen or compromised, it might be possible for an
attacker to masquerade their way through the zero trust authentication and
authorization checks. This is, of course, extremely undesirable. Since
identity in a computer system is typically tied to some sort of “secret”
which is used to prove said identity, it is extraordinarily important to protect
those secrets as well as we can.

These secrets can be protected in different ways, based on the type of
component the identity belongs to. Careful consideration should go into
choosing which methods to use for which components. We spoke about
different ways to approach this problem in previous chapters.

Since a zero trust network authenticates both the device and the
user/application, it is necessary for an attacker to steal at least two identities
in order to gain access to resources within it, raising the bar when compared
to traditional approaches in use today. These concerns can be additionally
mitigated through the use of trust engine behavioral analysis.

While securing identity is a widespread industry concern, and is not specific
to zero trust, its importance is large enough to justify calling it out as
something which should be carefully handled, despite the fact that the zero
trust model works to naturally mitigate this threat.

Distributed Denial of Service



A zero trust network is primarily concerned with authentication,
authorization, and confidentiality, generally affected by tightly controlling
access to all network resources. While the architecture strives to
authenticate and authorize just about everything on the network, it does not
provide good mitigation against denial-of-service (DoS) attacks on its own.
Distributed DoS (DDoS) attacks that are volumetric in nature can be
particularly troublesome.

Just about any system which can receive packets is vulnerable to volumetric
DDoS, even those employing the zero trust architecture. Some
implementations “darken” internet-facing endpoints through the use of pre-
authentication protocols. We spoke a little about these in “Bootstrapping
Trust: The First Packet”, the basic premise being to hide those endpoints
behind a deny-all rule, adding narrow exceptions based only on signaling.
While this method goes a long way in helping to keep the endpoint
addresses obscured, it does not fundamentally mitigate DDoS attacks.

Zero trust networks, by nature, retain a great deal of information about what
to expect on the network. This information can be used to calculate policy
for more traditional traffic filtering defenses far upstream. For instance,
perhaps only a few systems in the network actually communicate with the
internet. In this case, we can use the policy to calculate coarse enforcement
rules from the perspective of an upstream device, applying very broad
enforcement with few exceptions. The advantages of this approach over the
typical approach are two-fold:

The configuration is fully automated.

The traffic filtering mechanisms can remain stateless.

The second advantage is quite a large one, since it obviates the need for
expensive hardware and complicated state replication schemes. In this way,
these filtering devices act more like scrubbers than firewalls. Of course, this
only makes sense if you operate a large network. If you have a few racks in
a colocation facility, or are cloud native, you might prefer to leverage an
online DDoS-prevention service.



The short of it is, DDoS is still a problem in the zero trust world, and while
we might have a few new clever ways to address it, it will still require
special attention.

Endpoint Enumeration
The zero trust model lends itself naturally to perimeterless networks, since a
perimeter makes much less sense when the internal network is untrusted.
The peer-to-peer nature of perimeterless networks make them generally
easier to maintain than perimeter networks, which frequently include
network gateways and tunnels like VPNs which pose scaling, performance,
and availability challenges.

As a result of this architecture, it is possible for an adversary to build a
system diagram by observing which systems talk to which endpoints. This
is in contrast to architectures which leverage network gateways like VPNs,
since an adversary observing VPN traffic can’t see conversations with
endpoints beyond the VPN gateway. It should be noted that this advantage
is lost as soon as the traffic crosses the gateway—a classic property of the
perimeter model.

It is here that we make a distinction between privacy and confidentiality.
The zero trust model guarantees network confidentiality, but not privacy.
That is, ongoing conversations can be observed and asserted to exist;
however, the contents of the conversation are protected. Systems that
provide network privacy attempt to obscure the fact that the conversation
happened at all. Tor is a popular example of a system which provides
network privacy. This is a wholly different problem space and is considered
out of scope for the zero trust model.

If a limited form of privacy over public networks is desired, tunneling
traffic through site-to-site tunnels is still an option in zero trust networks.
This deployment will make it more difficult to see which individual hosts
are communicating on either side of the tunnel. We should be clear that this
additional privacy protection should not be considered critical in the
network’s security. In fact, in some ways it undermines the zero trust model



itself, as hiding information in one part of the network and not another
suggests that one is more trusted than the other.

Untrusted Computing Platform
We covered this in Chapter 5, but it’s important to reiterate that zero trust
networks require the underlying computing platform to be a trustworthy
system. There’s a distinction to be made here between the computing
platform itself (think cloud hardware, virtual machine hypervisor) being
trusted and the “device” being trusted. Oftentimes these two systems are
conflated, but the attacks against each are subtly different due to their
differing privilege levels.

Totally defending against untrustworthy computing platforms is practically
impossible. Consider a system which used hardware that purposefully
generated weak random numbers (which encryption systems depend on).
Defending against that type of attacker would first involve detecting the
problem, though this alone might be impossible if the attacker hides their
capability most of the time.

Despite our inability to guard against a truly malicious computer platform,
zero trust systems can still guard against simpler attacks against the
platform. Encrypting persistent data and swapped-out memory pages will
mitigate simpler attacks by malicious peers on the computing platform. It
will also remove some small amount of trust in the platform’s operators and
therefore is recommended.

Social Engineering
Social engineering attacks, which trick trusted humans into taking action on
a trusted device, are still very much a concern in zero trust networks.
Whether they be phishing attacks, which craft written communication that
is not obviously malicious, or via face-to-face communications like those
that customer service departments have had to deal with, a zero trust



network can only do so much to defend against attacks enabled by an
unwitting participant.

For less sensitive resources, behavioral analysis of internal activity is the
mechanism that is used to guard against this threat. That analysis is coupled
with end user training that teaches users to think like an adversary and be
suspicious of requests which are out of the ordinary.

For more sensitive resources, group authentication/authorization schemes
like Shamir’s Secret Sharing can help mitigate the effects of a single
member of the group causing unintended actions to occur. This scheme can
be very burdensome on a day-to-day basis, so the best plan is to save it for
the truly critical assets.

Chapter 6 has more details on these mechanisms for defending against
social engineering attacks.

Physical Coercion
Zero trust networks effectively mitigate many threats in the virtual world,
but threats in the real world are another beast entirely. Valid users and
devices can be effectively coerced to aid an attacker to gain access to a
system that they shouldn’t have access to. Border crossing can often be a
place where government entities have substantial power over an individual
who just wants to get to their destination. And someone with a blunt
instrument can force even the most honest individuals to aid them (as
demonstrated in Figure 10-1).



Figure 10-1. The reality of threats in a system (cartoon by XKCD: https://xkcd.com/538/)

The reality is that defending against these types of compromises is ill-
advised. No security professional would ever tell someone in this situation
to risk their physical well-being to protect the information that they have
access to. Therefore, the best we can work toward as an industry is to keep
only the least sensitive data and systems vulnerable to the compromise of a
single individual. For higher-value targets, group authorization is an
effective mitigation against these threats.

Subtler physical attacks against individuals (say someone is able to insert a
USB device into an unguarded laptop) are best mitigated by a consistent
process of cycling both devices and credentials. Scanning of unrotated
devices can also help to mitigate these types of attacks.

If someone has physical access to your device, they can do a lot of damage.
However, that statement should not be license to throw our hands up in the
air and not at least try to mitigate these threats, particularly when it comes
to securing data used for zero trust authentication/authorization. There are
clear steps that can be taken to lessen the impact and duration of
compromise even if someone has physical access to a device, and zero trust
networks add those steps. You can read more about physical device security
in Chapter 5.

https://xkcd.com/538/


Invalidation
Invalidation is a hard problem in computer science. In the context of a zero
trust network, invalidation applies chiefly to long-running actions that were
previously authorized but are no longer.

The definition of an action is largely dependent on your chosen
authorization processes. For instance, if you authorize access on a request-
by-request basis, an action would be considered as a single application-level
request/operation. If, on the other hand, you authorize network flows (like a
TCP session) instead of application requests, an action would be considered
to be a single network session.

How quickly and effectively ongoing actions can be invalidated deeply
affects security response. It is important to gauge how much risk you’re
willing to tolerate in this area as you design your zero trust network, since
the answer has the potential to significantly affect how you might approach
certain problems. For instance, if a new TCP session is the action being
authorized, and some services maintain TCP sessions for multiple days on
end, is it acceptable to say that an entity with revoked credentials might
retain access for that long? Maybe not.

Luckily, we have some tools in our chest to address this problem. First, and
perhaps most obvious, is to perform more granular authorizations on actions
that are short-lived. Perhaps this means that the enforcement component
authorizes application-level requests instead of new network sessions.
While it is still possible to have long-running application requests, they are
in practice less frequent than long-running network sessions.

Another approach, though somewhat naive, is to periodically reset network
sessions, enforcing a maximum lifetime. When the application/client
reconnects, it will be forced back through the authorization process.

The best approach though is to teach the enforcement component to track
ongoing actions, and rather than reset them after a period of time, send
another authorization request to the policy engine. If the policy engine



decides that the action is now unauthorized, the enforcement component
can forcibly reset it.

As you can see, these mechanisms still rely on a “pull” model, in which the
enforcement component is forced to periodically reauthorize. As a result,
sessions can only be invalidated as fast as the longest polling period
configured in the enforcement component. While invalidation is best done
as a push or event-based model, those approaches come with additional
complexities and challenges which perhaps outweigh the benefits.
Regardless, it can be seen that the problem is (at the very least) addressable.

Control Plane Security
We discussed many control plane services throughout this book, responsible
for things like policy authorization and tracking inventory. Depending on
needs, a zero trust control plane can comprise a nontrivial number of
services, all of which play a crucial role in ensuring authorization security
throughout the network. A natural question follows: how can you protect
your zero trust control plane systems, and what happens if one is
compromised?

Well, it’s not good, that’s for sure! It is possible to completely undermine
the zero trust architecture if a control plane compromise is pervasive
enough. As such, it is absolutely critical to ensure the security of these
systems. This is not a weakness unique to the zero trust model—it exists
even today in perimeter networks. If your perimeter firewall is
compromised, what is the impact? Nevertheless, the concern is great
enough to warrant a discussion.

Control plane security can begin through traditional means, providing very
limited network connectivity and strict access control. Some control plane
systems are more sensitive than others. For instance, compromising a data
store housing historical access data is strictly less useful to an attacker than
compromising the policy engine. In the former, an attacker may be able to
artificially raise their level of trust by falsifying access patterns, where the



latter leads to a complete compromise of zero trust authorization, allowing
the attacker to authorize anything they please.

For the most sensitive systems (i.e., the policy engine), rigorous controls
should be applied from the beginning. Requiring group authentication and
authorization in order to make changes to these systems is a real option and
should be heavily considered. Changes should be infrequent and should
generate broadly seen messages or alerts. It should not be possible for a
control plane change to go unnoticed.

Another good practice is to keep the control plane systems isolated from an
administrative standpoint. Perhaps that means they live in a dedicated cloud
provider account or are kept in a part of the datacenter that has more
rigorous access control. Doing this allows access to be more carefully
audited and minimizes the risk presented to control plane systems by their
administrative facilities. Isolating these systems administratively does not
mean that they are logically isolated from the rest of the network. Despite
administrative isolation, it is important that control plane systems
participate in the network just as any other service does. Attempts to isolate
them can quickly lead back to a perimeterized design, which can be
considered the worst-case scenario for zero trust control plane security.

As the network matures, zero trust enforcement can be slowly applied to the
control plane systems themselves. Kind of like rewriting the C compiler in
C, backing zero trust enforcement into the control plane ensures that tight
security is applied homogeneously throughout the network and that there
are no special cases. The propensity to introduce a chicken-and-egg
problem should not deter you from this approach. Such problems are
manageable and can usually be worked through if sufficient thought is put
into them. The alternative (putting control plane systems in a perimeter
network) would leave these systems the least protected of all, and is
generally unacceptable in the context of a zero trust network.

Summary



This chapter attempts to approach the zero trust network from the opposite
perspective of the administrators of the system. By putting ourselves into
the mindset of a would-be attacker, we can evaluate the system as an
adversary who has vast knowledge of how it is put together.

Some of the attacks against zero trust networks are well mitigated, while for
others we are only able to detect the attack, at best. Even a zero trust
network can be compromised by a determined adversary, as the
inconvenience of defending against any theoretical attack is simply too high
a price to pay in the day-to-day operation of such a network.

The reality is that every system is susceptible to an attacker with sufficient
resources. When faced with the most advanced attacks, the best we can
hope for is efficient and accurate detection. Starting from the assertion that
a system has been compromised and working our way backward toward
limiting the damage is sage advice that might allow us to sleep soundly.

While the zero trust model certainly introduces some new consideration
points with regard to networked system security, it at the same time resolves
many more. By applying the power of automation to tried-and-true security
primitives and protocols, the authors are confident that the zero trust model
will rise to replace the perimeter model as a more effective, scalable, and
secure solution to the computer network security problem.
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