Orthogonal range searching

Querying a Database

S.Fahimeh Moosavi
1388-1389

dMany types of questions (query) about
data in a database can be interpreted
geometrically.

To this end we transform records in a

C

atabase into point in a multi-
Imensional space, and we transform
ne queries about the record into

C
L
0

ueries on this set of point.

Example:
Database for personnel administration

Query: report all employees born between
1950 and 1955 who earn between $3000
and $4000 a month.

salary
L]
.
[] [] G. Ometer
. born: Aug 19, 1954
4000 |- oo, salary: $3.500
L] . -
L L L
L] L L
L L] L
FO00)
- : :
L] N \ L]
N .
: : .
L |
1 1 .

date of birth

Query: report all employees born between
1950 and 1955 who earn between $3000
and $4000 a month and have between two

and four children.

i} R | I
4,000 .
SRS EEEr et o

s b0 L o

19,300,000 19.3550,999

1-dimensional range searching

dThe data we are given is a set of points in 1-
dimensional space (a set of real number)

A query asks for the points inside a 1-
dimensional query rectangle (an interval [X:
X'])

P:={p1, p2, ..., pn}: the given set of points on
the real line.

We can solve 1-dimensional range searching
problem efficiently using a balanced binary
search tree T. the leaves of T store the points of
P and the internal nodes of T store splitting
value to guide the search.

Report the points in a query range
[X @ X']
2 Find the split node

- Continue searching for x, report all
right-subtrees

- Continue searching for X', report all left-
subtrees

2 When leaves u and u' are reached,
check if they belong to the range.

Example
Interval [18 : 77]

f?@ ?\m .‘%:.K

lilamﬁ m%-i

Report all points stored in the dark grey
leaves plus the point stored in the leaf u .

FINDSPLITNODE(T, x.x")

Input. A tree T and two values x and x” with x < x’.

Output. The node v where the paths to x and x split, or the leaf where both paths end.
l. v e—root(T)

2. while visnotaleaf and (x" < xy or x > xy)

3 do if X' < x,

4. then v — lc(v)

5 else v — re(v)

6. returnv

Vst : Where the paths to x and x’ split.

rooi|T)

u

the selected subtrees

Algorithm | DRANGEQUERY(T,[x: x])

Input. A binary search tree T and a range [x : x'].

Output. All points stored in T that lie in the range.

I. Vgpiit —FINDSPLITNODE(T, x.x")

2. if v is a leaf

3 then Check if the point stored at vy must be reported.

+ else (+ Follow the path to x and report the points in subtrees right of the path.)
5

Vv — le(Vplit)

6. while v is not a leaf

7. doif x < xy

8. then REPORTSUBTREE(r¢(V))

9. v —lc(v)

10. else v — re(v)

I1. Check if the point stored at the leaf v must be reported.

12. Similarly, follow the path to x’, report the points in subtrees left of the path, and

check if the point stored at the leaf where the path ends must be reported.

Lemma 5.1 Algorithm 1DRANGEQUERY
reports exactly those points that lie in the
query range.

Theorem 5.2 let P be a set of n points in 1-
dimensional space. The set P can be stored in
a balanced binary search tree, which uses
O(n) storage and has O(n log n) construction
time, Such that the points in a query range
can be reported in time O(k + log n). Where k
IS the number of reported points.

Proof: two traversals down the tree (because T
IS balanced, these path have length O(logn))
plus the O(k).

Kd - trees
P: A set of n points in the plane.

Assumption: no two points have the same x-
coordinate (the same is true for y-coordinate)

A 2-dimensional rectangular range query on P
asks for the points from P lying inside a query
rectangle [x: X'] x [y :Y'].

QA point p:=(p, , py) lies inside this rectangle if
andonlyifp e [x:x'] and py € [y:y'].

Pyl — — — — 4 ————-Q'u
I

Recursive definition of the binary
search tree:

The set of (1-dimensional) points is split
into two subsets of roughly equal size; one
subset contains the points smaller than or
equal to the splitting value, the other
subset contains the points larger than the
splitting value.

Kd-tree: a binary tree
dData points stored at leaves

JFor each internal node v :

v' X-coordinates of left subtree <v < x-coordinates of right
subtree, if depth of v is even (split with vertical line)

v y-coordinates of left subtree <'v <y-coordinates of right
subtree, if depth of v is odd (split with horizontal line)

: E-T /\
[]
] ' L] = oy
P4 s P |ng i 3]

[|
i /\
e L
L2 ™ ,.-I.'--tI = I"F.g,.
—— ‘P',' |r_:|_ . - -
Ly ™ .lr_:ls
] i

Algorithm BUILDKDTREE(P, depth)

Input. A set of points P and the current depth depth.

Output. The root of a kd-tree storing P.

[. if P contains only one point

2 then return a leaf storing this point

3. else if depth 1s even

4 then Split P into two subsets with a vertical line ¢ through the median x-coordinate
of the points in P. Let P be the set of points to the left of / or on ¢, and let
P> be the set of points to the right of /.

5. else Split P into two subsets with a horizontal line ¢ through the median y-
coordinate of the points in P. Let P; be the set of points below ¢ or on /,
and let P, be the set of points above /.

6. Vieft — BUILDKDTREE(P,.depth+ 1)

1. Viight < BUILDKDTREE(P, depth+1)

8. Create a node v storing £, make vieg the left child of v, and make vyign the right

child of v.

0. return v

Lemma 5.3 A Kd-tree for a set of n points
uses O(n) storage and can be constructed in
O(n log n) time.

Correspondence between nodes in a kd-tree
and regions in the plane

region(v): the region corresponding to a node v.

£

a point is stored in the subtree rooted at a node
v if and only if it lies in region(v)

query the kd-tree
The range query algorithm (range R):

2 If region(v) does not intersect R, do not go deeper into the
subtree rooted at v

2 If region(v) is fully contained in R, report all points in the
subtree rooted at v

2 If region(v) only intersects with R, go recursively into v’s
children

e
1

Algorithm SEARCHKDTREE(V,R)
Input. The root of (a subtree of) a kd-tree, and a range R.
Output. All points at leaves below v that lie in the range.

[. ifvisaleaf

2. then Report the point stored at v if it lies in R.
3. else if region(lc(v)) is fully contained in R

4. then REPORTSUBTREE(/c(V))

3. else if region(lc(v)) intersects R

6. then SEARCHKDTREE(/c(V), R)
7. if region(rc(v)) is fully contained in R

8. then REPORTSUBTREE(rc(V))

9. else if region(rc(v)) intersects R
10. then SEARCHKDTREE(r¢(V), R)

region(lc(v)) = region(v) N [(v)

left

Lemma 5.4 A query with an axis-parallel
rectangle in a kd-tree storing n points can be
performed in O(\n + k) time, where k is the
number of reported points.

Theorem 5.5 A kd-tree for a set P of n points
iIn the plane uses O(n) storage and can be
built in O(n log n) time. A rectangular range
query on the kd-tree takes O(\n + k) time,
where k is number of reported points.

kd-trees can also be used for points sets in
3- or higher-dimensional space, query time is
bounded by O(nl'l/d + K).

Range trees

when performing search on x-coordinate,
start filtering points on y-coordinate

Canonical subset of v (P(v)): the subset of
points stored in the leaves of the subtree
rooted at node v.

- select a collection of O(logn) subtrees that
together contain exactly the points whose
X-coordinate lies in the x-interval of the
query rectangle (disjoint union of

O(logn) canonical subsets)

- Report the points in such a canonical
subset P(v) whose y-coordinate lies in the
interval [y : Y'].

Data structure

Range tree is a multi-level data structure:

dThe main tree is a balanced binary search
tree T built on the x-coordinate of the points

in P (first-level tree)

dFor any internal or leaf node vin T, the
canonical subset P(v) is stored in a balanced

binary search tree T_.... (V) on the y-
coordinate of the points. The node v stores a
pointer to the root of T_... (v), which is called
the associated structure of v (second-level
tree)

A 2-dimensional range tree

binary search tree on
x-coordinates

binary search tree
on y-coordinates

Algorithm BUILD2DRANGETREE(P)
Input. A set P of points in the plane.
Output. The root of a 2-dimensional range tree.

L.

-] O~ Lh

Construct the associated structure: Build a binary search tree Tygs0c On the set Py of y-
coordinates of the points in P. Store at the leaves of Tyssoc nOt just the y-coordinate of the
points in Py, but the points themselves.
if P contains only one point
then Create a leaf v storing this point, and make Ty, the associated structure of v,
else Split P into two subsets; one subset Here contains the points with x-coordinate less
than or equal to xp;q. the median x-coordinate, and the other subset Fyigpe contains
the points with x-coordinate larger than x ;4.
Vieft < BUILD2DRANGETREE(Aeg)
Viight — BUILD2DRANGETREE(Pgn)
Create a node v storing xy;q, make Vvier; the left child of v, make Vg the right
child of v, and make Tss0c the associated structure of v.
return v

Lemma 5.6 Arange tree on asetofn
points in the plane requires O(n logn)
storage.

A point p in P is stored only in the
associated structure of nodes on the path
in T towards the leaf containing p.

- -\\

/ i
N/
AT
/'l
! ,-"-.
TR
AN
ot
;o Y
! Y L
/ L -
,-" LV I'-.
|
1}
{ ¥

Algorithm 2DRANGEQUERY(T., [x: x| x [v:V])
Input. A 2-dimensional range tree T and a range [x: x'] x [y : y/].
Output. All points in T that lie in the range.

|
2.
3

nall

o = =

Vsplit < FINDSPLITNODE(T . x.x")
if Vepii 18 a leaf
then Check if the point stored at vy must be reported.
else (+ Follow the path to x and call IDRANGEQUERY on the subtrees right of the
path.)
Vv — le(Vplit)
while v is not a leaf
doif x < x,
then | DRANGEQUERY (Tyssoc(rc(V)), [y : ¥])
v — le(v)
else v — re(v)
Check 1f the point stored at v must be reported.
Similarly, follow the path from r.:.'(vspm) to x’, call IDRANGEQUERY with the
range [y : y'] on the associated structures of subtrees left of the path, and check if
the point stored at the leat where the path ends must be reported.

Lemma 5.7 A query with an axis-parallel
rectangle in a range tree storing n points
takes O(log®n + k) time, where k is the

number of reported points.

Theorem 5.8 Let P be a set of n points in
the plane. A range tree for P uses O(n logn)
storage and can be constructed in O(n logn)
time. By querying this range tree one can
report the points in P that lie in a
rectangular query range in O(log®n + k)
time, where k is the number of reported
points.

Higher-dimensional range trees

Let P be a set of points in d-dimensional space.

J

Construct a balanced binary search tree on
the first coordinate of the points (first-level
tree),

For each node v construct an associated
structure T ... (V) ; the second-level tree
T csoc (V) IS @ (d-1)-dimensional range tree for
the points in P(v), restricted to their last d-1

coordinates.

The recursion stops when points restricted to
their last coordinate; these are stored in a 1-
dimentional range tree.

Theorem 5.9 let P be a set of n points in d-
dimensional space, where d>2. a range tree
for P uses O(n log®*n) storage and it can be
constructed in O(n log®*n) time. One can
report the points in P that lie in a
rectangular query range in O(log°n + k)
time,where k is the number of reported
points.

Proof:
T,(n)=0(nlogn)+0(logn).T
T,(n)=0(nlogn)
Q,(n)=0(logn)+0O(logn).Q, ,(n)
Q,(n)=0(log2n)

aa(N)

General Sets of points

EICo‘mposne number of two reals a and b:
(alb

0Order on the composite-number space:
a‘b) "b’)<:>a<a or (a=a’ and b<b’)
Op (px,p)—>ﬁ— \p)‘,(p\p

IR =[x x]x[y V] =B = [(x | 0) : (x " | +o0)]x
y‘-oo ‘+oo

Lemma 5.10 let p be a pointand R a
rectangular range. then

peR<DPeRr

