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PREFACE

This manual provides answers and solutions to some 475 questions
and problems in the fourth edition of Basic Econometrics. Most of the
answers and solutions are given in detail. In a few cases where detailed
answers were not necessary, I have provided some guidance.

Providing the solutions has been a tedious and time-consuming task.
I'have made every effort to check the accuracy of the solutions but some
numerical errors and inaccuracies and misprints may have crept in. I would
appreciate it very much if the reader will bring them to my attention so that
I can correct them in the reprints of this manual.

Answers to some questions are qualitative in nature and are,
therefore, open to discussion. In some cases there may be more than one
way of solving a problem or modeling an economic phenomenon. I hope
that instructors will supplement this solutions manual with their own
exercises.

I would welcome any suggestions the reader may have to offer to
improve the quality of the questions and problems as well as any other
aspect of this solutions manual. I would also welcome any comments about
the fourth edition of Basic Econometrics.

Damodar Gujarati

Department of Social Sciences
U.S. Military Academy

West Point, NY 10996.

USA



CHAPTER 1
THE NATURE OF REGRESSION ANALYSIS

1.1 (a) These rates (%) are as follows. They are year-over-year, starting with

1974 as there is no data prior to 1973. These rates are, respectively, for
Canada, France, Germany, Italy, Japan, UK and US.

10.78431 13.58382 6.847134 19.41748 23.17328 0.157706
10.84071 11.70483 5.961252 17.07317 11.69492 0.244582
7.584830 9.567198 4.360056 16.66667 9.559939 0.164179
7.792208 9.563410 3.638814 19.34524 8.171745 0.158120
8.950086 9.108159 2.730819 12.46883 4.225352 0.083026
9.320695 10.60870 4.050633 15.52106 3.685504 0.134583
9.971098 13.67925 5.474453 21.30518 7.701422 0.178679
12.48357 13.27801 6.343714 19.30380 4.840484 0.119745
10.86449 11.96581 5.314534 16.31300 2.938090 0.085324
5.795574 9.487459 3.295572 14.93729 1.732926 0.046122
4.282869 7.669323 2.392822 10.61508 2.304609 0.050100
4.106972 5.827937 2.044791 8.609865 1.958864 0.060115
4.128440 2.534965 -0.095420 6.110652 0.672430 0.034203
4.317181 3.239557 0.191022 4.591440 0.000000 0.041775
4.054054 2.725021 1.334604 4.985119 0.763359 0.049290
4.951299 3.456592 2.728128 6.591070 2.367424 0.077229
4.795050 3.341103 2.747253 6.117021 3.052729 0.095344
5.608856 3.157895 3.654189 6.390977 3.231598 0.058704
1.537386 2.405248 4.987102 5.300353 1.652174 0.036966
1.789401 2.135231 4.504505 4.250559 1.283148 0.015980
0.202840 1.602787 2.742947 3.916309 0.760135 0.024803

2.159244 1.783265 1.830664 5.369128 -0.167645 0.033648
1.585205 2.021563 1.498127 3.870652 0.167926 0.024557
1.625488 1.188904 1.697417 1.745283 1.676446 0.031215
(b)
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(c) As you can see from this figure, the inflation rate of each of the countries
has generally declined over the years.

(d) As a measure of variability, we can use the standard deviation. These
standard deviations are 0.036, 0.044, 0.018, 0.062, 0.051, 0.060, and 0.032,

0.110360
0.091278
0.057621
0.065026
0.075908
0.113497
0.134986
0.103155
0.061606
0.032124
0.043173
0.035611
0.018587
0.036496
0.041373
0.048183
0.054032
0.042081
0.030103
0.029936
0.025606
0.028340
0.029528
0.022945



respectively, for Canada, France, Germany, Italy, Japan, UK, and USA. The
highest variability is thus found for Italy and the lowest for Germany.

1.2. (a) The graph of the inflation rates of the six countries plotted against the

US inflation rate is as follows:
Inflation rates in six countres vis-a-vis US inflation rate
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(b) As the figure shows, the inflation rates of the six countries are
positively correlated with the US inflation rate.

(c) Remember that correlation does not mean causation. One may have
to consult a book on international macroeconomics to find out if there is any
causal connection between the US and the other countries' inflation rates.

1.3 (a) For better visual impression the logarithm of the exchange rate is
plotted on the vertical axis and time on the horizontal axis.
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As you can see, the exchange rates show a good deal of variability.
For example, in 1977 one US dollar bought about 268 Yen, but in
1995 it could buy only about 94 Yen.

(b) Again, the picture is mixed. For instance, between 1977 and



1.4.

1.5.

1.6.

1.7

1995, the U.S. dollar generally depreciated against the Yen, then it
started appreciating. A similar picture emerges against the other
currencies.

The graph of the M1 money supply is as follows:
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As GDP increases over time, naturally a higher amount of
the money supply is needed to finance the increased output.

Some of the relevant variables would include: (1) wages or earnings
in criminal activity, (2) hourly wages or earnings in non-criminal
activity, (3) probability of getting caught, (4) probability of
conviction, (5) expected sentence after conviction. Note that it may
not be easy to get data on earnings in the illegal activities. Anyway,
refer to the Becker article cited in the text.

One key factor in the analysis would be the labor force participation
rate of people in the 65-69 age category. Data on labor force
participation are collected by the Labor Department. If, after the
new law went into effect, we find increased participation of these
"senior" citizens in the labor force, that would be a strong indication
that the earlier law had artificially restricted their labor market
participation. It would also be interesting to find out what kinds of
of jobs these workers get and what they earn.

(a), (b) & (). As the following figure shows, there seems to be a
positive relationship between the two variables, although it does not
seem to be very strong. This probably suggests that it pays to
advertise; otherwise, it is bad news for the advertising industry.
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CHAPTER 2

TWO VARIABLE REGRESSION ANALYSIS: SOME BASIC IDEAS

2.1

2.2

23

24

25

2.6

2.7

2.8

It tells how the mean or average response of the sub-populations of
Y varies with the fixed values of the explanatory variable (s).

The distinction between the sample regression function and the
population regression function is important, for the former is

is an estimator of the latter; in most situations we have a sample of
observations from a given population and we try to learn
something about the population from the given sample.

A regression model can never be a completely accurate

description of reality. Therefore, there is bound to be some difference
between the actual values of the regressand and its values

estimated from the chosen model. This difference is simply the
stochastic error term, whose various forms are discussed in the
chapter. The residual is the sample counterpart of the stochastic error
term.

Although we can certainly use the mean value, standard deviation
and other summary measures to describe the behavior the of the
regressand, we are often interested in finding out if there are any
causal forces that affect the regressand. If so, we will be able to
better predict the mean value of the regressand. Also, remember
that econometric models are often developed to test one or more
economic theories.

A model that is linear in the parameters; it may or may not be
linear in the variables.

Models (a), (b), (c) and (e) are linear (in the parameter) regression
models. If we let @ =In £, then model (d) is also linear.

(a) Taking the natural log, we find that In Y;i= £+ f2 X+ u;, which
becomes a linear regression model.
(b) The following transformation, known as the logit transformation,
makes this model a linear regression model:
In [(1- Y)/Yil = B1+ B2 Xi+u
(c) A linear regression model
(d) A nonlinear regression model
(e) A nonlinear regression model, as £, is raised to the third power.

A model that can be made linear in the parameters is called an
intrinsically linear regression model, as model (a) above. If £, is



2.9

2.10

2.11

2.12

2.13

0.8 in model (d) of Question 2.7, it becomes a linear regression
model, as e ***; *? can be easily computed.

(a) Transforming the model as (1/Y;) = £+ [, Xi makes it a linear
regression model.

(b) Writing the model as (Xi/Y;) = 1+ [2 X; makes it a linear
regression model.

(c) The transformation In[(1 - Y;)/Yi]=- f1- f2 Ximakesita
linear regression model.

Note: Thus the original models are intrinsically linear models.

This scattergram shows that more export-oriented countries on
average have more growth in real wages than less export oriented
countries. That is why many developing countries have followed
an export-led growth policy. The regression line sketched in the
diagram is a sample regression line, as it is based on a sample

of 50 developing countries.

According to the well-known Heckscher-Ohlin model of trade,
countries tend to export goods whose production makes intensive
use of their more abundant factors of production. In other words,
this model emphasizes the relation between factor endowments
and comparative advantage.

This figure shows that the higher is the minimum wage, the lower
is per head GNP, thus suggesting that minimum wage laws may

not be good for developing countries. But this topic is controversial.
The effect of minimum wages may depend on their effect on
employment, the nature of the industry where it is imposed, and
how strongly the government enforces it.

It is a sample regression line because it is based on a sample

of 15 years of observations. The scatter points around the regression
line are the actual data points. The difference between the actual
consumption expenditure and that estimated from the regression line
represents the (sample) residual. Besides GDP, factors such as
wealth, interest rate, etc. might also affect consumption expenditure.



2.14 (a) The scattergram is as follows:
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The positive relationship between the two variables might seem be
surprising because one would expect the two to be negatively related.
But the added worker hypothesis of labor economics suggests

that when unemployment increases the secondary labor force might
enter the labor market to maintain some level of family income.

(b) The scattergram is as follows:
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Here the discouraged worker hypothesis of labor economics seems
to be at work: unemployment discourages female workers from
participating in the labor force because they fear that there

are no job opportunities.



(c) The plot of CLFPRM against AH82 shows the following:
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And the corresponding plot for females is:
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There is an asymmetrical relationship between the two variables

for males and females. Males respond positively to increased wages
whereas females respond negatively. This might sound puzzling.

It is possible that increased earnings for males as a result of higher
wages might prompt females to withdraw from the labor force, which
is possible for married couples. But be careful here. We are doing
simple bivariate regressions here. When we study multiple regression
analysis, the preceding conclusions might change.



2.15 (a) The scattergram and the regression line look as follows:
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(b) As total expenditure increases, on the average, expenditure on food
also increases. But there is greater variability between the two after
the total expenditure exceeds the level of Rs. 2000.

(c) We would not expect the expenditure on food to increase linearly
(i.e., in a straight line fashion) for ever. Once basic needs are
satisfied, people will spend relatively less on food as their income
increases. That is, at higher levels of income consumers will have
more discretionary income. There is some evidence of this from the
scattergram shown in (a): At the income level beyond Rs. 2000,
expenditure on food shows much more variability.

2.16 (a) The scatter plot for male and female verbal scores is as follows:
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And the corresponding plot for male and female math score is as
follows:
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(b) Over the years, the male and female verbal scores show a
downward trend, whereas after reaching a low in 1980, the math
scores for both males and females seem to show an upward trend, of
course with year to year variation.

(c) We can develop a simple regression model regressing the math
score on the verbal score for both sexes.

(d) The plot is as follows:
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As the graph shows, over time, the two scores have moved in the same
direction.
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3.1

3.2

CHAPTER 3
TWO-VARIABLE REGRESSION MODEL:
THE PROBLEM OF ESTIMATION

(1) Yi= i+ f2Xi+ui. Therefore,
ECYilX, ) =EI(fi+ foXi +u)|X, ]

= Bi+ P2Xi+E (ui| X, ), since the B's are constants and X
is nonstochastic.

= Bi+ B2Xi, since E(u,-IX ;) is zero by assumption.

(2) Given cov(uiu;) = 0 for V for all i,j (i#)), then
cov(Y;Y)) = E{[Y: - ECY)ILY; - ECY)}
= E(uu;), from the results in (1)
= E(u;)E(u;), because the error terms are not
correlated by assumption,
= 0, since each u; has zero mean by assumption.

(3) Given var(u)\X;) = o2, var (Y)\X;) = E[Y; - E(Y)*= E?) =
var(u)\X;) = o, by assumption.

Yi Xi oy Xi Xiyi  Xi

4 1 -3 -3 9 9
5 4 -2 0 0 0
7 5 0 1 0 1
2 6 5 2 10 4

sum 28 16 0 0 19 14

Note: Y=7and X=4

33

A inyi 19

Therefore, 32 = =—2=1357, 3=Y-p5,X =1572
B zx,.z 12 o yip)

The PRF is: Yi= i+ f2Xi+ui

Situation I: f1=0, B2=1,and E(u) = 0, which gives E(Y;|X, ) =X;

Situation 2:_pr=1, f2=0, and E(u;) = (Xi - 1), which gives
E(Yi|X,)=X;

which is the same as Situation 1. Therefore, without the assumption

E(u;) = 0, one cannot estimate the parameters, because, as just

shown, one obtains the same conditional distribution of Y although
the assumed parameter values in the two situations are quit different.

11



34

35

3.6

3.7

3.8

Imposing the first restriction, we obtain:

Yui=Y (Yi- pr- f2X)=0
Simplifying this yields the first normal equation.
Imposing the second restriction, we obtain:

> uiXi= Y [(Yi- pi- B2 X)Xi]=0

Simplifying this yields the second normal equation.

The first restriction corresponds to the assumption that E(u;\Xj) = 0.
The second restriction corresponds to the assumption that the
population error term is uncorrelated with the explanatory variable
X, i.e., cov(u;iX;j) = 0.

From the Cauchy-Schwarz inequality it follows that:
2
_E@AY)
E(X*)E(Y?)
Now r* = Z O’
z Xi Z Yi

inequality. This also holds true of p?, the squared population
correlation coefficient.

> <1, by analogy with the Cauchy-Schwarz

Note that:

lel and Zx:y:
N

Multiplying the two, we obtain the expression for r, the squared
sample correlation coefficient.

Even though ,BA . ﬂ/\xy=1 , it may still matter (for causality and
theory) if Y is regressed on X or X on Y, since it is just the product

of the two that equals 1. This does not say that ,BAyx = ,BAxy

7-gntl +1
The means of the two-variables are: "2 and the

correlation between the two rankings is:

2.5 (1)

where small letters as usual denote deviation from the mean values.
Since the rankings are permutations of the first » natural numbers,

r=

12



Xy _n(r+D)@2n+1) n(n+1)’ _ n(@n’ -1

2 _ 2 —
L5 =2 X " 6 4 12

and similarly,

2 —
Z yi2 = n(n” —1) , Then
12

2
DA =Y (Xi-Y) = D (X7 +Y? -2XiY)

_ 2n(n+1)(2n+1) 22 XY,
6

24
Therefore, Z XiYi= nn+ 1)6(2n D _ 5 2

> Xy Y
Since ) xyi=» Xi¥Yi————, using (2), we obtain
n

d’ d’
n(n+)(2n+1) 2 _n(m+1)’ _ n(p’-1) 2 3)
3 2 4 12 2
Now substituting the preceding equations in (1), you will get the answer.

39 (2 fi=T7-foXjand = 7 — B> x [Note: xi = (Xi - X)]

=Y, since fo=0

o’ and var(an) = 2

o’ =
nz Xiz nz Xiz

Therefore, neither the estimates nor the variances of the two

.2 DI .
var(ﬂ|)= 7

estimators are the same.

. Z Xiyi Z Xiyi

(b) B2 = and @ =

S0 S

,since xj = (Xi- X)

13



3.10

3.11

It is easy to verify that var( ,BAz) = var( c;z) =

S

That is, the estimates and variances of the two slope estimators are
the same.

(c) Model II may be easier to use with large X numbers, although

with high speed computers this is no longer a problem.

Since ) xi= yi=0, that is, the sum of the deviations from mean

value is always zero, x =y = 0 are also zero. Therefore,

Pr= y- B2 x =0. The point here is that if both Y and X are
expressed as deviations from their mean values, the regression line

will pass through the origin.

. T@-D-y) L
p2 = =

, since means of the two

- 2
Z (xi _ x) 2 Z Xi
variables are zero. This is equation (3.1.6).

Let Z; = aX; + band W;=cYi + d. In deviation form, these become:

z; = ax; and w; = cy;. By definition,

D ziwi ac) xyi
\/Z zt Y wi ac\/inzZyi2

rn= =r1;1n Eq.(3.5.13)

3.12 (a) True. Let a and c equal -1 and b and d equal 0 in Question 3.11.

14



(b) False. Again using Question 3.11, it will be negative.

(c) True. Since rxy = ryx > 0, Sx and Sy (the standard deviations of X
and Y, respectively) are both positive, and ryx = S yx%‘ and ryy =

y
S,
o

>4

, then fBx ana By must be positive.

3.13 LetZ=X;+X;and W =X; and X;. In deviation form, we can write

these as z = x; + X3 and w = X; + X3. By definition the correlation
between Z and W is:

Z ZiWi Z (x1+ x2)(x2+ x3)
Tpw = =
\fz z' ) wi \/Z (x1+x2)* ) (x2+x3)°
D x

= , because the X's are
\/(anz +Zx22)(Q %27+ x3%)

uncorrelated. Note: We have omitted the observation subscript for
convenience.

0_2

9o .1 , where o is the common variance.
J@o?+20%) 2

The coefficient is not zero because, even though the X's are
individually uncorrelated, the pairwise combinations are not.

As just shown, Z zw= o’ , meaning that the covariance between z

and w is some constant other than zero.

3.14 The residuals and fitted values of Y will not change. Let
Yi= fi+ f2Xi+ui and Y; = ar+a2Zi+ui , where Z = 2X
Using the deviation form, we know that

2
2%
. z Ziyi 22 Xiyi
ax = =
z zi? 42 xi’

pr =

, omitting the observation subscript.

B

N | —

15



3.15

3.16

3.17

pi=Y-p2X;an=Y-a2Z= fi(Note: Z=2X)
That is the intercept term remains unaffected. As a result, the fitted
Y values and the residuals remain the same even if X; is multiplied
by 2. The analysis is analogous if a constant is added to X;.

By definition,

2
ry

Qyd’ [Z(ﬁiwixﬁo] Y 57
QyHIH I Xy
Z(,é”‘i)2 ﬁzzzxiz

% D>yl

=r, using (3.5.6).

since Z yui =0. =

(a) False. The covariance can assume any value; its value depends
on the units of measurement. The correlation coefficient, on the
other hand, is unitless, that is, it is a pure number.

(b) False. See Fig.3.11h. Remember that correlation coefficient
is a measure of linear relationship between two variables. Hence,
as Fig.3.11h shows, there is a perfect relationship between Y and
X, but that relationship is nonlinear.

(c) True. In deviation form, we have
Yi= )71 + Ui
Therefore, it is obvious that if we regress y,on y,, the slope

coefficient will be one and the intercept zero. But a formal proof can
proceed as follows:

If we regress y; on Ji, we obtain the slope coefficient, say, & as:

L BY xyi F

=2—=1, because

a= 2
zj}z ﬁZinz p

$i=Bxiand Y x,y, = BY x? for the two-variable model. The
intercept in this regression is zero.

Write the sample regression as: Y, = ,3, +u,. By LS principle, we

want to minimize: Z&,. ? = Z(Y; - ﬁ,)z . Differentiate this equation

16



with the only unknown parameter and set the resulting expression to
zero, to obtain:

A 2
@) _ 33 1 - B)(-1)=0

1
which on simplification gives Bl = Y ,that is, the sample mean. And
2
. O .
we know that the variance of the sample mean is —, where n is the
n

sample size, and o is the variance of Y. The RSS is

2

D X-Y)=) yland 6° = Z . It is worth adding the

(n 1) (n 1)
X variable to the model if it reduces &~ significantly, which it will if
X has any influence on Y. In short, in regression models we hope
that the explanatory variable(s) will better predict Y than simply its
mean value. As a matter of fact, this can be looked at formally.
Recall that for the two-variable model we obtain from (3.5.2),

RSS =TSS - ESS

= > V-2
=2 0i- By
Therefore, if ﬁz is different from zero, RSS of the model that
contains at least one regressor, will be smaller than the model with no
regressor. Of course, if there are more regressors in the model and

their slope coefficients are different from zero, the RSS will be much
smaller than the no-regressor model.

Problems

3.18 Taking the difference between the two ranks, we obtain:

3.19

d 21-130--1 212
@ 411901 14 14;) &=26

Therefore, Spearman's rank correlation coefficient is

6. d’
remle———=1-—220 _ _ g4
n(n*-1) 10010’ -1)

Thus there is a high degree of correlation between the student's
midterm and final ranks. The higher is the rank on the midterm, the
higher is the rank on the final.

(a) The slope value of -4.318 suggests that over the period 1980-
1994, for every unit increase in the relative price, on average, the
(GM/$) exchange rate declined by about 4.32 units. That is, the
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dollar depreciated because it was getting fewer German marks for
every dollar exchanged. Literally interpreted, the intercept value of
6.682 means that if the relative price ratio were zero, a dollar would
exchange for 6.682 German marks. Of course, this interpretation

is not economically meaningful.

(b) The negative value of the slope coefficient makes perfect
economic sense because if U.S. prices go up faster than German
prices, domestic consumers will switch to German goods, thus
increasing the demand for GM, which will lead to appreciation

of the German mark. This is the essence of the theory of purchasing
power parity (PPP), or the law of one price.

(c) In this case the slope coefficient is expected to be positive, for
the higher the German CPI relative to the U.S. CPI, the higher the
relative inflation rate in Germany which will lead to appreciation

of the U.S. dollar. Again, this is in the spirit of the PPP.

3.20 (a) The scattergrams are as follows:
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3.21

3.22

(b) As both the diagrams show, there is a positive relationship
between wages and productivity, which is not surprising in view
of the marginal productivity theory of labor economics.

(c) As the preceding figures show, the relationship between wages
and productivity, although positive, is not linear. Therefore, if we
try to fit a straight line regression model to the data we may not get
a good fit. In a later chapter we will see what types of models
are appropriate in this situation. But if we routinely fit the linear
model to the data, we obtain the following results.

Wagebus =-109.3833 + 2.0039 Prodbus
se= (9.7119) (0.1176) 1’ = 0.8868

Wagenfb = -123.6000 + 2.1386 Prodnfb 1* = 0.8777
se = (11.0198) (0.1312)

where bus = business sector, nfb = non-farm business sector
prod = productivity as measured by output per hour and wage =
compensation per hour.

As expected, the relationship between the two is positive.
Surprisingly, the r* value is quite high.

IRDRANPREDRADNA

Original data: 1110 1700 205500 322000 132100
Revised data 1110 1680 204200 315400 133300
Therefore, the corrected coefficient of correlation is 0.9688

If you plot these variables against time, you will see that generally

they have moved upward; in the case of gold there is considerable
price volatility.

(b) If the hypothesis were true, we would expect S5, >1.

(c) Gold Price, = 186.183 + 1.842 CPI,
se =(125.403) (1.215)  =0.150

NYSE; = -102.060 + 2.129 CPI,
se  (23.767) (0.230) = 0.868

It seems the stock market is a better hedge against inflation than

gold. As we will see in Ch.5, the slope coefficient in the gold price
equation is not statistically significant.
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3.23 (a) The plot is as follows, where NGDP and RGDP are nominal and

(b)

real GDP. 8000

10000

8000

6000

4000 4000

2000 ]

| 2000
0

NGDP, = -986.3317 +

201.9772 time

3.24

3.25

se =(1907.715) + 128.7820 = 0.9277

RGDP, = 1907.715 + 128.7820
se= (45.1329) ( 1.9666) ?=0.9914

(c) The slope here gives the rate of change of GDP per time period.

(d) The difference between the two represents inflation over time.

(e) As the figure and regression results indicate, nominal GDP has
been growing faster than real GDP suggesting that inflation has been
rising over time.

This is straightforward.

(a) See figure in Exercise 2.16 (d)

(b) The regression results are:

Y =-198.126+1.436X,
se=( 25.211) (0.057)

r’ =0.966
where Y = female verbal score and X = male verbal score.

(c) As pointed out in the text, a statistical relationship, however
strong, does not establish causality, which must be established

a priori. In this case, there is no reason to suspect causal relationship
between the two variables.

20



3.26 The regression results are:

Y =-189.057+1.285X,
se=( 40.927)(0.082)

r’=0918
3.27 This is a class project.
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CHAPTER 4

THE NORMALITY ASSUMPTION: CLASSICAL NORMAL

LINEAR REGRESSION MODEL (CNLRM)

Appendix 4A Exercises

4.1

4.2

Given that the coefficient of correlation between Y; and Y3, p, is
zero, the bivariate normal PDF reduces to:

- I Y-p, 1 Y-m,
f(Y1,Y2) 27r0',0'2 exp[ 2( o ) 2( 2 )]
= 1 ¥- AU] 2 1 _1.rn- /‘2 2
={ ﬁ;exp[ ( ) H \/2——6 xp[ ( )’}
= f(Yl) f(Y2)

where f(Y)) and f(Y>) are the univariate normal PDFs. Thus, when
p is zero, f(Y1,Y2) = f(Y1)f(Y2), which is the condition for
statistical independence. Therefore, in the bivariate normal case,
zero correlation implies statistical independence.

To ensure that the maximum likelihood estimators maximize the

likelihood function, the second derivatives from Eq. (5) in App. 4A
must be less than zero, which will ensure that RSS is minimized.

*InLF n

=——<0
aﬁf o’
X%
*InLF 2
— == > <0
op, o
0*InLF n
= 32( ﬂZX)

6(0’2)2 - 2(0,2)2

_ 1 52
B (20 (o*)* @y )
since Zu —Z(Y B -BX,)
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43

since all second derivatives are negative, the estimators maximize
the likelihood function.

Since X follows the exponential distribution, its PDF is:

%) = f(Xi)=(g)e /

Therefore, the LF will be

1Y Z%
LF(X;,0)= r exp
And the log LF will be:
kY
InLF=-nln @ - ——
6

Differentiating the preceding function with respect to @, we obtain:

dInLF ZX’

1
=-n(—-)+
do (6?) 6*
Setting this equation to zero, we get

X

n

0= = X , which is the sample mean.
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CHAPTER 5
TWO-VARIABLE REGRESSION:

INTERVAL ESTIMATION AND HYPOTHESIS TESTING

Questions

5.1

(a) True. The t test is based on variables with a normal distribution.

Since the estimators of £, and £, are linear combinations of the
error u;, which is assumed to be normally distributed under CLRM,
these estimators are also normally distributed.

(b) True. So long as E(;) = 0, the OLS estimators are unbiased.
No probabilistic assumptions are required to establish unbiasedness.

(c) True. In this case the Eq. (1) in App. 3A, Sec. 3A.1, will be
absent. This topic is discussed more fully in Chap. 6, Sec. 6.1.

(d) True. The p value is the smallest level of significance at which
the null hypothesis can be rejected. The terms level of significance
and size of the test are synonymous.

(e) True. This follows from Eq. (1) of App. 3A, Sec. 3A.1.

(f) False. All we can say is that the data at hand does not permit
us to reject the null hypothesis.

(g) False. A larger o> may be counterbalanced by a larger Zx,.z it

is only if the latter is held constant, the statement can be true.

(h) False. The conditional mean of a random variable depends on
the values taken by another (conditioning) variable. Only if the
two variables are independent, that the conditional and
unconditional means can be the same.

(i) True. This is obvious from Eq. (3.1.7).

(7) True. Refer of Eq. (3.5.2). If X has no influence on ¥, ﬁz will

be zero, in which case )y} =) 4 .
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5.2

53

ANOVA table for the Food Expenditure in India

Source of variation SS df MSS
Due to regression (ESS) 139023 1 139023
Due to residual (RSS) 236894 53 4470
TSS 375916
F= 139023 =31.1013 with df = 1 and 53, respectively.

4470
Under the hypothesis that there is no relationship between food
expenditure and total expenditure, the p value of obtaining such
an F value is almost zero, suggesting that one can strongly reject
the null hypothesis.

0'6412 =0.0664

(a) se of the slope coefficient is:

0.7347
0.8351

the ¢ value under Hy : =0, is: =0.8797

(b) On average, mean hourly wage goes up by about 64 cents
for an additional year of schooling.

(c) Here n = 13, so df = 11. If the null hypothesis were true,

the estimated ¢ value is 9.6536. The probability of obtaining such
a t value is extremely small; the p value is practically zero.
Therefore, one can reject the null hypothesis that education has no
effect on hourly earnings.

(d) The ESS = 74.9389; RSS = 8.8454; numerator df =1,
denominator df = 11. F = 93.1929. The p value of such an F
under the null hypothesis that there is no relationship between
the two variables is 0.000001, which is extremely small. We
can thus reject the null hypothesis with great confidence.

Note that the F value is approximately the square of the t value
under the same null hypothesis.

(e) In the bivariate case, given Hy: £, =0, there is the following
relationship between the ¢ value and :

2
2 t

r° =—————. Since the # value is given as 9.6536,
[t"+(n-2)]
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2
we obtain: 7 = (9'653,6)
[(9.6536) —11]
5.4  Verbally, the hypothesis states that there is no correlation between
the two variables. Therefore, if we can show that the covariance
between the two variables is zero, then the correlation must be zero.

~ 0.8944

5.5  (a) Use the ¢ test to test the hypothesis that the true slope coefficient

fr-1 _1.0598-1_ 0.
se(f,)  0.0728

For 238 df this ¢ value is not significant even at a = 10%.
The conclusion is that over the sample period, IBM was
not a volatile security.

(b) Since t = 0.7264
0.3001

percent level of significance. But it has little economic meaning.
Literally interpreted, the intercept value of about 0.73 means

that even if the market portfolio has zero return, the security's
return is 0.73 percent.

is one. That is obtain: ¢ =

=2.4205, which is significant at the two

5.6  Under the normality assumption, ﬁz is normally distributed. But
since a normally distributed variable is continuous, we know from
probability theory that the probability that a continuous random
variable takes on a specific value is zero. Therefore, it makes no

difference if the equality is strong or weak.

5.7  Under the hypothesis that £,= 0, we obtain
b _BEE__ BEE
B0 yan
T -2

Ya Y ya-r)
n-2) (n-2)
B[ X% (n-2)
NS

2%
>y’

because 62 =

, from Eq.(3.5.10)

But since r? = 37 then r = 3, S5 from Eq.(3.5.6).

i
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Ja=ry G
2
Pn=2) 5 2"
t=F =752 = fj— fom Eq. (59.1)

Problems

5.8 (a) Thereis positive association in the LFPR in 1972 and 1968,
which is not surprising in view of the fact since WW II
there has been a steady increase in the LFPR of women.

(b) Use the one-tail ¢ test.

¢ = 065601 _ 1 2545 For 17 df, the one-tailed ¢ value
0.1961

at @ =5% is 1.740. Since the estimated t value is significant, at
this level of significance, we can reject the hypothesis that the
true slope coefficient is 1 or greater.

(c) The mean LFPR is : 0.2033 + 0.6560 (0.58) =~ 0.5838. To
establish a 95% confidence interval for this forecast value,
use the formula: 0.5838 * 2.11(se of the mean forecast value),
where 2.11 is the 5% critical ¢ value for 17 df. To get the
standard error of the forecast value, use Eq. (5.10.2). But note
that since the authors do not give the mean value of the LFPR
of women in 1968, we cannot compute this standard error.

(d) Without the actual data, we will not be able to answer this
question because we need the values of the residuals to
plot them and obtain the Normal Probability Plot or to
compute the value of the Jarque-Bera test.

45000, //
40000 o
350004 . /

< 30000 4

g S

25000+

20000{ %%

15000 : - :
2000 4000 6000 8000 1000

SPEND
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(b) Pay; = 12129.37 + 3.3076 Spend
se =(1197.351) (0.3117) = 0.6968; RSS = 2.65E+08

(c) If the spending per pupil increases by a dollar, the average pay
increases by about $3.31. The intercept term has no viable
economic meaning.

(d) The 95% CI for f,is: 3.3076 +2(0.3117) = (2.6842,3.931)

Based on this CI you will not reject the null hypothesis that
the true slope coefficient is 3.

(e)The mean and individual forecast values are the same, namely,
12129.37 + 3.3076(5000) ~28,667. The standard error of the
mean forecast value, using eq.(5.10.2), is 520.5117 (dollars) and
the standard error of the individual forecast, using Eq.(5.10.6), is
2382.337. The confidence intervals are:

Mean Prediction: 28,667 +2(520.5117), that is,
($27,626, $29,708)
Individual Prediction: 28667 +2(2382.337), that is,
($ 23,902, $33,432)
As expected, the latter interval is wider than the former.

(f) 8
Senes Residuals
Sample 1 51
6 Observations 51
Mean 9 13E-12
Median -217 5192
4 Maximum 5529 342
b Minimum -3847 976
Std Dev 2301 414
Skewness 0499126
2 Kurtosis 2807557
Jarque-Bera 2 196273
Probability 0 333492
0

-_O -2000 0 2000 4000 6000
The histogram of the residuals can be approximated

by a normal curve. The Jarque-Bera statistic is 2.1927 and its
p value is about 0.33. So, we do not reject the normality
assumption on the basis of this test, assuming the sample size
of 51 observations is reasonably large.

5.10 The ANOVA table for the business sector is as follows:

Source of Variation SS df MSS

Due to Regression(ESS) 38685.997 1 38685.997
Due to residual (RSS) 4934.138 37 133.355

Total(TSS) 43620.135
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The F value is M =290.0978

133.355
Under the null hypothesis that there is no relationship between

wages and productivity in the business sector, this F value follows
the F distribution with 1 and 37 df in the numerator and
denominator, respectively. The probability of obtaining such an F
value is 0.0000, that is, practically zero. Thus, we can reject the
null hypothesis, which should come as no surprise.

(b) For the non-farm business sector, the ANOVA table is as

follows:

Source of Variation SS df MSS
Due to regression (ESS)  37887.455 1 37887.455
Due to residual (RSS) 5221.585 37 141.129
Total 43109.04

TSS =43059.04, RSS = 5221.585; ESS = 37837.455
Under the null hypothesis that the true slope coefficient is
is zero, the computed F value is:

F= 3787.455 ~268.459
141.129
If the null hypothesis were true, the probability of obtaining such
an F value is practically zero, thus leading to the rejection of the
the null hypothesis.

S.11  (a) The plot shown below indicates that the relationship between

100 — °
90 — ° ®
80— [ ]
® 70 — L]
S 60 — .
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8 40 — ] °
£
= 30 - H
20 *e
10 { ® o °
0—.
T T
0 100 200

AdExp
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the two variables is nonlinear. Initially, as advertising expenditure
increases, the number of impressions retained increases, but
gradually they taper off.

(b) As a result, it would be inappropriate to fit a bivariate linear
regression model to the data. At present we do not have
the tools to fit an appropriate model. As we will show later,
a model of the type:

Y =B+ BXy+ :B3X22" +y
may be appropriate, where Y = impressions retained and X ; is
advertising expenditure. This is an example of a quadratic
regression model. But note that this model is still linear
in the parameters.

(c) The results of blindly using a linear model are as follows:

Yi=22.163 + 0.3631 X;

se (7.089) (0.0971) 1’ =0.424
512 (a)
200
150
& 100
2
50
0 . . T )
0 50 100 150 200
ICAN

The plot shows that the inflation rates in the two countries
move together.

(b)& (c) The following output is obtained from Eviews 3 statistical
package.
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Sample: 1973 1997
Included observations: 25

Variable Coefficient  Std. Error  t-Statistic Prob.

Cc 6.251664 1.956380 3.195526  0.0040

ICAN 0.940932 0.017570 53.55261  0.0000
R-squared 0.992044 Mean dependent var 104.7560
Adjusted R-squared 0.991698 S.D. dependent var 36.56767
S.E. of regression 3.331867 Akaike info criterion 5.321561
Sum squared resid 255.3308 Schwarz criterion 5.419071
Log likelihood -64.51951 F-statistic 2867.882
Durbin-Watson stat 0.264558 Prob(F-statistic) 0.000000

As this output shows, the relationship between the two variables is
positive. One can easily reject the null hypothesis that

there is no relationship between the two variables, as the

t value obtained under that hypothesis is 53.55, and the

p value of obtaining such a ¢ value is practically zero.

Although the two inflation rates are positively related, we
cannot infer causality from this finding, for it must be
inferred from some underlying economic theory. Remember
that regression does not necessarily imply causation.

5.13 (a) The two regressions are as follows:

Goldprice;= 186.183 + 1.842 CPI,
se =(125.403) (1.215)
t =(1.484) (1.515) r’ =0.150

NYSEIndex; = 102.060 + 2.129 CPI,
se =(23.767) (0.230)
t =(-4.294) (9.247) r’=0.868

(b) The Jarqu-Bera statistic for the gold price equation
is 4.751 with a p value 0.093. The JB statistic for
the NYSEIndex equation is 1.218 with a p value 0.544.
At the 5% level of significance, in both cases we do not
reject the normality assumption.

(c¢) Since the slope coefficient in the goldprice regression is
not statistically different from zero, it makes no sense to
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find out if it is different from 1.

(d) & (e) Using the usual ¢ test procedure, we obtain:

[ 2.129-1 _491
0.230

Since this ¢ value exceeds the critical # value of 2.160, we reject the
null hypothesis. The estimated coefficient is actually greater than
1. For this sample period, investment in the stock market probably
was a hedge against inflation. It certainly was a much better hedge
against inflation that investment in gold.

5.14 (a) None appears to be better than the others. All statistical results
are very similar. Each slope coefficient is statistically significant
at the 99% level of confidence.

(b) The consistently high r’s cannot be used in deciding which
monetary aggregate is best. However, this does not suggest
that it makes no difference which equation to use.

(c) One cannot tell from the regression results. But lately the
Fed seems to be targeting the M2 measure.

5.15 Write the indifference curve model as:
1
Y=08(—)+/0, +u,
i ﬂl(X') ﬂZ i

Note that now f, becomes the slope parameter and S, the intercept.
But this is still a linear regression model, as the parameters are
linear (more on this in Ch.6). The regression results are as follows:

Y, =3.2827(L)+ 1.1009
Xi

se =(1.2599) (0.6817) ¥’ =0.6935
The "slope" coefficient is statistically significant at the 92%
confidence coefficient. The marginal rate of substitution (MRS)

of Y for X is: a—Y =-0.3287 —17 .
oX X

5.16 (a) Letthe model be:Y, = B + B,X,, +u;
where Y is the actual exchange rate and X the implied PPP. If
the PPP holds, one would expect the intercept to be zero and
the slope to be one.

(b) The regression results are as follows:

¥, =24.6338 + 0.5405 X;
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5.17

se =(19.5071) (0.0094)

t=(1.2628) (57.1016) r’=0.9917
To test the hypothesis that £,= 1, we use the t test, which gives
‘o 0.5405-1 _ _48.88
0.0094

This ¢ value is highly significant, leading to the rejection

of the null hypothesis. Actually, the slope coefficient is

is less than 1. From the given regression, the reader can easily verify
that the intercept coefficient is not different from zero, as the

t value under the hypothesis that the true intercept is zero, is only
1.2628.

Note: Actually, we should be testing the (joint) hypothesis

that the intercept is zero and the slope is 1 simultaneously.

In Ch. 8, we will show how this is done.

(c) Since the Big Max Index is "crude and hilarious" to begin with,
it probably doesn't matter. However, for the sample data, the
results do not support the theory.

(a) Letting Y represent the male math score and X the female math
score, we obtain the following regression:

Y, =175.975+0.714X,

se = (20.635) (0.045)
t=(8.528) (15.706) r’=0918

(b) The Jarque-Bera statistic is 1.0317 with a p value of 0.5970.
Therefore, asymptotically we cannot reject the normality

assumption.
0.714-1 .
(o) t= 0,005 =-6.36. Therefore, with 99% confidence we can

reject the hypothesis that £, = 1.

(d) The ANOVA table is:
Source of Variation SS df MSS
ESS 948.193 1 948.193
RSS 87.782 22 3.990
TSS 1071.975 23

Under the null hypothesis that B, =0, the F value is 264.665,
The p value of obtaining such an F value is almost zero, leading
to the rejection of the null hypothesis.
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5.18 (a) The regression results are as follows:

Y= 148.135 + 0.673 X;

se= (11.653) (0.027)
t= (12.713) (25.102) = 0.966

(b) The Jarque-Bera statistics is 1.243 with a p value of 0.5372.
Therefore we can reject the null hypothesis of non-normality.

0.673-1 —12.11.
.027

The critical ¢ value at the 5% level is 2.074. Therefore,

we can reject the null hypothesis that the true slope

coefficient is 1.

(c) Under the null hypothesis, we obtain: ¢ =

(d) The ESS, RSS, and TSS values are, respectively, 3157.586 (1 df),
110.247 (22 df), and 32367.833 (23 df). Under the usual null
hypothesis the F value is 630.131. The p value of such an F
value is almost zero. Therefore, we can reject the null
hypothesis that there is no relationship between the two
variables.

519 (a)

200+

150

50

20 40 60 80 100 120 140
WPI

The scattergram as well as the estimated regression line is shown
in the above figure.

(b) Treat CPI as the regressand and WPI as the regressor. The
CPI represents the prices paid by the consumers, whereas the
WPI represents the prices paid by the producers. The former
are usually a markup on the latter.
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(c) & (d) The following output obtained from Eviews3 gives the
necessary data.

Dependent Variable: CPI
Method: Least Squares
Date: 06/23/00 Time: 16:50
Sample: 1960 1999
Included observations: 40

Variable Coefficient  Std. Error  t-Statistic Prob.

C -13.77536  3.710747 -3.712286  0.0007

WPI 1.269994  0.042763  29.69864  0.0000
R-squared 0.958696 Mean dependent var 86.17000
Adjusted R-squared 0.957609 S.D. dependent var 48.02523
S.E. of regression 9.887937  Akaike info criterion 7.469215
Sum squared resid 3715.309  Schwarz criterion 7.553659
Log likelihood -147.3843  F-statistic 882.0093
Durbin-Watson stat _ 0.093326_  Prob(F-statistic) _0.000000

The estimated ¢ value of the slope coefficient is 29.6986 under
the null hypothesis that there is no relationship between the
two indexes. The p value of obtaining such a ¢ value

is almost zero, suggesting the rejection of the null hypothesis.

The histogram and Jarque-Bera test based on the residuals
from the preceding regression are given in the following diagram

12

Series: Residuals
10 Sample 1960 1999
T Observatons 40
8. X Mean 711E-15
’0‘ Median 3781548
6 KA Maximum 21.84709
7 >:4 Minimum -19.05008
hed Sd Dev 9760345
4 :.: Skewness -0119726
,:4 Kurbosis 2620663
X
24 g&ggg E ::: Jarque-Bera  0.335390)
% Probabiliy 0845612
o "
-20 -10 0 20

10
The Jarqe-Bera statistic is 0.3335 with a p value 0.8456.
Therefore, we cannot reject the normality assumption. The
histogram also shows that the residuals are reasonably
symmetrically distributed.
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CHAPTER 6

EXTENSIONS OF THE TWO-VARIABLE REGRESSION MODEL

6.1

6.2

6.3

True. Note that the usual OLS formula to estimate the intercept is
f, = (mean of the regressand - £, mean of the regressor).

But when Y and X are in deviation form, their mean values are
always zero. Hence in this case the estimated intercept is also zero.

(a) & (b) In the first equation an intercept term is included.
Since the intercept in the first model is not statistically significant,
say at the 5% level, it may be dropped from the model.

(c) For each model, a one percentage point increase in the monthly
market rate of return lead on average to about 0.76 percentage point
increase in the monthly rate of return on Texaco common stock over
the sample period.

(d) As discussed in the chapter, this model represents the
characteristic line of investment theory. In the present case the
model relates the monthly return on the Texaco stock to the monthly
return on the market, as represented by a broad market index.

(€) No, the two r’s are not comparable. The * of the interceptless
model is the raw °.

() Since we have a reasonably large sample, we could use the
Jarque-Bera test of normality. The JB statistic for the two models is
about the same, namely, 1.12 and the p value of obtaining such a

JB value is about 0.57. Hence do not reject the hypothesis that the
error terms follow a normal distribution.

(g) As per Theil’s remark discussed in the chapter, if the intercept
term is absent from the model, then running the regression through
the origin will give more efficient estimate of the slope coefficient,
which it does in the present case.

(a) Since the model is linear in the parameters, it is a linear
regression model.

(b) Define Y* = (1/Y) and X* = (1/X) and do an OLS regression of
of Y* on X*.
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(c) As X tends to infinity, Y tends to (1/ £,).

(d Perhaps this model may be appropriate to explain low
consumption of a commodity when income is large, such as an
inferior good.

6.4 slope =1 Slope >1

slope < 1

6.5 For Model I we know that
A2 XY

For Model II, following similar step, we obtain:

where X and Y are in deviation form.

A Zx,.'y: _ Z(xi/Sx)(yi/Sy) - Z(xlyi)/SxSy -

a, = *

I y(xss, ) IS
szxiyi=iﬁ
S, x* §,°

This shows that the slope coefficient is not invariant to the
change of scale.

6.6 We can write the first model as:
In(w1Y;) = @, +a, In(w,X,) +u, , that is,
In w;+InY;= a, +a,Inw, +a, In X, +u;, , using properties

of the logarithms. Since the w’s are constants, collecting
terms, we can simplify this model as:

InY;= (o, +a,Inw, -lnw)+a,X, +u:
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6.7

6.8

6.9

6.10

6.11

=A+a,InX, +u
where A = (q, +a,Inw, —Inw,)
Comparing this with the second model, you will see that except
for the intercept terms, the two models are the same. Hence the

estimated slope coefficients in the two models will be the same, the
only difference being in the estimated intercepts.

(b) The 7 values of the two models will be the same.

Equation (6.6.8) is a growth model, whereas (6.6.10) is a linear
trend model. The former gives the relative change in the
regressand, whereas the latter gives the absolute change. For
comparative purposes it is the relative change that may be
more meaningful.

The null hypothesis is that the true slope coefficient is 0.005.The
alternative hypothesis could be one or two-sided. Suppose we

use the two-sided alternative. The estimated slope value is 0.00743.
Using the ¢ test, we obtain:

[ 0.00743-0.005

0.00017
This ¢ is highly significant. We can therefore reject the null

hypothesis.

=14.294

This can be obtained approximately as: 18.5508/3.2514 = 5.7055,
percent.

As discussed in Sec. 6.7 of the text, for most commodities the
Engel model depicted in Fig. 6.6(c) seems appropriate. Therefore,
the second model given in the exercise may be the choice.

As it stands, the model is not linear in the parameter. But consider
the following “trick.” First take the ratio of Y to (1-Y) and then take
the natural log of the ratio. This transformation will
make the model linear in the parameters. That is, run
the following regrssion:

Y,
In q =p+ P X,
This model is known as the logit model, which we will discuss
in the chapter on qualitative dependent variables.
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6.12 (a)

0<p< B,>1
,Bz =1
(b)
B,>0 B, <0
Problems
6.13 100 =2.0675+ 16.2662 —-1—
100-Y, X,

se  =(0.1596) (1.3232) »*=0.9497

As X increases indefinitely, (101000

J approaches the limiting value

of 2.0675, which is to say that Y approaches the limiting value of
about 51.6.

6.14 The regression results are as follows:

log (%) =-0.4526+1.3338log W

se =(1.3515) (0.4470) r* =0.4070
To test the null hypothesis, use the ¢ test as follows:
0.4470

For 13 df, the 5% (two-tail) critical ¢ value is 2.16. Therefore, do
not reject the hypothesis that the true elasticity of substitution
between capital and labor is 1.
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6.15 (a) If one believes a priori that there was a strict one-to-one
relationship between the two deflators, the appropriate model
would be one without the intercept.

(b) Model I: ¥, =516.0898+0.5340.X,
se =(40.5631) (0.0217) ¥’ =0.9789

Model II: ¥, = 0.7950
se =(0.0255) ¥ =0.7161*

*Note: This r* value is not directly comparable with the preceding
one.

Since the intercept term in the first model is statistically significant,
fitting the second model will lead to specification bias.

(c) One could use the double-log model.

6.16 The regression results are:
Y =0.9892X;
se = (0.0388) ¥’ =0.9789

A one standard deviation increase in the GDP deflator for imports
results in a 0.9892 standard deviation increase in the GDP deflator
for domestic goods, on average. Note that this result is comparable
to the one given in the preceding problem when one notes the
relationship between slope coefficients of the standardized and
non-standardized regressions. As shown in Eq. (6.3.8) in the text,

B =5, (%J , where * denotes slope from the standardized

y

regression. In the previous problem we found ,l}z =0.5340. Sy and
Sx are given as 346 and 641, respectively. Therefore,

S 641 ~e
—~1=0.5340| — |=0.9892 = B, .
ﬂZ[s J (346) g

y

6.17 To obtain the growth rate of expenditure on durable goods, we can
fit the log-lin model, whose results are as follows:

In Expdur, = 6.2217 + 0.0154 ¢
se =(0.0076) (0.000554) r*=0.9737

As this regression shows, over the sample period, the (quarterly)

40



rate of growth in the durable goods expenditure was about 1.5 %.
Both the estimated coefficients are individually statistically
significant as the p values are extremely low. It would not make
much sense to run a double log model here, such as:

In Expdur, = g, + B, Intime +u,

Since the slope coefficient in this model is the elasticity coefficient,
what is the meaning of the statement that as time increases by one
percent, on average, expenditure on durable goods goes up by f,
percent?

6.18 The corresponding results for the non-durable goods sector are:
In Expnondur; = 7.1929 + 0.0062 ¢
se =(0.0021) (0.00015) r’ =0.9877

From these results it can be seen that over the sample period
the (quarterly) rate of growth of expenditure on non-durables
was about 0.62 percent.

Comparing the results of the regressions in Problems 6.17
and 6.18, it seems that over the period 1993:01 to 1998:03,
expenditure on durable goods increased at a much faster rate than
that on the non-durable goods. This may not be surprising in view
of one of the longest economic expansions in the US history.

6.19 The scattergram of impressions and advertising expenditure is
as follows:

100

80+

60

40

IMPRESSION

0 5'0 100 150 200
ADEXP

Although the relationship between the two variables seems to be
positive, it is not clear which particular curve will fit the data. In the
following table we give regression results based on a few models.
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Model Intercept Slope r

Linear 22.1627 0.3631 0.4239
(3.1261) (3.7394)

Reciprocal  58.3997 -314.6600 0.3967
(78.0006) (-3.5348)

Double log  1.2999 0.6135 0.5829
(3.686) (5.1530)
Log-reciprocal 3.9955 -10.7495 0.5486
(21.7816) (- 4.8053)

Note: Figures in the parentheses are the estimated ¢ values.
In each regression the regressand is impressions and
the regressor is advertising expenditure.

It is left to the reader to compare the various models. Note that the

7* values of the first two models are comparable, since the regressand
is the same in the two models. Similarly, the r’s of the last two models
are comparable(Why?)
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7.1

CHAPTER 7
MULTIPLE REGRESSION ANALYSIS: THE PROBLEM OF
ESTIMATION

The regression results are:

a, =-3.00;a&, =3.50

A, =4.00,4, =-1357

B, =2.00; 3, =1.00; B, =—1.00

(a) No. Given that model (3) is the true model, &, is a biased estimator of

(b) No. /@ is a biased estimator of f,, for the same reason as in (a).

7.2

7.3

7.4

The lesson here is that misspecifying an equation can lead to biased
estimation of the parameters of the true model.

Using the formulas given in the text, the regression results are as
follows:

Y, =53.1612+0.727 X,, + 2.736 X,,
se (0.049) (0.849)R* = 0.9988; R>=0.9986

Omitting the observation subscript i for convenience, recall that

B‘ _ (Zﬂz)(zxg)—(zyxﬂ(zxzxs)
T ERER)-Ex)
_(Zyx)-Eyx)(Exx) (X x)
(Ex)=(Zxx) (Xx])
_ (X yx;) = (X yx3)bys
(szz)—b23(2x2x3) ,
_ 2 y(x, —byx;)
2%, (x, —byxy)

using by, = (Zz‘zx;f; )
3

Since we are told that is, u; ~ N(0,4), generate, say, 25 observations
from a normal distribution with these parameters. Most computer
packages do this routinely. From these 25 observations, compute
the sample variance

as 8> = ZX -X) —X)’

24
sample of 25 observations. Repeat this exercise, say, 99 more times,

, where X; = the observed value of ; in the

43



1.5

7.6

1.7

7.8

for a total of 100 experiments. In all there will be 100 values of S>.
Take the average of these 100 S values. This average value should

be close to 0°=4. Sometimes you may need more than 100
samples for the approximation to be good.

From Eq. (7.11.7) from the text, we have

R* =r}+(1-r})r’,. Therefore,

2 2
» _R-nrj
"123‘1 2

—hs

This is the coefficient of partial determination and may be
interpreted as describing the proportion of the variation in the
dependent variable not explained by explanatory variable X3, but has
been explained by the addition of the explanatory variable X; to the
model.

The given equation can be written as:

X, =(-a,/ )X, +(—a;/ ) X;,0r

X, =(—q/ )X, +(—a;/ a,) X;,0r

X =(—a, /)X, +(—a,/ a}) X,

Therefore, the partial regression coefficients would be as follows:
Boi=—(a,/a); B, =—(a;/ &)
Bus=—(a,/a,); Py, =—(a,/ ;)

Bz =~/ a3); By =—(a, / &5)
Recalling Question 3.6, it follows:

has =\ (B23)(Bus) = (;az)(—_al)‘=\/{=i1

(@)(a,)

(a) No. An r-value cannot exceed 1 in absolute value. Plugging the
given data in Eq. (7.11.2), the reader can should verify that:
ri23 = 2.295, which is logically impossible.

(b) Yes. Following the same procedure as in (a), the reader will
find that r1; 3 = 0.397, which is possible.

(c) Yes, again it can be shown that ri, 3 = 0.880, which is possible.
If you leave out the years of experience (X3) from the model, the
coefficient of education (X3) will be biased, the nature of the bias

depending on the correlation between X; and X;. The standard error,
the residual sum of squares, and R? will all be affected as a result
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7.9

7.10

of this omission. This is an instance of the omitted variable bias.

The slope coefficients in the double-log models give direct estimates
of the (constant) elasticity of the left-hand side variable with
respect to the right hand side variable. Here:

olnY orY'Y

= = f,,and
Oln X, X,/ X,
olnY or/Y

= _,53

dlnX, oX,/X,

(a) & (b) If you multiply X, by 2, you can verify from Equations

(7.4.7) and (7.4.8), that the slopes remain unaffected. On the other hand, if
you multiply Y by 2, the slopes as well as the intercept coefficients and
their standard errors are all multiplied by 2. Always keep in mind the units
in which the regressand and regressors are measured.

7.11

7.12

713

From (7.11.5) we know that

2, .2
_haths —2n,h3h

2
k 1- "275
Therefore, when ry3 = 0, that is, no correlation between variables
X5 and X3,
R*= r212 + r213, that is, the multiple coefficient of
determination is the sum of the coefficients of determination
in the regression of Y on X; and that of Y on Xj.

(a) Rewrite Model B as:
Y, =B +(1+B)X,, + BX;, +u,

= B+ B X, +BX,, +u,, where B, =(1+f,)
Therefore, the two models are similar. Yes, the intercepts in the
models are the same.

(b)The OLS estimates of the slope coefficient of X3 in the two
models will be the same.

© 8 =1+ B)=a,
(d) No, because the regressands in the two models are different.

(a) Using OLS, we obtain:
&. = Zyixi — Z:(-"fi "zi)(xi)

S Zxf
- inz _ 2z,
Ix; Xx
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7.14

7.15

=1- 5
That is, the slope in the regression of savings on income (i.e., the
marginal propensity to save) is one minus the slope in the regression
of consumption on income. (i.e., the marginal propensity to
consume). Put differently, the sum of the two marginal propensities
is 1, as it should be in view of the identity that total income is equal
to total consumption expenditure and total savings. Incidentally,

note that ¢, =—f,

(b) Yes. The RSS for the consumption function is:
Z(Y: —&1 _dZXi)z

Now substitute (Xi-Y;) for Z;, ¢, = —ﬁl anda, =(1- [3,_)
and verify that the two RSS are the same.

(c¢) No, since the two regressands are not the same.

(a) As discussed in Sec. 6.9, to use the classical normal linear
regression model (CNLRM), we must assume that

In u; ~N(0, o)
After estimating the Cobb-Douglas model, obtain the
residuals and subject them to normality test, such as the Jarque-Bera
test.

(b) No. As discussed in Sec. 6.9,

u, 0 log—normalle ', e” (¢° —1)]

(a) The normal equations would be:
ZY;XZi =p, ZX22i + 5 ZX2iX3i
YV Xy = XXX+ B2 X5,

(b) No, for the same reason as the two-variable case.

(c) Yes, these conditions still hold.

(d) 1t will depend on the underlying theory.

(e) This is a straightforward generalization of the normal

equations given above.
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Problems

7.16 (a) Linear Model:
}A’, =10816.04 -2227.704X,, +1251.141.X;, + 6.283X,, —197.399.X;,

se  (5988.348)( 920.538)  (1157021) (29.919) (101.156)
R*=0.835

In this model the slope coefficients measure the rate of change of
Y with respect to the relevant variable.

( b) Log-Linear Model

lnff =0.627-1.274In X,, +0.937In X;; +1.713In X, = 0.1821n X
se (6.148)(0.527) (0.659) (1.201) (0.128)
R*=0.778
In this model all the partial slope coefficients are partial elasticities
of Y with respect to the relevant variable.

(c) The own-price elasticity is expected to be negative, the cross
price elasticity is expected to be positive for substitute goods and
negative for complimentary goods, and the income elasticity is
expected to be positive, since roses are a normal good.

(d) The general formula for elasticity for linear equation is:

oY X, :
Elasticity = ——=", where X; is the relevant regressor.
That is for a linear model, the elasticity can be computed at the
mean values.

(e) Both models give similar results. One advantage of the log-
linear model is that the slope coefficients give direct estimates
of the (constant) elasticity of the relevant variable with
respect to the regressor under consideration. But keep in mind
that the R%s of the two models are not directly comparable.

7.17 (a) A priori, all the variables seem relevant to explain wildcat
activity. With the exception of the trend variable, all the
slope coefficients are expected to be positive; trend may
be positive or negative.
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(b) The estimated model is:

Y, =-37.186+2.775X,,+24.152X,, - 0.011X,, - 0.213 X,
se=(12.877) (0.57)  (5.587)  (0.008) (0.259)
R*=0.656; R* =0.603

(c) Price per barrel and domestic output variables are statistically
significant at the 5% level and have the expected signs. The
other variables are not statistically different from zero.

(d) The log-linear model may be another specification. Besides
giving direct estimates of the elasticities, it may capture
nonlinearities (in the variables), if any.

7.18 (a) The regression results are:

A

Y, =19.443+0.018X,, —0.284.X,, +1.343X,, +6.332.X,
se=(3.406) (0.006) (0.457)  (0.259) (3.024)
R?=0.978; R*=0.972; modified R* = 0.734

(b) A priori, all the slope coefficients are expected to be positive.
Except the coefficient for US military sales, all the other
variables have the expected signs and are statistically
significant at the 5% level.

(c) Overall federal outlays and some form of trend variable may
be valuable.

7.19 (a) Model (5) seems to be the best as it includes all the
economically relevant variables, including the composite
real price of chicken substitutes, which should help
alleviate the multicollinearity problem that may exist
in model (4) between the price of beef and price of
pork. Model (1) contains no substitute good information,
and models (2) and (3) have limited substitute good
information.

(b) The coefficient of In X; represents income elasticity; the
coefficient of In X3 represents own-price elasticity.

(c) Model (2) considers only pork as a substitute good, while
model(4) considers both pork and beef.
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(d) There may be a problem of multicollinearity between the
price of beef and the price of pork.

(e) Yes. This might alleviate the problem of multicollinearity.

(f) They should be substitute goods because they compete with
chicken as a food consumption product.

(g)The regression results of Model (5) are as follows:

In¥, =2.030+0.4811n X,, —0.351In X, —0.0611n X,
se =(0.119) (0.068) (0.079) (0.130)
R*>=0.980; R?=0.977; modified R*> = 0.810

The income elasticity and own-price elasticity have the
correct signs.

(h)The consequence of estimating model (2) would be that
the estimators are likely to be biased due to model
misspecification. This topic is discussed in detail in Chap.
13.

7.20 (a) Ceteris paribus, on average, a 1% increase in the
unemployment rate leads to a 0.34% increase in
the quite rate, a 1% increase in the percentage of employees
under 25 leads to a 1.22% increase in the quite rate, and 1%
increase in the relative manufacturing employment leads to
1.22 % increase in the quite rate, a 1% increase in the
percentage of women employees leads to a 0.80 % increase
in the quite rate, and that over the time period under study,
the quite rate declined at the rate of 0.54% per year.

(b) Yes, quite rate and the unemployment rate are expected to be
negatively related.

(c) As more people under the age of 25 are hired, the quite rate
is expected to go up because of turnover among younger
workers.

(d) The decline rate is 0.54%. As working conditions and
pensions benefits have increased over time, the quit
rate has probably declined.

(e) No. Low is a relative term.
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7.21

(H Since the ¢ values are given, we can easily compute
the standard errors. Under the null hypothesis that
the true S is zero, we have the relationship:

_ Bi n _ﬁ
t= se(ﬁ.) = se(f)= ;

1

(a) The regression results are as follows:

1A M, =1.2394+0.52431n RGDP —0.0255In Thrate
se = (0.6244) (0.1445) (0.0513) R*=10.7292

The regression results using the long-term (30 year bond) rate are as
follows:
In M, =1.4145+0.4946In RGDP, —0.05161n LTRATE

se =(1.3174) (0.2686) (0.1501) R*>=0.7270

The income elasticites (0.5243 or 0.4946) and the interest rate
elasticities (-0.0255 or —0.0516) are not vastly different, but as we
will see in Chapter 8, regression using the short-term interest
(TBrate) gives better statistical results.

(b) The ratio, M/GDP is known in the literature as the Cambridge
k. It represents the proportion of the income that people wish to
hold in the form of money. This ratio is sensitive to interest rate, as
the latter represents the cost of holding money, which generally does
not yield much interest income. The regression results are as
follows:

in| M2_| ~34785-0.17191nTBrate
GDP ),

se  =(0.0780) (0.0409) = 0.5095

m( M, ) =3.8318-0.3123In LTRATE,
GDP ),

se  (0.1157) (0.0532) r*=0.6692

Since these are both bi-variate regressions, the reader can check that
the Cambride k is statistically inversely related to the interest rate, as
per prior expectations. Numerically, it is more sensitive to the long-
term rate than the short-term rate. Since the dependent variable in
the two models is the same, we can see that the »* value using the
long-term interest rate as the regressor gives a much better fit.

(c) The answer is given in Exercise 8.29
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7.22

obtained from Eviews3 are as follows:

Dependent Variable: LOG(OUTPUT)

Sample: 1961 1987
Included observations: 27

The results of fitting the Cobb-Douglas production function,

Variable Coefficient  Std. Error  t-Statistic Prob.

C -11.93660 3.211064 -3.717335 0.0011
LOG(LABOR) 2.328402 0.599490 3.883972  0.0007
LOG(CAPITAL) 0.139810 0.165391 0.845330 0.4063
R-squared 0.971395 Mean dependent var 4.493912
Adjusted R-squared 0.969011 S.D. dependent var 0.461432
S.E. of regression 0.081229  Akaike info criterion -2.078645
Sum squared resid 0.158356 Schwarz criterion -1.934663
Log likelihood 31.06171  F-statistic 407.5017
Durbin-Watson stat 0.373792  Prob(F-statistic) _0.000000

(a) The estimated output/labor and output/capital elasticities are
positive, as one would expect. But as we will see in the next
chapter, the results do not make economic sense in that the
capital input has no bearing on output, which, if true, would be
very surprising. As we will see, perhaps collinearity may be the
problem with the data.

(b) The regression results are as follows:

Dependent Variable: LOG(PRODUCTIVITY)

Date: 07/29/00 Time: 18:11
Sample: 1961 1987
Included observations: 27

Variable Coefficient  Std. Error  t-Statistic Prob.

C -1.165956  0.074217 -15.57533  0.0000
LOG(CLRATIO) 0.680756  0.044535  15.28571 0.0000
R-squared 0.903345 Mean dependentvar  -2.254332
Adjusted R-squared 0.899479 S.D. dependent var 0.304336
S.E. of regression 0.096490 Akaike info criterion -1.767569
Sum squared resid 0.232758 Schwarz criterion -1.671581
Log likelihood 25.86218 F-statistic 233.6528
Durbin-Watson stat 0.263803  Prob(F-statistic) _0.000000

The elasticity of output/labor ratio (i.e., labor productivity)

with respect to capital/labor ratio is about 0.68, meaning

that if the latter increases by 1%, labor productivity, on average,
goes up by about 0.68%. A key characteristic of developed
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economies is a relatively high capital/labor ratio.

7.23 The regression results are as follows: Note that we have used all the
528 observations in estimating the regression.

Dependent Variable: LOG(HWAGE)

Sample: 1 528
Included observations: 528
Variable Coefficien  Std. Error  t-Statistic Prob.
t
C 4.661661 1.954190 2.385470 0.0174

LOG(EDUCATION) -3.165721  1.566685 -2.020650  0.0438
[LOG(EDUCATION)? 0.836412 0.313436  2.668524  0.0079

R-squared 0.157696 Mean dependent var 2.063647
Adjusted R-squared 0.154488 S.D. dependent var 0.521224
S.E. of regression 0.479275 Akaike info criterion 1.372579
Sum squared resid 120.5946 Schwarz criterion 1.396835
Log likelihood -359.3609 F-statistic 49.14535
Durbin-Watson stat 1 .909008J Prob(F-statistic) _0.000000

Since this is a double log model, the slope coefficients measure
elasticity. The results suggest that the percentage change in

the hourly wages decreases as the level of education increases, but
it decreases at a faster rate, that is, it becomes less negative.

(b) Here you will not be able to estimate the model because
of perfect collinearity. This is easy to see:
log(education?) = 2 log(education)
because of the properties of logarithms.

7.24 This is a class exercise. Note that your answer will depend on
the number of replications you carry out. The larger the number
of replications, the closer the approximation.
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8.1

8.2

83

84

CHAPTER 8
MULTIPLE REGRESSION ANALYSIS:
THE PROBLEM OF INFERENCE

(a) In the first model, where sales is a linear function of time, the
rate of change of sales, (dY/dt) is postulated to be a constant, equal

to f,, regardless of time #. In the second model the rate of change is
not constant because (dY/dt) = ¢, +2a,t , which depends on time ¢.

(b) The simplest thing to do is plot Y against time. If the resulting
graph looks parabolic, perhaps the quadratic model is appropriate.

(c) This model might be appropriate to depict the earnings profile
of a person. Typically, when someone enters the labor market, the
entry-level earnings are low. Over time, because of accumulated
experience, earnings increase, but after a certain age they start
declining.

(d) Look up the web sites of several car manufacturers, or Motor
Magazine, or the American Automobile Association for the data.

i (ESS,0 — ESS,) | NR

new (8.5.16)
RSS,,, (n—k)
where NR = number of new regressors. Divide the numerator and
. : ESS 2y RSS
denominator by TSS and recall that R =——and (1-R*)=——
TSS 1SS

Substituting these expressions into (8.5.16), you will obtain (8.5.18).

This is a definitional issue. As noted in the chapter, the unrestricted
regression is known as the long, or new, regression, and the
restricted regression is known as the short regression. These two
differ in the number of regressors included in the models.

In OLS estimation we minimize the RSS without putting any
restrictions on the estimators. Hence, the RSS in this case represents
the true minimum RSS or RSSyr. When restrictions are put on one
or more parameters, one may not obtain the absolute minimum RSS
due to the restrictions imposed. (Students of mathematics will

recall constrained and unconstrained optimization procedures).
Thus, RSSg>RSSyr, unless the restrictions are valid, in which

case the two RSS terms will be the same.

Recalling that R* =1 _RSS , it follows that
1SS
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85

8.6

8.7

RSy o p2 _y_ RSSy

7SS — * TSS
Note that whether we use the restricted or unrestricted regression,

Rz =1~

the TSS remains the same, as it is simply equal to Z(X -y )?
1

(a) Let the coefficient of log K be ° = (B, + B, —1). Test the null

hypothesis that B° =0, using the usual ¢ test. If there are indeed
constant returns to scale, the ¢ value will be small.

(b) If we define the ratio (Y/K) as the output/capital ratio, a measure
of capital productivity, and the ratio (L/K) as the labor capital ratio,
then the slope coefficient in this regression gives the mean percent
change in capital productivity for a percent change in the
labor/capital ratio.

(c) Although the analysis is symmetrical, assuming constant returns
to scale, in this case the slope coefficient gives the mean percent
change in labor productivity (Y/L) for a percent change in the
capital labor ratio (K/L). What distinguishes developed countries
from developing countries is the generally higher capital/labor ratios
in such economies.

Start with equation (8.5.11) and write it as:

2
= % , which can be rewritten as:
_ 2
F ((k Ilc)) = a RRZ) , after further algebraic manipulation, we
n — —
obtain
R* = Fk-1) , which is the desired result.

Fk-1)+(n-k)
For regression (8.2.1), n=64, k = 3. Therefore,
Fo0s52,62) = 3.15, approx. (Note use 60 df in place of 62 df).
Therefore, putting these values in the preceding R? formula,
we obtain:
R = 2(3.15) _6.30
2(3.15)+61 673
This is the critical R? value at the 5% level of significance. Since
the observed of R?of 0.7077 in (8.2.1) far exceeds the critical value,
we reject the null hypothesis that the true R* value is zero.

=0.0936

Since regression (2) is a restricted form of (1), we can first
calculate the F ratio given in (8.5.18):
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po (Re R/ _ (0.9776-0.9388) _
(1-R:)n-k) (1-0.9776)/17

new

27.033

Now recall that F},, =¢,. That is, 27.033 = 1, which gives

t=4/27.033 =5.1993. Under the null hypothesis that the true slop
coefficient of the trend variable is zero, we obtain:

(=B
se(f,)
from which we obtain: se( ,133) _b _23195 4.461, which is
t 5.1993

roughly equal to 4.2750 because of rounding errors.

The first model can alternatively be written as:

InY,-InX,, =a,+a,InX,, +a;In X, +u,

which, after collecting terms, can be written as:

InY, = +(1+a,)InX,, +a;InX;, +u,

Now the preceding model and the second model with the

P coefficients are observationally the same, with the following
relationships between the a and f coefficients:

B =(1+a,); py=asand f =«
Therefore, the standard errors of the estimated S coefficients can be
easily obtained from the standard errors of the estimated
a coefficients, which are already known.

The best way to understand this term is to find out the rate of change
of Y (consumption expenditure) with respect to X; and X3, which is:

oY
5X, =p,+B.X,
oY
5X, =B+ B.X,

As you can see the mean change in consumption expenditure with
respect to income not only depends on income but also on the level
of wealth. Similarly, the mean change in consumption expenditure
with respect to wealth depends not only on wealth but also on
income. That is, the variables income and wealth interact. This is
captured by introducing income and wealth in interactive, or
multiplicative, form in the regression in addition to the two variables
in the additive form. It is only when £ is zero that the MPC will

be independent of wealth.
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8.10 Recalling the relationship between the ¢ and F distributions, we
know that from the first equation: F; s = k. Therefore,
F =(-4.728)* =22.3540
Now use (8.5.11):
_ (n—-KR* _ (n-2)(0.6149)
(k-D(1-R*)  (1)(0.3851)
Solving this equation for n, we getn ~16 . Note: In the first
equation, k=2 and R*=10.6149

=22.3540

8.11 1. Unlikely, except in the case of very high multicollinearity.
2. Likely. Such cases occur frequently in applied work.
3. Likely, actually this would be an ideal situation.
4. Likely. In this situation the regression model is useless.
5. Could occur if the significance of one coefficient is insufficient to
compensate for the insignificance of the other.".
6. Unlikely.

8.12 Refer to the regression results given in Exercise 7.21.

(a) Using the treasury bill rate as the rate of interest, the income
and interest rate elasticities are, respectively, 0.5243 and —0.0255.
Using the long-term interest rate, the corresponding elasticities are,
0.4946 and —0.0516.

(b) Individually, the income elasticity is significant in both cases,
but not the interest rate elasticities.

(c) Using the R? version of the F test given in (8.5.11), the F values
are 21.5429 (using short-term interest rate) and 21.3078 (using
the long-term interest rate). The p value of these F values are
almost zero in both cases, leading to the rejection that income
and interest rate collectively have no impact on the demand for
money.

(d) Here the null hypothesis is that the income elasticity coefficient
is unity. To test the null hypothesis we use the ¢ test as follows:

t= 0.5243-1 =—3.2920 (with short-term interest rate
0.1445
as the interest rate variable)
t= 04946-1) =—1.8816 (with long term interest
0.2686

rate as the interest variable)

! For further discussion of this point, see Adrian C. Damell, 4 Dictionary of Econometrics, Edward Elgar,
UK., 1994, pp. 394-395.
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With 19 observations and two regressors, we have 16 df. Since
income elasticity coefficient is expected to be positive, we can use
a one-tailed test. The 5% one-tail critical  value for 16 df is 1.746.
At this level of significance, we can reject the null hypothesis that
the income elasticity is 1; it is actually less than one.

(a) The elasticity is —1.34. It is significantly different from zero, for
the ¢ value under the null hypothesis that the true elasticity
coefficient is zero is:

t=18 44687
0.32
The p value of obtaining such a ¢ value is extremely low.
However, the elasticity coefficient is not different from one because
under the null hypothesis that the true elasticity is 1, the t value is

t= “134-1_ -1.0625
0.32
This ¢ value is not statistically significant.

(b) The income elasticity, although positive, is not statistically
different from zero, as the ¢ value under the zero null hypothesis is
less than 1.

(c) Using formula (7.8.4), we obtain:
R?=1-(1-R) !

n

Since in this example IE" =0.27,n=46,and k =3, by substitution
the reader can verify that R?*=0.3026, approximately.

(a)4 priori, salary and each of the explanatory variables are
expected to be positively related, which they are. The partial
coefficient of 0.280 means, ceteris paribus, the elasticity of CEO
salary is a 0.28 percent. The coefficient 0.0174 means, ceteris
paribus, if the rate of return on equity goes up by 1 percentage point
(Note: not by 1 percent), then the CEO salary goes up by about 1.07
%. Similarly, ceteris paribus, if return on the firm’s stock goes up
by 1 percentage point, the CEO salary goes up by about 0.024%.

(b) Under the individual, or separate, null hypothesis that each true
population coefficient is zero, you can obtain the ¢ values by simply
dividing each estimated coefficient by its standard error. These ¢
values for the four coefficients shown in the model are, respectively,
13.5, 8, 4.25, and 0.44. Since the sample is large enough, using the
two-f rule of thumb, you can see that the first three coefficients are
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8.16

individually highly statistically significant, whereas the last one is
insignificant.

(c) To test the overall significance, that is, all the slopes are equal to
zero, use the F test given in (8.5.11), which yields:

_ Ri(k—l) __0283/3 ..o
(1-R®)/(n—k) (0.717)/205

Under the null hypothesis, this F has the F distribution with

3 and 205 df in the numerator and denominator, respectively. The
p value of obtaining such an F value is extremely small, leading to
rejection of the null hypothesis.

(d) Since the dependent variable is in logarithmic form and the
roe and ros are in linear form, the coefficients of these variables
give semi elasticities, that is, the growth rate in the dependent
variable for an absolute (unit) change in the regressor.

Using Equation (3.5.8), the reader can verify that:

rn = 0.9989; riz = 0.9885, and ry3 = 0.9839
Using the formulas given in Section 7.11, the reader should verify
r,; =0.9705;r,, =0.678;r,;, =—0.4930
Using the Fisher test given in the exercise, the reader should check
that

_ nyaV15-1-2

t =
12.3 ’1 _ r]i )
Following exactly the same procedure, verify that:
t132=3.20 and t,3; = 1.963
Each of these ¢ values is statistically significant at the 5% level.

=13.590

(a) The logs of real price index and the interest rate in the

previous year explained about 79 percent of the variation in the log
of the stock of tractors, a form of capital. Since this is a double log
model, the slope coefficients are (partial) price elasticities. Both
these price elasticities have a priori expected signs.

(b) Each partial slope coefficient is individually significant at the
5% level and each is also significantly different from unity.

(c) Using Equation (8.5.12), we obtain:
_ R*(k-1) _ 0.793/2 _
(1-R»/(n-k) 0.207/28
With n =31, k =3, the reader can verify that this F value is
highly significant.

53.63
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(d) See part (a).
(e) Use the F test given in (c).

(a) Ceteris paribus, a 1 (British) pound increase in the prices of final
output in the current year lead on average to a 0.34 pound (or 34
pence) increase in wages and salary per employee. Similarly, a 1
pound increase in the prices of final output in the previous year, lead
on average to an increase in wages and salary per employee of about
0.004 pounds. Holding all other things constant, an increase in the
unemployment rate of 1 percentage point, on average, lead to about
2.56 pounds decrease in wages and salary per employee. The three
regressors explained about 87 percent of the variation in wages and
salaries per employee.

(b) If you divide the estimated coefficients by their standard errors,
you will obtain the ¢ values under the null hypothesis that the
corresponding true population coefficient values are zero. The
estimated ¢ values for the three slope coefficients are 4.55, 0.055,
and -3.89, respectively. Of these, the first and the third are
statistically significant but the second is not.

(c) As we will study in the chapter on distributed lag models, this
variable is included to measure the lag effect, if any, of prices of
final output a year earlier.

(d) Since the ¢ value of this coefficient is not significant, this
variable may be dropped from the model, provided we do not
commit the specification error of omitting an important variable
from the model. But more on this in the chapter on model
specification.

(e) Use the following (standard) elasticity formula:

%g = —2.56g
where the bar over the variables denotes their average values
over the sample data.

(a) Ceteris paribus, a 1 percentage point increase in the job

vacancy rate lead on average to about 5.29 pounds increase in the
wages and salaries per employee; an increase of about 1 pound GDP
per person lead on average to about 12 pence decline in wages and
salaries per employee; an increase in import prices in the current
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year and the previous year lead, on average, to an increase in wages
and salaries per employee of about 5 pence.

(b)As in the previous exercise, under the zero null hypothesis the
estimated ¢ values for the four explanatory variables are,
respectively, 6.51, -1.04, 2.45, and 2.42. All but the second of these
t values are statistically significant.

(c) A priori, one would expect higher per capita productivity to lead
to higher wages and salaries. This is not the case in the present
example, because the estimated coefficient is not statistically
significantly different from zero, as the ¢ value is only about —1.

(d) These are designed to capture the distributed lag effect of current
and previous year import prices on wages and salaries. If import
prices go up, the cost of living is expected to go up, and hence
wages and salaries.

(e) The X variable may be dropped from the model because it has
the wrong sign and because its ¢ value is low, assuming of course
that there is no specification error.

(f) Use the F test as follows:

_ R*M(k-1) 0934/4
(1-R*>)/(n-k) 0.66/14
This F value is highly significant; for 4 and 14 numerator and

denominator degrees of freedom, the 1% level of significance F
value is 5.04.

=49.53

For the income elasticity, the test statistic is:

I e T

0.0247
This ¢ value is highly significant, refuting the hypothesis that the
true elasticity is 1.
For the price elasticity, the test statistic is:
. —0.3772-(-1) _ 9.808
0.0635
This ¢ value is also significant, leading to the conclusion that the true
price elasticity is different from —1.

The null hypothesis is that B, =—p,, thatis, f, + f, =0.
Using the ¢ statistic given in (8.6.5), we obtain:
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0.4515 +(~0.3772)

~ J(0.0247)? +(0.0635)* —2(=0.0014)
This ¢ value is not significant, say at the 5% level. So, there is no
reason to reject the null hypothesis.

t =0.859

(a) The own-price elasticity is —1.274

(b) From the ¢ test, we obtain:
‘o 1.274-0
0.527
The p value of obtaining such a ¢ statistic under the null hypothesis
is about 0.034, which is small. Hence, we reject the hypothesis that
the true price elasticity is zero.

=2.4174

(c) Again, using the standard formula, we obtain:
‘e -1.274—-(-1)

0.527
Since this # value is not statistically significant, we do not reject the

hypothesis that the true price elasticity is unity.

=-0.5199

(d) Both the signs are expected to be positive, although none of
these variables is statistically significant.

(e)Perhaps our sample size is too small to detect the statistical
significance of carnation prices on the demand for roses or that of
income on the demand for roses. Moreover, expenditure on roses
may be such a small part of total income that one may not notice the
impact of income on demand for roses.

(a) The coefficients of X, and Xj are statistically significant, but
those of X3 and X are not.

(b) Yes. Using the F test, we obtain

__0656/4 15399
(1-0.656)/26

The 5% F value for 4 and 26 df., is 2.74. So reject Hy,

(c) Using the semi-log model, we obtain:
log(wildcats) = 2.53203 — 0.0127 time
t value = (38.3766) (-3.3514): 2=0.2792

Thus, the instantaneous rate of growth is —1.27 percent. The
corresponding compound rate of growth is also about —1.27%.(Take
the antilog of —0.0127 (= 0.9873), subtract 1 from it and multiply by
100). Note: For small r, In (1 + 1) ~r.
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(a) Refer to the regression results given in Exercise 7.18. A priori,
all slope coefficients are expected to be positive, which is the case,
except for the variable US military sales. The R? value is quite high.
Overall, the model looks satisfactory.

(b) We can use the R? version of the ANOVA table given in Table
8.5 of the text.

Source of variation ~ SS df MSS
2
Due to regression ~ 0.978(Xy}) 4 @!‘—
2
Due to residuals 0.022(Xy?) 15 %
Under the usual null hypothesis, the F ratio is:
= M =166.33
0.022/15

This F value is obviously highly significant, leading to the rejection
of the null hypothesis that all slope coefficients are simultaneously
equal to zero. In other words, the four variables collectively have a
significant impact on defense outlay.

(a) This function allows the marginal products of labor and capital
to rise before they fall eventually. For the standard Cobb-Douglas
production function the marginal products fall from the beginning.

This function also allows for variable elasticity of substitution,
unlike the usual Cobb-Douglas model.

(b)If B, =B, =0, then ¢’ =1. This is the standard model.

(c) One could use the F test of restricted least-squares.

(d) The results are as follows:

62



Dependent Variable: LOG(GDP)

Sample: 1955 1974
Included observations: 20

Variable Coefficient  Std. Error  t-Statistic Prob.

Cc -11.70601 2.876300 -4.069814  0.0010
LOG(LABOR) 1.410377 0590731 2.387512  0.0306
LOG(CAPITAL) 0.942699 0.194542 4.845735  0.0002
LABOR -9.06E-05 4.35E-05 -2.082179  0.0549
CAPITAL -3.54E-07 4.15E-07 -0.853032 0.4071
R-squared 0.999042 Mean dependent var 12.22605
Adjusted R-squared 0.998787 S.D. dependent var 0.381497
S.E. of regression 0.013289  Akaike info criterion -5.591475
Sum squared resid 0.002649 Schwarz criterion -5.342542
Log likelihood 60.91475  F-statistic 3911.007
Durbin-Watson stat 1.065992  Prob(F-statistic) 0.000000

As these calculations show, the results are mixed. While the
coefficient of labor is statistically significant, that of capital is not.
Compare these results with those given in Example 8.3, using the
standard Cobb-Douglas production function.

8.25 (a) Yes. The fuel price index is negative and statistically significant
at the 1% level.

(b) The output loss would be 6.48% [(-0.1081)(60%)].
(c) The trend rate of growth was 0.45%

(d) On average, for the sample, a 1% increase in the labor/capital
ratio lead to 0.71% increase in output.

(e) See Question 8.11 above. If each individual coefficient is
statistically significant, it is unlikely that R = 0. In the present
instance,
_ 0.98/3
(1-0.98)/118
This F value is highly significant. So one can reject the hypothesis
that R is zero.

=1928.37
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(a) The Eviews3 output is as follows:

Dependent Variable: Y

Sample: 1968 1983
Included observations: 16

Variable Coefficient ~ Std. Error  t-Statistic Prob.

Cc 5962.656 2507.724 2377716  0.0388

X2 4.883663 2512542 1.943714 0.0806

X3 2.363956  0.843559  2.802361 0.0187

X4 -819.1287  187.7072 -4.363863 0.0014

X5 12.01048 147.0496 0.081676  0.9365

X6 -851.3927 292.1447 -2.914284 0.0155
R-squared 0.822750 Mean dependent var 7543.125
Adjusted R-squared 0.734125 S.D. dependent var 1217.152
S.E. of regression 627.6005 Akaike info criterion 16.00168
Sum squared resid 3938824. Schwarz criterion 16.29140
Log likelihood -122.0134  F-statistic 9.283507
Durbin-Watson stat ~~ 2.484497  Prob(F-statistic) _0.001615

8.27

(b) One would expect f,, B,and B to be positive and S,and p;
to be negative.

(o) B,, Band B, meet the expectations; the others do not.

(d) As the regression results show, X, X,and X are significant at

the 5% level, X; is significant at the 10 % level, but X; is statistically
insignificant.

(e) We use the methodology of restricted least-squares discussed in
the chapter. Regressing Y on X3, X3, and X, only, we obtain

Rﬁ =0.6012. Including all the regressors, as can be seen from
the regression results given in (a), we have Rlz,R =0.8227.
Therefore, using Eq. (8.7.10), we obtain
Fe (0.8227-0.6012)/2 — 625
(1-0.8227)/10
For 2 and 10 df in the numerator and denominator, respectively, the

5% critical F value is 4.10. Therefore, we reject the hypothesis that
the variables X5 and X do not belong in the model.

(a) Since both models are log-linear, the estimated slope coefficients
represent the (partial) elasticity of the dependent variable with
respect to the regressor under consideration. For instance, the
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coefficient 0.94 in Eq. (3) means that if output in kwh increases by
by 1%, on average, the total cost of production goes up by 0.94%.
Similarly, in Eq. (4), if the price of labor relative to the price of fuel
increases by 1%, on average, the relative cost of production goes up
by 0.51 percent.

(b) Use the F statistics as follows:
Fo (RSS, — RSS,z)/ NR _ (0.364-0.336)/1 _1012
(1-RSSyr)/ n—k (1-0.336)/24
where NR = number of restrictions.

This F is not significant; the 5% critical F value for 1, and 24 numerator and
denominator df., respectively, is 4.26. Therefore, we do not reject the null
hypothesis that the sum of the price elasticities is 1.

8.28

8.29

Note: Do not use the R* version of the F test given in (8.7.10),
because the dependent variables in Egs. (3) and (4) are not the same.

(a) No. The estimated y, is significantly different from zero, as its ¢
value is 5.3.

(b) Yes, since it sheds light on the validity of the theory. Also,
statistically it is significant, as noted in (a).

(c) No. This seems too high a return for U.S. treasury bills.
(d) No. Again, this seems relatively high.

(e) A survey of the recent literature on CAPM suggests that the
model may not be appropriate in all situations.

We will discuss only the results based on the treasury bill rate; the
results based on the long-term rate are parallel.

The model in Exercise 7.21 (a) is the unrestricted model and that in
(b) is the restricted model. Since the dependent variable in the two
models are different, we use the F'test given in (8.7.9). The
restricted and unrestricted RSS are, respectively, 0.0772 and 0.0463.
Note that we have put only one restriction, namely, that the
coefficient of Y in the first model is unity.

_ (0.0772-0.0463)/1 _
(0.0463)/(19-3)

10.69

For 1 and 16 numerator and denominator df, respectively, the 5%
critical F value is 4.49. Hence we reject the restricted model and
conclude that the real income elasticity is less than unity.
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8.30 To use the 7 test given in (8.7.4), we need to know the covariance

8.31

between the two slope estimators. From the given data, it can be

shown that cov (,&2, ,L% )=-0.3319. Applying (8.7.4) to the Mexican
data, we obtain:
(0.3397 +0.8460-1)

" J0.0345+0.0087 +2(-00173)

From the ¢ table, we find that the 5% two-tail ¢ value is 2.12.
Therefore, at this level of significance, we do not reject the
hypothesis of constant returns to scale, although numerically the
sum of the two coefficients (=1.19) is greater than 1.

(a) A priori, one would expect a positive relationship between CM
and TFR, for the larger the number children born to a woman the
greater is the likelihood of increased mortality due to health and
other reasons.

(b) The coefficients of PGNP are not very different, but that of FLR
look different. To see if the difference is real, we can use the ¢ test.
Suppose we use Eq. (1) and hypothesize that the true coefficient of
PGNP is -1.7680. We can now use the ¢ test as follows:

. -2.2316—(-1.7680) —0.4636

0.2099 0.2099

This ¢ value exceeds 2 in absolute terms, so can reject the hypothesis
that the true coefficient is —1.7680. Note here we have used the 2-¢
rule of thumb since the number of observations is reasonably high.

=-2.2086

(c)We can treat model (1) as the restricted version of model (2).
Hence, we can use the R version of the F test given in (8.7.10),
since the dependent variables in the two models are the same. The
resulting F’ statistic is as follows:

Fe (0.7474-0.7077)/1 _ 0.0397

(1-0.7474)/(64-4) 0.0042

Under the standard assumptions, this has the F distribution with
1 and 60 df in the numerator and denominator, respectively. The
1% critical F for these dfs is 7.08. Since the computed F exceeds
this critical value, we can reject the restricted model (1) and
conclude that the TFR variable belongs in the model.

=9.4523

(d) Recall that
F,, =t; . Therefore, taking the (positive) square root of the
F value given in (c¢) above, we find:

t =+/9.4523 =3.0744, approx.
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Therefore, under the null hypothesis that the true value of coefficient
of TFR in model (2) is zero, we can obtain the standard error of the
estimated TFR coefficient by dividing the estimated coefficient by
the preceding  value, which gives

_12.8686

se =
3.0744

=4.1857,approx.

(a) In Model I the slope coefficient tells us that per unit increase in
the advertising expenditure, on average, retained impressions go up
by 0.363 units. In Model II the (average) rate of increase in retained
impressions depend on the level of advertising expenditure. Taking
the derivative of Y with respect to X, you will obtain:

ar =1.0847-0.008.X
dx

This would suggest that retained impressions increase at a
decreasing rate as advertising expenditure increases.

(b) &(c)We can treat Mode I 1 as the abridged, or restricted, version
of Model II and hence can use the restricted least-squares technique
to decide between the two models. Since the dependent variable in
the two models is the same, we can use the R” version of the F test
given in (8.7.10). The results are as follows:

Fe (0.53-0.424)/1 _ 0.106 —4.0613

(1-0.53)/18  0.0261
Under the usual assumptions of the F test, the preceding F value
follows the F distribution with 1 df and 18 df in the numerator and
denominator, respectively. For these dfs the critical F value is 4.41
(5% level) and 3.01 (10% level).; the p value is 0.0591 or about 6%,
which is close to 5%. It seems that we should retain the squared X
variable in the model.

(d) As noted in (b), there are diminishing returns to advertising
expenditure; if the coefficient of the X-squared term were positive,
there would have been increasing returns to advertising. Equating
the derivative in (b) to zero, we obtain:

1.0847=0.008 X, which gives X = 135.58. At this value of X,
the rate of increase of Y with respect to X is zero. Since X is
measured in millions of dollars, we can say that at the level of
expenditure of about 136 millions of dollars there is no further gain
in retained impressions, which are measured in millions of
impressions.

(a)Using the data from regression (7.9.4) into (8.7.4), we obtain:
(1.4988 +0.4899-1) _0.9887 2 0849

~ J(0.5398) +(0.1020)? —2(0.03843)  0.4742

t

67



8.34

Since the sample size is 15, we have 12 df.. The preceding ¢ value
is significant at the 5% level, suggesting that perhaps there were
increasing returns to scale in the Taiwanese agricultural sector.

(b) Imposing the constant-returns-to-scale restriction, the regression
results are as follows:

In(2-) =1.7086+ 0.6129 In(22)
X, X,

se  =(0.4159) (0.0933) R?=10.7685
RSS=0.0915

The unrestricted RSS, RSSyg, from the regression (7.9.4) is
0.0672and the the restricted RSS, RSSg, from the regression given
in (b) is 0.0915. Using the F test given in (8.7.9), we obtain:

_(0.0915-0.0672)/1 _

(0.0672)/12
Under the usual assumptions of the F'test, the preceding F value has
the F distribution with 1 df in the numerator and 12 df in the
denominator. The p value of obtaining an F value of as much as
4.34 or greater is about 0.0593 or about 6 percent, which close to the
5% level of significance. Again, it seems that there were increasing
returns to scale in the Taiwanese agricultural sector.

4.3393

Note that the slight difference in the ¢ and F significance level is due
to rounding errors. Also note that, since the dependent variables in
the restricted and unrestricted models are different, we cannot use
the R* version of the F test.

Following exactly the steps given in Sec. 8.8, here are the various
sums of residual squares:

RSS; =1953.639 (1970-1982)

RSS; =9616.213 (1983-1995)

RSS =23248.30 (1970-1995), which is the restricted RSS
Now RSS yr =(1953.639 + 9616.213) = 11569.852

Using the F test, we obtain:
_ (RSS,—RSSx)/ k
 RSS,, /(n, +n, —2k)

Fe 11678.448/2 _
11569.852/22

11.1032

The p value obtaining an F value of as much as 11 or greater is
about 0.0005, a very small probability indeed.
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Although the overall conclusion of this exercise and the example
discussed in Sec. 8.8 remains the same, namely, that there was a
statistically significant change in the savings-income regression.
However, as you can see from the F values, the answer depends on
the break point chosen to divide the sample.
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9.2

9.3

CHAPTER 9
DUMMY VARIABLE REGRESSION MODELS

(a) If the intercept is present in the model, introduce 11 dummies.
If the intercept is suppressed, introduce 12 dummies.

(b) If the intercept is included in the model, introduce 5 dummies,
but if the intercept is suppressed (i.e., regression through the origin),
introduce 6 dummies.

(a) As per economic theory, the coefficients of X3, X;s are expected
to be positive and that of X3, X3, and Xy are expected to be negative.
The coefficient of X4 could be positive or negative, depending on
wife’s age and the number of children. Perhaps an interactive
dummy of age and children under 6 or between 6 and 13 might shed
more light on the relationship between age and desired hours of
work.

(b) Holding all other factors constant, one would expect that desired
hours of work would be higher than the (common) intercept value of
1286 hours. This coefficient, however, has a negative sign.
However, since it is not statistically significant, we can say little
about the impact of Xg on (average) Y. As for X7, its coefficient is
expected to be positive, which it is. Not only that, it is statistically
significant, as the ¢ value is quite high.

(c) Perhaps, this is due to collinearity between age and education, as
well as collinearity of these variables with number of children. Also,
notice that the model does not include years of schooling completed
by husband.

(a) The relationship between the two variables is expected to be
negative, for if the unemployment rate is high, indicating slackness
in the labor market, employers are less likely to advertise job
vacancies.

(b) It is 3.8998 (=2.7491+1.1507). Since the dummy coefficient is
statistically significant, the unemployment rate post 1966 4™ quarter
is statistically higher than it was in the pre-1964 4™ quarter period.

(c) Since the differential dummy coefficient is just about significant

at the 5% level, we could say that the slopes of the regression
function in the two periods are different.
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(d) Most probably yes. By making unemployment benefits more
generous, the government reduces the opportunity cost of remaining
unemployed.

The results show that the average price was higher by $5.22 per
barrel in 1974 than the other years in the sample. The slope
coefficient, $0.30 is the same over the entire sample. The graph will
resemble Fig. 9.3 b in the text, with the regression line for 1974
starting at 5.22 on the vertical axis with a slope of 0.30; for the
remaining years the regression line will pass through the origin, but
with the same slope.

(a): Male Professor: EY)=(a,+a,)+ BX,
Female Professor:  E(Y))=q, + X,
Holding X constant, the male average salary is different by «,

(b) Male Professor: E(Y)=(a,+2a,)+ X,
Female Professor: EY)=(a,+a,)+ pX,
Holding X constant, the male average salary is also different by «,

(c) Male Professor EY)=(a,—a,)+ BX,

Female Professor EY)=(o,+a,)+ BX,
Holding X constant, the difference between female and male average
salary is 2, .

Since the scale of the dummy variable is arbitrary, there is no
particular advantage of one method over the other. For a given data,
the answer is invariant to the choice of the dummy scheme.

Following Chapter 8, we can use the ¢ test as follows:

{= (ﬂz _ﬂa?\_(ﬂ‘z —ﬂ3)

se(f, - B;)
But under the null hypothesis that £, = f,, the second term in the
numerator of the preceding expression becomes zero.

Also note that se(,l}2 - [%) = \/[var(,éz)+ var(,[%) —2cov(,[}2,,l}3)]

For our example, it can be shown that se( ,32 - ,[?3) =84.8392.
Therefore, the preceding ¢ statistic becomes

‘e 245.3750-347.6250
84.8392

=-1.2055
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This ¢ value is not significant, leading to the conclusion that the
coefficients of D, and D3, although they each are statistically
significantly different from the intercept of the first quarter, are
themselves not significantly different from one another.

For exactly the same reasoning, to test the hypothesis that the
coefficients of D, and D, are the same, we obtain the following ¢
value:

(o 245.3750-(-62.1250)

84.8392
This ¢ value is statistically significant, suggesting that the

coefficients of D, and D, are different.

The answer to the last part of the question is generally no.
Logically, if A is different from B and if A is different from C, it
does not necessarily follow that B and C are also different. Of
course, one can use the # test to answer this question numerically.

=3.6245

(a) &(b):The standard errors of the coefficients of the regression
(9.5.6) can be directly obtained from (9.5.4). But to obtain the
standard errors of the coefficients in (9.5.7), we will have to obtain

the standard errors of (&, +@&,)and (3, + 3,) by the well-known
statistical formula for the standard error of the sum or difference of
two (or more) coefficients. See the formula given in the hint to
Exercise 9.6. Since this formula involves the covariances of the
terms involved in the sum or difference of coefficients, without that
information we cannot compute the standard errors.

For our example,
var(a,) = 406.6205, var(a, ) =1094.443; var( ,é,) =0.00021; var( ﬁz) =0.000255;

cov(d,,&,) = —406.6205 and cov(f,, 3,) = —0.00021

Therefore, se(q, +a,)= V' [406.6205+1094.443-
2(406.6205)]=26.2263 and

se (B + B,) =~/ [0.00021+0.000255-2.(00021)] = 0.0067

Note: Because of rounding and approximation errors, these standard
errors are somewhat different from those reported in (8.8.2a).

(a) Neglecting the dummies for the moment, since this is a double
log regression, each estimated slope coefficient represents an
elasticity. Thus, if X; (the total number of offices or branches in a
bank), increase by 1%, on average, the FDIC examiner hours go up
by about 0.22 percent, perhaps reflecting some economies of scale.
Other coefficient of the logged X variables are to be interpreted
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similarly. A priori, all the logged X coefficients are expected to be
positive, which they are.

(b) & (¢): Since the regressand is in the log form, we have to
interpret the coefficients of the dummy variables as per the
suggestion made by Halvorsen and Palmquist. Take the antilog of
each estimated cofficient attached to a dummy variable and subtract
1 from it. Multiply the difference by 100, which will then give the
percentage change in the regressand when a dummy variable goes
from state O to state 1. For example, consider the coefficient of Dj,
which is-0.2572. Taking the antilog of this number, we get 0.7732.
Subtracting 1 from this, and multiplying by 100, we get -22.68%.
Thus, when the examination is conducted jointly with the state,
FDIC examination hours go down by about 23 percent. Other
dummy coefficients are to be interpreted similarly.

(a) & (c):Ceteris paribus, if the expected inflation rate goes up by 1
percentage point, the average Treasury bill rate (TB) is expected to
go down by about 0.13 percentage point, which does not make
economic sense. However, the TB coefficient is not statistically,
significant, as its t value is only —1.34. If the unemployment rate
goes up by 1 percentage point, the average TB rate is expected to go
down by about 0.71 percentage point. This coefficient is
statistically significant, as its ¢ value is -4.24. It also makes
economic sense, as a higher unemployment rate means slowing
down of the economy and the Fed would probably reduce the TB
rate to revive the economy. If the change in the monetary base goes
up by a unit, on average, the TB rate is expected to go down, as an
increase in the monetary base, via the multiplier effect, leads to an
increase in the money supply, which will have the effect of reducing
the interest rate, ceteris paribus. The lagged value of Y is positive
and statistically significant. This lagged value takes into account the
dynamics of change, a topic discussed in the chapter on distributed
lag models.

(b) In late 1979 the then Governor of the Federal Reserve System,
Paul Volker, changed monetary policy from interest rate targeting
to monetary base targeting, the objective being to reduce the
comparatively high rate of inflation then prevailing in the US
economy. By tightening the monetary base, which lead to increases
in the TB rate, the inflation rate was subsequently brought down
considerably. Incidentally, note that the dummy coefficient is
statistically significant.

Write the model as:
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Y,=a,+a,D+ B X,+ B,(X,-X )D+uy,
where D=1, when X; >X"
=0, if X; <X~

Assuming E(u;) =0, we obtain:

E(Y, |D =0,X, <X )=a,+ B X,

EF|D=1X,>X")=(a +a)+(f + )X, - X")

Thus, when X; exceeds X, the intercept jumps by a, and the slope
changes by f,.

(a) This assignment of the dummy variables assumes a constant
(proportional) difference; the chain store is 10 times the scale of the
discount store and convenience store is 10 times the scale of chain
stores (or 100 times the scale of discount store). Obviously, this is
all arbitrary.

(b) As expected, brand name colas are more expensive than non-
brand colas. Also the results suggest that smaller containers are
more expensive than larger containers, again as expected. The
model explains about 60% of the variation in the price of cola.

(c) The dummy variable is setup with the higher assigned values for
the smaller containers.

(a) The coefficient of the income variable in the log form is a semi-
elasticity, that is, it represents the absolute change in life expectancy
for a percent change in income.

(b) This coefficient shows that the average life expectancy is likely
to increase by .0939 years if per capita income increases by 1%,
ceteris paribus.(See Chapter 6 on the lin-log model).

(c) This regressor is introduced to capture the effect of increasing
levels of per capita income above the threshold value of $1097 on
life expectancy. This regressor provides the number of additional
years that one may expect to live as one’s income goes above the
threshold value. The estimated coefficient value, however, is not
statistically significant, as the p value of the estimated coefficient is
about 0.1618.

(d) The regression equation for countries below the per capita
income level of $1097 is:

-2.40 +9.39 In X;,
For countries with per capita income over $1097, the regression
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equation is:
-2.40 + (9.39 - 3.36) In X; +(3.36) (7), that is,
21.12 + 6.03 In X;

Although numerically the two regressions look different, statistically

9.13

9.14

they are not, for the coefficient of the last term in the equation is
statistically zero. It seems that there is no statistically discernible
difference in life expectancy between poor and rich countries, if we
assume that countries with per capita income greater than $1097 are
richer countries.

(@)& (b). B, gives the expected value of Y for the first 20

observations and f, gives the change in the expected value of Y for
the next 30 observations, the actual expected value of Y for the last

30 observations is ( B, + f3,).

(c) From the well-known formula to find the sum or difference of
two or more random variables (See App. A), it can be shown that

var(B, + B,) = var(B) + var(B,) + 2cov(B,, B,)

To obtain the numerical values, we follow the formulas given in
chapter 3 for the two-variable model. Thus, we have:

var(fy =—— 22 o
nY(D, - D)
= i(£)300=15
5012
A o’ 300
Var(’BZ)_):(D,.-E)2 TR

We are told that the covariance between the two estimators is 15.
Putting all these numbers together, we obtain:

var(B, + B,) =10
Note: Verify that (D, - D)* =12.

(a) The expected relationship between the two variables is negative.
(b) Yes, they do.

(c) & (d). Those states that did not have the right-to-work laws, the
average union membership was about 19.8%. On the other hand, in

states with such laws the union membership was lower by about
9.39 percentage points, for an actual membership of about 10.42%.
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9.15 From the OLS formulas given in Chapter 3, we know that:
~  Y(D,-DY,
“ (D, - D)’ M

Now it is easy to verify that: D =

S l.b

(D,-D)="4if D=1
n
and =-Zip=0
n

Now the denominator in Eq. (1) can be written as:

(D, - By* = 3(D,~ By + 3.(D, - Dy’

i=1 i=1

2 2
_ nl(i] +,,2(ﬁj _mm
n n n
The numerator in Eq. (1) can be written as:
5(D,- D), = 3,(D,- D)Y,+ 3(D,- DY,

=1 i=1
n, < 1<
O R AN

n g

Y,-Y=Y,-Y,
and the intercept is given by
B, =Y - B,D, which after substitution, becomes

= }_,hg
9.16 (a)2.4%.

(b) Since both the differential intercept and slope coefficients are
highly significant, the levels as well the growth rates of population
in the two periods are different. The growth rate for the period
before 1978 is 1.5% and that after 1978 it is 2.6% (= 1.5% + 1.1%).

Problems

9.17 Running the regression for the two periods separately, we find that
for the first period 67 =0.00768 (df = 30) and for the second period

67 =0.03638 (df = 17). Then under the assumption that the
respective population variances are the same, and following Eq.
(8.8.8) , the following ratio follows the F' distribution.
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A2
o,
;A? 0 F(n. -k),(n, k)

F=

In our example, k =2, n, =32 and n, =19. Putting the relevant
values in the above expression, we obtain:

F =4.7369
The p value of obtaining an F of as much as 4.7369 or greater is
about 0.00001, which is extremely small. The conclusion is that the
variances in the two sub-periods are not the same.

Since the dependent variable in models (9.7.3) and (9.7.4) is the
same, we can use the R version of the F test given in Eq. (8.7.10).

In the present instance, the restricted R*(i.e., R;) is obtained from

(9.7.3), which is 0.5318 and the unrestricted R’ (i.e., R};) is given
by (9.7.4), which is 0.7298. In our example n =2, k=5 and m =1
(make sure that you get this right). Putting these values in Eq.
(8.7.10), we obtain:

Fe (0.7298-0.5318)/1 ~198

(1-0.7298) /(32 -5)

which has the F distribution with 1 and 27 df. in the numerator and
denominator, respectively. The p value of obtaining an F value of
as much as 19.8 or greater (for 1 and 27 df) is practically zero. The
conclusion that emerges is that the restriction imposed by model
(9.7.3), that of excluding the X variable, is not valid. Put positively,
the X variable, expenditure on durable goods, should be introduced
in the model.

In this case the dummy variable Z takes the value of 2 when D=0
and it takes the value of 5 when D = 1. Using this dummy
assignment, we get the following regression results:
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Dependent Variable: SAVINGS
ethod: Least Squares

Sample: 1970 1995

ncluded observations: 26

Variable Coefficient  Std. Error  t-Statistic Prob.

Cc -100.6363 37.88404 -2.656429 0.0144

INCOME 0.123978  0.024574 5.045035  0.0000

Z 50.82618 11.02746  4.609058  0.0001
Z*INCOME -0.021823  0.005327 -4.096340 0.0005
R-squared 0.881944 Mean dependent var 162.0885
Adjusted R-squared 0.865846 S.D. dependent var 63.20446
3.E. of regression 23.14996 Akaike info criterion 9.262501
Sum squared resid 11790.25 Schwarz criterion 9.456055
_og likelihood -116.4125 F-statistic 5478413
Durbin-Watson stat 1.648454 Prob(F-statistic) 0.000000

Now in comparing the preceding results with those given in (9.5.4),
(9.5.6) and (9.5.7), we have to be careful, for the variable Z takes the
value of 2 (when D = 0) and the value of 5 (when D = 1).To obtain
the savings-income regression comparable to (9.5.6) (i.e., when the
original dummy value was zero), wherever Z appears, put the value
of 2, which gives:
Savings-Income Regression 1970-1981:
Savings =[-100.6363 +2(50.826180]+[0.123978 —2(0.02182)]Income

=1.0161 + 0.0803 Income,
which is the same as that obtained in (9.5.6), except for the rounding
errTors.
Savings-Income Regression: 982-1995:

Savings =[~100.6363 + 5(50.8262)] +[0.12398 — 5(0.021820] Income

=153.4947 + 0.0148 Savings
which is the same as (9.5.7).

The message of this exercise is that the choice of numerical values
for the dummy variables is essentially arbitrary.

9.20 As you would suspect, the sign of the dummy coefficient in (9.5.4)
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will become —152.4786 and the sign of the coefficient of (D.X;) will
become positive. The intercept term will now be 153.4973 and
coefficient of the income variable will be 0.0148. All this follows
logically.

(a) Since the dummy enters in the log form, and since the log of
zero is undefined, by redefining the dummy as 1 and 10, we can
obtain logs of these numbers.

(b) The regression results are as follows ( # values in parentheses):

In(Savings), = -0.1589 + 0.6695In Income, +—0.000291n D,
t =(—-0.2074) (6.2362) (=0.00505)

R? =0.8780
Since the dummy coefficient is not statistically significant, for
all practical purposes the two intercept terms are the same. The
interpretation of the intercept coefficient of —0.1589 is that it
represents the value of log of savings when all the regressors
take a value of zero. Taking the antilog of this value, we obtain
the value of 0.8531 (billions of dollars). Of course, this number may
not have much economic meaning.

It may be interesting to compare the preceding regression results
with the following results, which allow for the interaction effect:

In(Savings), = —2.0048 +0.9288 In(Income), +2.32781n D, —0.2985(In D, * Income,)
t =(—-2.6528) (8.7596) (3.9696) (-3.9820)

R? =0.9291
Now you get an entirely different picture, for the differential
intercept and slope dummies are both significant. For the 1982-
1995 period, the MPS (marginal propensity to save) is 0.6303,
whereas for the earlier period it is 0.9288. By the same token, the
intercept term for the first period is negative but it is positive for the
second period.

As the preceding calculations show, see how specification errors can
change the results.

(a) We present the results for the three appliances in the following
tabular form:
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Type of Appliance  Intercept D, Ds D4 R

Dishwashers 748.2500 8.25 42.87549.8750.0219
t (13.824) (0.10) (0.56) (0.65)

Disposers 887.00 -77.50 -55.50 11.12 0.0810

t (18.8066) (-1.16) (-0.83) (0.16)
Washing 1225.625 -45.25 1.00 -106.875 0.169
Machines

t (33.2219) (-0.8673) (0.01) (-2.05)

(b) The “slope” coefficients are in fact differential intercepts, with
first quarter as the reference quarter. Only the 4™ quarter dummy
for washing machines is statistically significantly different from the
first quarter; suggesting that only washing machines exhibit some
type of seasonality. This is in contrast with the results for
refrigerators given in (9.7.3) where there was seasonality in the
second and third quarters (but not the 4™ quarter) .

(c) Since there is no statistically visible seasonality in dishwasher
and disposers sales, there is no need for deseasonalizing the data.
For washing machines, the residuals from that regression will
represent deseasonalized time series.

The regression results, obtained from Eviews 3 are as follows: In
the following table, D), D, and Dj; are the dummies for the second,
third, and the fourth quarter. DISH, DISP and WASH represent,
respectively, the sales of dishwashers, disposers and washing
machines, in thousands of units and DUR represents durable goods
expenditure in billions of dollars. Not all the statistics given in the
table are yet discussed, but they will be as we progress through the
book.

Dependent Variable: DISH
Method: Least Squares

Sample: 1978:1 1985:4
Included observations: 32

Variable Coefficient  Std. Error  t-Statistic Prob.

C 106.8419  168.8010 0.632946  0.5321

D1 5.840220 62.14176  0.093982  0.9258

D2 2414839 62.32067 0.387486 0.7014

D3 29.81285 62.34750 0.478172  0.6364

DUR 2.322680 0.590194 3.935452  0.0005
R-squared 0.378492 Mean dependent var 773.5000
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Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat

0.286416
124.2775
4170121
-197.0082
0.183078

S.D. dependent var 147.1194
Akaike info criterion 12.62551

Schwarz criterion 12.85453
F-statistic 4.110677
Prob(F-statistic) 0.009944

Dependent Variable: DISP

Method: Least Squares

Sample: 1978:1 1985:4

Included observations: 32

Variable Coefficient  Std. Error  t-Statistic Prob.

Cc 56.40125 81.47305 0.692269  0.4947

D1 -80.62057 29.99319 -2.687963  0.0122

D2 -79.75024  30.07954 -2.651312  0.0133

D3 -14.85471  30.09249 -0.493635 0.6256

DUR 3.007781  0.284862  10.55875  0.0000
R-squared 0.820847 Mean dependent var 856.5312
Adjusted R-squared 0.794306 S.D. dependent var 132.2576
S.E. of regression 59.98346 Akaike info criterion 11.16862
Sum squared resid 97146.41  Schwarz criterion 11.39764
Log likelihood -173.6979  F-statistic 30.92730
Durbin-Watson stat 0.733166  Prob(F-statistic) 0.000000

Dependent Variable: WASH

Method: Least Squares

Sample: 1978:1 1985:4

Included observations: 32

Variable Coefficient  Std. Error  t-Statistic Prob.

Cc 741.0680 107.2523 6.909578  0.0000

D1 -47.07049  39.48345 -1.192157  0.2436

D2 -13.14717  39.59713 -0.332023 0.7424

D3 -122.0311  39.61418 -3.080491  0.0047

DUR 1.754688  0.374996 4.679221  0.0001
R-squared 0.541230 Mean dependent var 1187.844
Adjusted R-squared 0.473264 S.D. dependent var 108.7996
S.E. of regression 78.96307 Akaike info criterion 11.71844
Sum squared resid 168349.5 Schwarz criterion 11.94746
Log likelihood -182.4950 F-statistic 7.963248
Durbin-Watson stat 0.926092 Prob(F-statistic) 0.000224
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(b) The addition of expenditure on durable goods in the equation for
dishwashers does not change results insofar as seasonality is
concerned; there is no seasonality in the data (as compared to the
first quarter). The results for disposers are substantially different in
that now there is pronounced seasonality in the second and third
quarter. The results for washing machine are qualitatively the same.
Note, however, in each regression the coefficient of durable goods
expenditure is statistically significant.

(¢) The inclusion of dummy variables in the regression model takes
care of seasonality, if any, not only in the sale of the various
appliances but also in the durable goods expenditure, a /a Frisch-
Waugh theorem mentioned in the chapter.

(a) & (b):This is left for each individual student. The year 2000 US
Presidential Elections were held on November 7, 2000. If you had
used your model, would you have predicted the outcome of the year
2000 elections correctly?

(c) The results of this model are as follows:

Dependent Variable: V
Method: Least Squares

Sample: 1 21

Included observations: 21
Variable Coefficient ~ Std. Error  t-Statistic Prob.
Cc 0.505678  0.026324 19.21007  0.0000
| -0.019753  0.016347 -1.208325 0.2456
DUM 0.055755 0.019637 2.839255 0.0124
Gl 0.009625 0.001706 5642862  0.0000
P 0.000155 0.002804 0.055370 0.9566
N -0.004637 0.003293 -1.407866 0.1796
R-squared 0.788321 Mean dependent var 0.490690
Adjusted R-squared 0.717762 S.D. dependent var 0.075065
S.E. of regression 0.039879 Akaike info criterion -3.370963
Sum squared resid 0.023855 Schwarz criterion -3.072528
Log likelihood 41.39511  F-statistic 11.17242
Durbin-Watson stat 2.229997 Prob(F-statistic) _0.000125

The authors did nat include G as a regressor. Perhaps that could be
added to the model.
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Dependent Var

The regression results based on Eviews3 are as follows:

iable: HWAGE

Method: Least Squares

Sample: 1 528

Included observations: 528

Variable Coefficient  Std. Error t-Statistic Prob.
C -0.261014 1.106956 -0.235794 0.8137
GENDER -2.360657 0.430203 -5.487303 0.0000
RACE -1.732729  0.794716 -2.180314 0.0297

GENDER*RACE 2.128986  1.222109  1.742059  0.0821
EDUCATION 0.802807  0.081014  9.909478  0.0000

R-squared
Adjusted R-squ

0.203263 Mean dependent var 9.047538
ared 0.197169 S.D. dependent var 5.144082

S.E. of regression 4609140 Akaike info criterion 5.903384
Sum squared resid 11110.70  Schwarz criterion 5.943811
Log likelihood -1653.493  F-statistic 33.35678
Durbin-Watson stat ~~ 1.873724  Prob(F-statistic) _0.000000

9.26

Dependent Varia

As these results show, the gender-race dummy is statistically
significant at about the 8% level. If you regard this p value as
sufficiently low, then the interactive dummy is significant and the
results given (9.6.4) have to reinterpreted. The average salary with
respect to gender alone (note the gender dummy is 1 for females) is
lower by about $ 2.36 per hour as compared with males’ average
hourly wage. Likewise, the average hourly wage is lower by about
$1.73 for non-white/non-Hispanic workers. But these results need
to be modified to take into account the interactive gender-race
dummy.

For example, if you hold race constant, the average hourly wage for
females is now lower by only $0.2317 (= -2.3606 + 2.1289).
Similarly, if you hold gender constant, the average salary of non-
white/non-Hispanic workers is actually higher by about $0.3962
(=-1.7327 + 2.1289). So you can see how the interactive dummy
attenuates or magnifies the effect of additive dummies only.

The regression results, based on Eviews3, are as follows:

ble: HWAGE

Method: Least Squares

Sample: 1 528

Included observations: 528

Variable Coefficient  Std. Error t-Statistic Prob.
C 9.067519 0.446115  20.32552 0.0000
MSTATUS 0.713991 0.551188 1.295367 0.1958
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REGION

-2.540727 0.826694 -3.073359  0.0022

MSTATUS*REGION 1.323573  1.020982  1.296373  0.1954

R-squared 0.035309 Mean dependent var 9.047538
Adjusted R-squared 0.029786 S.D. dependent var 5.144082
S.E. of regression 5.066893 Akaike info criterion 6.090880
Sum squared resid 1345287 Schwarz criterion 6.123221
Log likelihood -1603.992 F-statistic 6.392958
Durbin-Watson stat _ 1.860478 _ Prob(F-statistic) _0.000293

9.27

9.28

As these results suggest, there does not seem to be much interaction
between marital status and region, as the multiplicative dummy is
not significant; its p value is about 20 %. It seems there is no need
to introduce the interactive dummy. Hence, the results given in
(9.3.1) may be relied upon.

ﬁ, will give the mean value of the first 40 observations and

( /}1 + [32) will give the mean value of the next 60 observations. The
variance of ﬁ, =100/40 ,and the variance of ( [71 + ,32) =100/60.
Remember that if X is a random variable with mean E(X) and

var = g7, then the sample mean X has the same expected value but

2
x

its a variance is equal to , where n is the sample size.

The results, using Eviews3 are as follows:

Dependent Variable: In (Savings)
Method: Least Squares

Sample: 1970 1995
Included observations: 26

Variable Coefficient  Std. Error t-Statistic Prob.

C 3.677198 0.108486 33.89569 0.0000
INCOME 0.000709 7.80E-05 9.084319 0.0000
DUM 1.3971. 0.1779. 7.8500. 0.0000
DUM*INCOME-0.0006 8.60E-05 -7.4361 0.0000

R-squared 0.933254 Sum squared resid ~ 0.341255
F-statistic 102.5363
Durbin-Watson stat  1.612107

(a) Model (9.5.4) is a linear model, whereas the present one is a
log-lin model. Therefore, the slope coefficients of the regressor
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in this model are to be interpreted as semi-elasticities.

Qualitatively, both models give similar results. Since the regressand
in the two models are different, we cannot compare the two R*'s
directly.

(b) As noted in the chapter, if we take the antilog of the dummy
coefficient of 3.6772, what we obtain is the median savings in

the period 1970-1981, holding all other factors constant. Now
antilog (3.6772) = 39.5355. Thus, if income were zero, the median
savings in 1970-1981 would be about 40 billion dollars. Again, one
should interpret this number with a grain of salt.

Now if we take the antilog of (3.6772 + 1.3971) = 159.8602, this
would be median savings in the period 1982-1995, holding income
constant. Again, be careful in accepting this number at its face
value.

(c) Regressing log of Y (savings) on X (income), the estimated
error variances in the two periods are: 6° =0.0122 (df = 10) and

6% =0.0182(df =12) Under the null hypothesis that the
variances of the two populations are the same, we form

00182

0.0122
For 12, and 10 df in the numerator and denominator,

respectively, this value is not significant even at the 25% level.
Hence, we can conclude that the two error variances are the
same. Note that in the original model discussed in the chapter
we regressed Y (not In ¥) on X. So, if there was
heteroscedasticity in the original model and not in the log-lin
model, it suggests that the log transformation may be more
appropriate.

=1.4918
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CHAPTER 10
MULTICOLLINEARITY:WHAT HAPPENS IF THE REGRESSORS ARE
CORRELATED?

10.1 If X is a perfect linear combination of the remaining explanatory
variables, then there are (k-1) equations with k£ unknowns. With
more unknowns than equations, unique solutions are not possible.

10.2 (a) No. Variable Xj3; is an exact linear combination of X>;, because
X, =2X,,-1.

(b) Rewriting the equation yields,
Y, =B+ BX+ B(2X, -1 +y

=(B, - B)+ (B, +25) X, +y

=a, +a,X,, +u,
wherea, = (B, — B;)and a, = (B, +23,)

Therefore, we can estimate ¢, and a, uniquely, but not the original
betas because we have two equations to solve the three unknowns.

10.3 (a) Although the numerical values of the intercept and the slope
coefficients of PGNP and FLR have changed, their signs have not.
Also, these variables are still statistically significant. These changes
are due to the addition of the TFR variable, suggesting that there may
be some collinearity among the regressors.

(b) Since the ¢ value of the TFR coefficient is very significant (the p
value is only .0032), it seems TFR belongs in the model. The positive
sign of this coefficient also makes sense in that the larger the number of
children born to a woman, the greater the chances of increased child
mortality.

(c) This is one of those “happy” occurrences where despite possible

collinearity, the individual coefficients are still statistically significant.

10.4 The relation may be rewritten as:
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10.5

10.6

X, = _—AlXZi _i’j_Xﬁ = P23 Xy + Bz X

4 4
Xy = ‘%Xu _%Xﬁ = BaXi + B X
Xy = _%Xu _%Xzi = B2 X + B X
Therefore,

Rl B

N
I
H+
P

N3 = (ﬁlzs)(’gzu) = sqrt(—%)
YEY) (ﬁls.z )(le,z) = sqrt[—ﬁ

) )
s, = (ﬁzl1)(ﬁ32.1 = sqrt(—%

|
N—
I
H
P

Sl

|
N—
I
H+
b

Hence,
Rlz.zs = ré +(1- ré )rli.z =1.Similarly,
R22.|3 = R32.12 =1

The degree of multicollinearity is perfect.

(a) Yes. Economic time series data tend to move in the same
direction. Here, the lagged variables of income will generally move
in the same direction.

(b) As discussed briefly in Chapter 10 and further discussed in
Chapter 17, the first difference transformation may alleviate the
problem.

When wealth is removed from the model, the model is misspecified
and the income effect coefficient is biased. Hence, what one
observes in Eq. (10.6.4 ) is a biased estimate of the income
coefficient. The nature of the bias is as follows:

Given that ¥, = B, + B, X,, + 5, X;; +u;, it follows that

blz = ﬁz + :B3b32
where b, is the slope coefficient in the regression of ¥ on X;.

and b,, is the slope coefficient in the regression of X3 on X.
From the given data, we have

B, =0.9415; B, =-0.0424;b,, =10.191;5,, = 0.5091
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10.7

10.8

10.9

10.10

Therefore, the bias in b3 is( ,33)(b32) =(—0.0424)(10.191) =-0.4321.

As discussed in Question 10.5, economic variables are often
influenced by similar factors such as business cycles and trend.
Therefore, in regression analysis, using variables such as GNP and
money supply, one should expect multicollinearity.

(a) Yes. This is because the coefficient of correlation is zero
between X; and X3. As a result, the cross product terms vanish in

the formulas for the £ coefficients (equations 7.4.7 and 7.4.8) and

the formulas become the same as those for the a and y coefficients
(equation 3.1.8).

(b) It will be a combination, as shown below:

ﬂl Y ﬂxz_'éﬂ?
=Y -4,X,=Y-B,X,
h=Y-7.X,=Y-BX,

Therefore ﬂ, =4, +7,-Y

(c) No, for the following reasons:

A & &2
var = note:r: =0
P szzi(l_rn) X 2 ( »=0)
A2
var(@,) = —5-(seeeq.3.3.1)
2i
A2 A2
Note that &° =&¢ 6% = L]
n-3 n-2

(a) The correlation coefficient between labor and capital is about
0.698, which is relatively high.

(b) No. Despite the correlation between the two variables, the
regression coefficients are statistically significant at the 5% level.
To drop a variable wold lead to specification bias.

(c) If labor is dropped, the coefficient of capital will be biased. The
bias can be computed following Exercise 10.6

Here the bias is: (5,)(b,;) = (1.4988)(0.1319)=0.1975 .

(a) No. Multicollinearity refers to linear association among
variables. Here the association is nonlinear.
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10.11

10.12

(b) There is no reason to drop them. They are theoretically as
well as statistically significant in the present example.

(¢) If one of the variables is dropped, there will be specification bias
that will show up in the coefficient(s) of the remaining variable(s).

No. Variables should be added on the basis of theory, not on the
basis of adding one more variable just to increase the (ESS) or R
Moreover, if variables are correlated, adding or subtracting variables
will change the values of the other coefficients

(a) False. If exact linear relationship(s) exist among variables, we
cannot even estimate the coefficients or their standard errors.

(b) False. One may be able to obtain one or more significant ¢
values.

(c) False. As noted in the chapter (see Eq. 7.5.6), the variance of
an OLS estimator is given by the following formula:

- 2 1
var(ﬂ’)zfaf(l—R?J

As can be seen from this formula, a high Rf can be counterbalanced

by a low o or high x;.

(d) Uncertain. 1f a model has only two regressors, high pairwise
correlation coefficients may suggest multicollinearity. If one or
more regressors enter non-linearly, the pairwise correlations may
give misleading answers.

(e) Uncertain. If the observed collinearity continues in the future
sample values, then there may be no harm. But if that is not the case
or if the objective is precise estimation, then multicollinearity may
be problem.

(f) False. See answer to (c) above.

(g) False. VIF and TOL provide the same information.

(h) False. One usually obtains high R*’s in models with highly
correlated regressors.

(D)True. As you can see from the formula given in (c), if the
variability in Xj is small, Rf will tend to be small and in the extreme
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10.13

10.14

10.15

10.16

10.17

10.18

case of no variability in X3, ¥ x, will be zero, in which case the
variance of the estimated £; will be infinite.

(a) Referring to Eq. (7.11.5), we see that if all the r?'s are zero,
R’ is zero ipso facto.

(b) If the regressand is uncorrelated with each of the regressors, then
none of the variation in the regressand will be explained by the
model.

(a) Consider Eq. (7.11.5). If all the zero-order, or gross, correlations
are r, this formula reduces to:

Rz_zﬂa—¢y_2ﬂ

T (A-r?)  l4r
(b) Using (7.11.1), it can be seen, for instance, that
- rd-r) _r
23— 14y

(a) If there is perfect multicollinearity, (X'X) becomes singular
Hence, it cannot be inverted. As a result, the coefficients and their
standard errors are undefined.

(b) A test would be to examine the determinant of (X'X). If it is
zero, perfect collinearity exists.

(a) Since in the case of perfect multicollinearity the (X'X) matrix
cannot be inverted, the variance-covariance matrix is undefined.

(b) If collinearity is high, the variance-covariance matrix is
defined, but the variances (given by the elements on the main
diagonal) will tend to be very large as the determinant of (X'X)
approaches zero as the degree of collinearity gets stronger.

(a) If the determinant of R is zero, there is perfect collinearity.

(b) If the determinant is small, there is less than perfect collinearity.

(c) If the determinant is 1, the variables are orthogonal (see Exercise
10.18).

(a) There will be elements on the main diagonal only.

(b) Obtain the (X'X) matrix , its inverse and (X'y)
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10.19

10.20

10.21

10.22

10.23

(c) There will be no off-diagonal elements, that is, covariance
elements.

(d) No. Since all the regressors are orthogonal, all covariances
(i.e., cross-product ) terms will be zero.

(a) Since the third regressor, (M, —M,_,) is a linear combination of
M, and M, _, , there might be a collinearity problem.

(b) If we re-specify the model as
GNP, = B+ (B, + BIM, +(B, — BIM,_, +y,
=g +aM,+a,M,_ +u,
We can estimate f,,, and a, uniquely, but we cannot estimate
B,, B; and B, uniquely.

(c) All the parameters can be estimated uniquely, as there is no
longer perfect collinearity.

(d) The answer is the same as in (¢).

Recall that
22— 0> x2ix3i)2
ORI
Therefore, (Z X5iX3; )2 = r223 (Z x22i )(Z x32i)

Substitute the preceding expression in the denominators of (7.4.7)
and (7.4.8) and simplify.

When there is perfect collinearity, r,, =1. Therefore, the

denominators in (7.4.12) and (7.4.15) will become zero. As a
result, the variances are undefined.

Recall that se(f, + B,) = y[[var(B,) + var(B,) + 2cov(B,, )]

Since the covariance values are given, it is a matter of simple
substitution to verify the answers.

(a) Ceteris paribus, as o} increases, the variance of the estimated

P, coefficient will decrease. This will allow the estimator to be
estimated more precisely.

(b) When collinearity is perfect, the variance is undefined.
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(¢) True. As the overall R? increases, (1-R%) will decrease. This will
reduce the variance of the estimated coefficient.

10.24(a) Given the relatively high R* of 0.97, the significant F value and
the (economically speaking) improperly signed insignificant
coefficient of log K, it may be that there is collinearity in the model.

(b) A priori, capital is expected to have positive impact on output. It
is not in the present case probably due to collinearity in the
Tegressors.

(c) It is a Cobb-Douglas type production function, as the given
model can be written as:

Y = ﬂ,Kﬂ’ [PePv
(d)On average, over the sample period, a 1% increase in the index of
the real labor input resulted in about 0.91% increase in the index of
real output. The ¢ variable in the model represents time. Very often,
time is taken as a proxy for technical change. The coefficient of
0.47 suggests that over the sample period, on average, the rate of
growth of real output (as measured by the output index) was about
4.7%.

(e) This equation implicitly assumes that there are constant returns
to scale, that is, ( B, + #,) = 1. An incidental advantage of the
transformation may be to reduce the collinearity problem.

(H Given that the capital-labor ratio coefficient is statistically
insignificant, it appears that the collinearity problem has not been
resolved.

(2) As mentioned in (e), the author is trying to find out if there are
constant returns to scale. One could use the F test discussed in
Chapter 8 to find out if the restriction is valid. But since the
dependent variables in the two models are different, we cannot use
the R’ version of the Ftest. We need the restricted and unrestricted
residual sums of squares to use the F test.

(h) As noted in (g) the two R*s are not comparable. One could
follow the procedure discussed in Chapter 7 to render the two R
values comparable.

10.25(a), (b) (c) and (d) All the views expressed essentially tell us that
multicollinearity is very often a data-deficiency problem.
Problems

10.26(a) The regression results of the modified model are:
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A

Y, =20.995+0.710Z,
se =(6.341) (0.066)
t =(3.311) (10.771) r* =0.906

A

B, =(0.75)(0.710) = 0.532
Therefore, f, = (0.625)(0.710) = 0.444

(b) Z can be interpreted as a weighted average of the various types
of income.

10.27(a)
Dependent Variable: LIMPORTS
Method: Least Squares
Date: 11/11/00 Time: 10:16
Sample: 1970 1998
Included observations: 29

Variable Coefficient  Std. Error  t-Statistic Prob.

Cc 1.9756260 0.782070 2.525683 0.0180

LGDP 1.043167 0.405783 2.570749 0.0162

LCPI 0.446142  0.569840 0.782925  0.4407
R-squared 0.982318 Mean dependent var 12.49048
Adjusted R-squared 0.980958 S.D. dependent var 0.904848
S.E. of regression 0.124862 Akaike info criterion -1.225512
Sum squared resid 0.405356 Schwarz criterion -1.084068
Log likelihood 20.76993  F-statistic 722.2174
Durbin-Watson stat 0.461405 Prob(F-statistic) 0.000000

(b) Judged by the high R value and insignificant ¢ value of the log
CPI coefficient, probably there is multicollinearity in the data.
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()
Dependent Variable: LIMPORTS
Method: Least Squares
Date: 11/11/00 Time: 10:21
Sample: 1970 1998
Included observations: 29

Variable Coefficient  Std. Error  t-Statistic Prob.

C 1.407426 0.290493 4.844960 0.0000

LGDP 1.359628 0.035525  38.27295 0.0000
R-squared 0.981901

Dependent Variable: LIMPORTS
Method: Least Squares

Sample: 1970 1998
Included observations: 29

Variable Coefficient  Std. Error  t-Statistic Prob.

C 3.898610 0.250312 15.567499 0.0000

LCPI 1.905351 0.055221 34.50388 0.0000
R-squared 0.977824

Dependent Variable: LGDP
Method: Least Squares

Sample: 1970 1998
Included observations: 29

Variable Coefficient  Std. Error t-Statistic Prob.

C 1.8437 0.1080 17.0680 0.0000

LCPI 1.3988 0.0238 58.6972 0.0000
R-squared 0.9922

The auxiliary regression of LGDP on LCPI shows that the two
variables are highly correlated, perhaps suggesting that the data
suffer from the collinearity problem.

(d) The best solutions here would be to express imports and GDP in

real terms by dividing each by CPI (recall the ratio method
discussed in the chapter). The results are as follows:
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Dependent Variable: LOG(IMPORTS/CPI)
Method: Least Squares

Date: 11/11/00 Time: 10:26

Sample: 1970 1998

Included observations: 29

Variable Coefficient  Std. Error t-Statistic Prob.

C 0.106099  0.494911  0.214380 0.8319
LOG(GDP/CPI) 2.162167  0.135693  15.93429  0.0000

R-squared 0.903881

10.28(a) Since there are five explanatory variables, there will be five
auxiliary regressions. To save space, we give below only the
R? values obtained from these regressions:

Dependent Variable R

X, 0.9846
X; 0.9482
Xa 0.9872
Xs 0.9889
Xe 0.9927

(b) Since the R? values in all the auxiliary regressions are uniformly
high , it seems the data suffer from the multicollinearity problem.

(c) There are probably too many substitute good variables in the
equation. One could use only the composite substitute good price,
price of chicken and disposable income as regressors. This was
already done in Problem 7.19.

(d) Creating a relative price variable, say the price of beef divided
by the price of pork, might alleviate the collinearity problem.

10.29(a) and (c)Examining the correlation coefficients between the possible
explanatory variables, one observes a very high correlation between
the new car CPI and the general CPI (0.997) and between PDI and the
new car CPI (0.991). Others are relatively high, but they should
remain in the model for theoretical reasons. PDI is also closely
related to the employment level, the correlation between the two being
0.972 Therefore, one could drop general CPI and PDI and estimate
the following model

Dependent Variable: LY
Method: Least Squares

Sample: 1971 1986
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Included observations: 16

Variable Coefficient Std. Error t-Statistic Prob.

Cc -22.10374 8.373593  -2.639696 0.0216

LX2 -1.037839 0.330227  -3.142805 0.0085

LX5 -0.294929 0.073704  -4.001514 0.0018

LX6 3.243886 0.872231 3.719068 0.0029
R-squared 0.684855 Mean dependent var 9.204273
Adjusted R-squared 0.606069 S.D. dependent var 0.119580
S.E. of regression 0.075053 Akaike info criterion -2.128930
Sum squared resid 0.067595 Schwarz criterion -1.935783
Log likelihood 21.03144 F-statistic 8.692569
Durbin-Watson stat 1.309678 Prob(F-statistic) 0.002454

Note: The letter L stands for the “logarithm of.”

It seems this model does not suffer from the collinearity problem.

(b) If we include all the X variables, we obtain the following results:

Dependent Variable: LOG(Y)
Method: Least Squares

Sample: 1971 1986

Included observations: 16

Variable Coefficient Std. Error t-Statistic Prob.

C 3.254859 19.11656 0.170264 0.8682
LOG(X2) 1.790153 0.873240 2.050012 0.0675
LOG(X3) -4.108518 1.599678  -2.568341 0.0280
LOG(X4) 2.127199 1.257839 1.691154 0.1217
LOG(X5) -0.030448 0.121848  -0.249884 0.8077
LOG(X6) 0.277792 2.036975 0.136375 0.8942
R-squared 0.854803 Mean dependent var 9.204273
Adjusted R-squared 0.782205 S.D. dependent var 0.119580
S.E. of regression 0.055806 Akaike info criterion -2.653874
Sum squared resid 0.031143 Schwarz criterion -2.364153
Log likelihood 27.23099 F-statistic 11.77442
Durbin-Watson stat 1.793020 Prob(F-statistic) 0.000624

Clearly, this model suffers from collinearity, as suspected.

10.30 First, we present the correlation matrix of the regressors:

RATE
RATE 1.000000
ERSP 0.571693
ERNO 0.058992
NEIN 0.701787
ASSET 0.778932
AGE 0.044173
DEP -0.601358
SCHOOL 0.881271

ERSP
0.571693
1.000000

-0.040994
0.234426
0.274094

-0.015300

-0.692881
0.549108

ERNO NEIN
0.058992  0.701787
-0.040994  0.234426
1.000000  0.359094
0.359094  1.000000
0.292243  0.987510
0.775494  0.502432
0.050212  -0.520832
-0.298555  0.539173
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ASSET
0.778932
0.274094
0.292243
0.987510
1.000000
0.417086
-0.513552
0.630899

AGE
0.044173
-0.015300
0.775494
0.502432
0.417086
1.000000
-0.048360
-0.331067

DEP
-0.60135
-0.69288

0.05021
-0.52083
-0.51355
-0.04836

1.00000
-0.60257



Note: Treat the last row in the preceding table as the last column

As this table shows, the pairwise, or gross, correlations range from
very low (e.g., -0.0409 between ERSP and ERNO to comparatively
high (e.g., 0.8812 between schooling and wage rate).

(a) Regressing hours of work on all the regressors, we get the
following results:

Dependent Variable: HRS
Method: Least Squares

Sample: 1 35

Included observations: 35

Variable Coefficient ~ Std. Error  t-Statistic Prob.

Cc 1904.578 251.9333  7.559849  0.0000

RATE -93.75255  47.14500 -1.988600 0.0574

ERSP 0.000225 0.038255 0.005894  0.9953

ERNO -0.214966  0.097939 -2.194896  0.0373

NEIN 0.157208 0.516406  0.304427 0.7632

ASSET 0.015572  0.025405 0.612970  0.5452

AGE -0.348636  3.722331 -0.093661 0.9261

DEP 20.72803 16.88047  1.227930  0.2305
SCHOOL 37.32563 22.66520 1.646826 0.1116
R-squared 0.825555 Mean dependent var 2137.086
Adjusted R-squared 0.771879 S.D. dependent var 64.11542
S.E. of regression 30.62279  Akaike info criterion 9.898400
Sum squared resid 24381.63 Schwarz criterion 10.29835
Log likelihood -164.2220 F-statistic 15.38050

Durbin-Watson

stat 1.779824  Prob(F-statistic) 0.000000

The interpretation is straightforward. Thus, ceteris paribus, if
hourly wages go up by a dollar, on average, yearly hours of work go
down by about 93 hours.

(c¢) To save space, we will compute the VIF and TOL only

of the regressor rate. Regressing rate on all the other regressors, we
obtain an R? value of 0.9416. Using formula, (7.5.6), it can be
verified that the VIF for this regressor is about 2224, hence TOL is
the inverse of this number, which is 0.00045.

(d) Not all the variables are necessary in the model. Using one
or more of the diagnostic tests discussed in the chapter, one or
more variables can be dropped or a linear combination of them
could be used.

(e) Although the results are mixed, perhaps there is some evidence
that negative income tax may be worth trying.
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10.31 This is for a class project.

10.32 The regression results, using Eviews, are:
Dependent Variable: Y
Method: Least Squares
Sample: 1947 1961

Included observations: 15

Variable Coefficient  Std. Error t-Statistic Prob.

C -3017441. 939728.1 -3.210973 0.0124
X1 -20.51082 87.09740 -0.235493 0.8197
X2 -0.027334 0.033175 -0.823945 0.4338
X3 -1.952293 0.476701 -4.095429 0.0035
X4 -0.958239 0.216227 -4.431634 0.0022

X5 0.051340 0.233968 0.219430 0.8318
X6 1585.156 482.6832 3.284049 0.0111

R-squared 0.9955 Adjusted R-squared 0.9921

S.E. of regression 295.6219

Sum squared resid 699138.2

F-statistic 295.7710; Durbin-Watson 2.492491

Comparing these results with those given in Sec. 10.10, we see
that just dropping a single observation can alter the magnitudes
and or signs of some of the coefficients, substantiating the point
made in the text that in situations of high collinearity small changes
in data can make substantial differences in the results.
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CHAPER 11

HETEROSCDASTICITY: WHAT HAPPENS WHEN ERROR VARIANCE IS NONCONSTANT

11.1

11.2

11.3

114

(a) False. The estimators are unbiased but are inefficient.
(b) True. See Sec. 11.4

(c) False. Typically, but not always, will the variance be overestimated. See Sec. 11.4
and Exercise 11.9

(d) False. Besides heteroscedasticity, such a pattern may result from autocorrelation,
model specification errors, etc.

(e) True. Since the true 0',.2 are not directly observable, some assumption about the nature
of heteroscedasticity is inevitable.

() True. See answer to (d) above.

(g) False. Heteroscedasticity is about the variance of the error term %; and not about the
variance of a regressor.

(a) As equation (1) shows, as N increases by a unit, on average, wages increase by about
0.009 dollars. If you multiply the second equation through by N, you will see that the
results are quite similar to Eq. (1).

(b) Apparently, the author was concerned about heteroscedasticity, since he divided the
original equation by N. This amounts to assuming that the error variance is proportional
to the square of N. Thus the author is using weighted least-squares in estimating Eq. (2).

(c) The intercept coefficient in Eq. (1) is the slope coefficient in Eq. (2) and the slope
coefficient in Eq. (1) is the intercept in Eq. (2).

(d) No. The dependent variables in the two models are not the same.

(a) No. These models are non-linear in the parameters and cannot be
estimated by OLS.

(b) There are specialized non-linear estimating procedures. We discuss this topic in the
chapter on non-linear regression models.

Informally, we can estimate the parameters by a process of trial and error.

(a) See Exercise 7.14 and Section 6.9.

(b) No. E[In(u;)] = E[In(1)]=0. But E[In(y;)] < In E(u;) because of the
concavity property of log transformation. The expectation of the log of a random

variable is less than the log of its expectation, unless the variable has a zero variance, in
which case they are equal.

(c) Let
Y=Ing+p4,InX,+Iny,
=a+B,InX, +u;

where u, =[Inu, — E(Inu,)]and & =[In B, + E(Inu,)].
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11.5

11.6

11.7

11.8

11.9

11.10

Now E(u;)=E[Inu, — E(Inu,)] = 0. Incidentally, notice that we do not get a direct

estimate of f3, .

This is a matter of substituting the definitional terms and simplifying.

(a)The assumption made is that the error variance is proportional to the square of GNP,
as is described in the postulation. The authors make this assumption by looking at the
data over time and observing this relationship.

(b) The results are essentially the same, although the standard errors for two of the
coefficients are lower in the second model; this may be taken as empirical justification of
the transformation for heteroscedasticity.

(c) No. The R? terms may not be directly compared, as the dependent variables in the
two models are not the same.

As will be seen in Problem 11.13, the Bartlett test shows that there
was no problem of heteroscedasticity in this data set. Therefore, this finding is not
surprising. Also, see Problem 11.11.

Substituting w; - w in (11.3.8), we obtain:
B = (W)W X,Y)-(wX X)(WXY),
T (mwWIX)-(WI X))
_nEXY-EX)EY) _
nZXiZ—(ZXiZ) ’

The equality of the variances may be shown similarly.

From Eq. (11.2.2), we have

_Sxa?
Va-r(ﬂz) (Z )

Substituting 0',.2 =0 k,. in the preceding equation, we get
var(f,) = o’ Xx’k, o’ Txlk,
L) = =
Ex)  Zx Xx
The first term on the right is the variance shown in Eq. (11.2.3). Thus, if
z 12 i
xi
homoscedastic variance. In this case, the homoscedastic variance will underestimate the

heteroscedastic variance leading to inflated ¢ and F statistics. One cannot draw any
general conclusions because the result is based on a specific form of heteroscedasticity.

> 1, then the heteroscedastic variance given above is greater than the

From Append 3A.3 and 6A.1, we have
~ L X} var(u,)
Var(ﬂZ) = 2.2 :
(02969
Given that var(u;)= o X ,.2, we obtain
Y X0'X? o’T X}

var(,&z)'—‘ (ZIX_z)zl - (ZXZ)Z
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Problems

11.11  The regression results are already given in (11.5.3). If average productivity increases by
a dollar, on average, compensation increases by about 23 cents.

(a) The residuals from this regression are as follows:
-775.6579, -205.0481, 165.8512, 183.9356, 199.3785, 54.6657,
112.8410, 150.6239, 113.4100

(b) This is a matter of straightforward verification.

(c) The regression results are:

Y

=407.3455 —0.0203 X,
t =( 0.6433) (-0.3013) r?=0.0128

=575.2976 — 3.7097,/X,
t=( 0.4479) (-0.2787) r?=0.0109

I“f

As these results show, there is little evidence of heteroscedasticity on the basis of the
Glejser tests.

(d) If you rank the absolute residuals from low to high value

and similarly rank average productivity figures from low to high value and compute the
Spearman's rank correlation coefficient as given in (11.5.5) you will observe that this
coefficient is about

-0.5167. Using the ¢ formula given in (11.5.6), the ¢ value is about

-0.8562. This ¢ value is not statistically significant; the 5% critical ¢ value for 7 d.f. is
2.447 in absolute value. Hence, on the basis of the

rank correlation test, we have no reason to expect heterosccdasticity.

In sum, all the preceding tests suggest that we do not have the problem of
heteroscedasticity.

1112 (a) & (b)
7 8-

7 64
7 4
7.2

7 04 . °

68 r T T 1
02 04 06 08 1.0

SD
Mean v Standard deviation
(c) The regression results are:
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SD, =0.9910 —0.0650Mean,
t =(0.3756)(-0.1795) r* =0.0064

Since the slope coefficient is statistically not different from zero,
there is no systematic relationship between the two variables, which
can be seen from the figure in (a).

(d) There is no need for any transformation, because there is no systematic relationship
between mean sales/cash ratio and standard
deviation in the various asset classes.

11.13  Using Bartlett's test, the ,1'2 value is 6.6473, whose p value is 0.5748. Therefore, do not

reject the null that the variances are equal.
11.14  Using the formula (11.3.8) for weighted least-squares, it can be shown that

B =3 X -Y)and var(§) = 20"

If we use OLS, then from Eq.(6.1.6), we obtain:

~ XY, Y-Y, 1
b= pt == -h)
and using (6.1.7), wé get:
p 0-2 1 2
var(f) = =—0
02)) SXT 2

Comparing the two estimates, we see that the weighted least squares

gives a weight of 2/3 to Y, and 1/3 to Y,, whereas OLS gives equal
weight to the two Y observations. The variance of the slope estimator is larger in the
weighted least-squares than in the OLS.

11.15  (a) The regression results are as follows:

MPG, =189.9597-1.2716SP, +0.3904 HP. —1.9032WT,
se =(22.5287) (0.2331) (0.0762)  (0.1855)
t =(8.4318) (=5.4551) (5.1207) (-10.2593)

R*>=0.8828

As expected, MPG is positively related to HP and negatively related
to speed and weight.

(b) Since this is a cross-sectional data involving a diversity of cars,
a priori one would expect heteroscedasticity.

(c) Regressing the squared residuals obtained from the model shown in (a) on the three
regressors, their squared terms, and their cross-product terms, we obtain an R? value of
0.3094. Multiplying this value by the number of observations (=81), we obtain 25.0646,
which under the null hypothesis that there is no heteroscedasticity, has the Chi-square
distribution with 9 d.f. (3 regressors, 3 squared regressors, and 3 three cross-product
terms). The p value of obtaining a Chi-square value of as much as 25.0646 or greater
(under the null hypothesis) is 0.0029, which is very small. Hence, we must reject the null
hypothesis. That is, there is heteroscedasticity.
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11.16

(d)The results based on White's procedure are as follows:

Dependent Variable: MPG
Method: Least Squares

Sample: 1 81
Included observations: 81
White Heteroscedasticity-Consistent Standard Errors & Covariance

Variable Coefficient Std. Error t-Statistic Prob.

C 189.9597 33.90605 5.602531 0.0000
SP -1.271697 0.336039 -3.784375 0.0003
HP 0.390433 0.108781 3.589180 0.0006
WT -1.903273 0.285077 -6.676352 0.0000
R-squared 0.882864; Durbin-Watson 1.0237

When you compare this results with the OLS results, you will find

that the values of the estimated coefficients are the same, but their

variances and standard errors are different. As you can see, the

standard errors of all the estimated slope coefficients are higher under the White

procedure, hence |t| are lower, suggesting that

OLS had underestimated the standard errors. This could all be
due to heteroscedasticity.

(e) There is no simple formula to determine the exact nature

of heteroscedasticity in the present case. Perhaps one could make some simple
assumptions and try various transformations. For example, if it is believed that the
"culprit” variable is HP, and if we believe that the error variance is proportional to the
square of HP, we could divide through by HP and see what happens. Of course, any other
regressor is a likely candidate for transformation.

(a) The regression results are as follows:

Dependent Variable: FOODEXP

Variable Coefficient Std. Error t-Statistic Prob.

C 94.20878 50.85635 1.852449 0.0695
TOTALEXP 0.436809 0.078323 5.577047 0.0000
R-squared 0.369824
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The residuals obtained from this regression looks as follows:
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(b) Plotting residuals (R 1) against total expenditure, we observe
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It seems that as total expenditure increases, the absolute value of
the residuals also increase, perhaps nonlinearly.

(¢)Park Test
Dependent Variable: LOG (RESQ)
Variable Coefficient Std. Error t-Statistic Prob.
C -16.86288 10.00140 -1.686053 0.0977
LOG(totalexp) 3.703235 1.551873 2.386300 0.0206

R-squared 0.097018
Since the estimate slope coefficient is significant, the Park test
confirms heteroscedasticity.

Glejser Test

, absolute value of residuals
Variable Coefficient  Std. Error t-Statistic Prob.

Dependent Variable: |i,

C -32.21965 29.48998 -1.092563 0.2795
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TOTALEXP 0.130709 0.045417 2.877997  0.0058
R-squared 0.135158

Since the estimated slope coefficient is statistically significant, the
Glejser test also suggests heteroscedasticity.

White Test
Dependent Variable: %}

Variable Coefficient  Std. Error t-Statistic Prob.

C 13044.00  21156.58 0.616546 0.5402
TOTALEXP -53.12260  71.48347 -0.743145 0.4607
TOTALEXPSQ 0.059795 0.058860 1.015887 0.3144

R-squared 0.134082

If you multiply the R-squared value by 55, and the null hypothesis
is that there is no heteroscedasticity, the resulting product of 7.3745
follows the Chi-square distribution with 2 d.f. and the p value of
such a Chi-square value is about 0.025, which is small. Thus, like
the Park and Glejser tests, the White test also suggests
heteroscedasticity.

(d) The White heteroscedasticity-corrected results are as follows:
Dependent Variable: FOODEXP

Variable Coefficient  Std. Error t-Statistic Prob.

C 94.20878  43.26305 2.177581 0.0339
TOTALEXP 0.436809 0.074254 5.882597 0.0000

R-squared 0.369824

Compared with the OLS regression results given in (a), there is
not much difference in the standard error of the slope coefficient.
although the standard error of the intercept has declined.
Whether this difference is worth bothering about, is hard to tell.
But unless we go through this exercise, we will not know how
large or small the difference is between the OLS and White's
procedures.

11.17 The regression results are as follows:
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11.18

Variable Coefficient  Std. Error t-Statistic Prob.

C 1.154332 0.777959 1.483795 0.1438
LOG(TotalEx)0.736326 0.120713 6.099834 0.0000

R-squared 0.412469

The Park, Glejser and White's test applied to the residuals obtained
from the double log regression showed no evidence of
heteroscedasticity.

This example shows that log transformation can often reduce
heteroscedasticity. Hence, the functional form in which a regression
model is expressed can be critical in deciding whether there is
heteroscedasticity or not.

The squared residuals from the regression of food expenditure

on total expenditure were first obtained, denoted by R,? .Then they
were regressed on the forecast and forecast squared value obtained
from the regression of food expenditure on total expenditure. The
results were as follows:

Dependent Variable:R12
Variable Coefficient  Std. Error t-Statistic Prob.

C 27282.63 39204.59 0.695904 0.4896
FOODEXF -180.6629 221.5542 -0.815434 0.4185
FOODEXF"2 0.313387 0.308486 1.015887 0.3144

R-squared 0.134082

Multiplying the preceding R* by 55, we obtain 7.3745. Under the
null hypothesis that there is no heteroscedasticity, this value follows
the Chi-square distribution with 2 d.f. The p value of obtaining a
Chi-square value of as much as 7.3745 or greater is about 0.025,
which is quite small. Hence, the conclusion is that the error
variance is heteroscedastic.

It can be shown that if the preceding procedure is applied to the
squared residuals obtained from the regression of the log of food
expenditure on the log of total expenditure, there is no evidence of
heteroscedasticity.
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11.19

11.20

There is no reason to believe that the results will be any different
because profits and sales are highly correlated, as can be seen from
the following regression of profits on sales.

Dependent Variable: PROFITS

Variable Coefficient  Std. Error t-Statistic Prob.
C -338.5385 1105.311 -0.306283 0.7636
SALES 0.100713 0.011097 9.075346 0.0000

R-squared 0.845936
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(a)
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Median salary in relané to years of experience
As this figure shows, median salary increases with years in rank, but
not linearly.

(b) From the figure given in (a) it would seem that model (2) might
be more appropriate, which also fits in with economic theory of
human capital.

(c) The results of fitting both the linear and quadratic models are as
follows:

Variable Coefficient Std. Error t-Statistic Prob.

C 73586.80 3944.584 18.65515 0.0000
X 949.5621 217.9417 4.356954 0.0008
R-squared 0.593535

Variable Coefficient  Std. Error t-Statistic Prob.

C 66356.18 5100.501 13.00974 0.0000
X 2285.920 702.5469 3.253761 0.0069
X2 -40.07090 20.22169 -1.981580 0.0709

R-squared 0.693747
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11.21

(c)White's heteroscedasticity test applied to model (1) showed that
there was evidence of heteroscedasticity. The value of n.R? from the
auxiliary regression of squared residuals was 11.4108 with a p value
of 0.0033, suggesting strong heteroscedasticity. When the same test
was applied to model (2), n.R? was 7.6494, with a p value of 0.0538,
suggesting that there was no heteroscedasticity at the 5% level. But
this value is so close to the 5% level that one might suspect slight
heteroscedasticity in the model, although the possibility of
specification error cannot be ruled out.

(d) Assuming that the error variance is proportional to the square of
experience, we divided model (1) through by X, obtaining the
following results:

Variable Coefficient Std. Error t-Statistic Prob.

C 1403.809 154.6360 9.078151 0.0000
1/X  68292.06 289.4419 235.9439 0.0000

R-squared 0.999767

When this model was subjected to White's heteroscedasticity test,
there was no evidence of heteroscedasticity.

The calculated test statistic,

A(=F)is

1= RSS, /df _ 140/25
RSS,/df  55/25

The 5% critical F for 25 d.f. in the numerator and denominator is
1.97. Since the estimated value of 2.5454 exceeds this critical value,
reject the null of homoscedasticity.

=2.5454

11.22 (a) The graph is as follows.
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(b) The regression results are:
Variable Coefficient Std. Error t-Statistic Prob.

C 4.610282 1.084906 4.249478 0.0005
X 0.757433 0.149941 5.051559 0.0001

R-squared 0.586380
The residuals from this regression when plotted against X showed
the following picture.

10,

-10

0 5 10 15 20 25 30
One residual, that belonging to Chile, dominates the other residuals.
(c) Excluding the observation for Chile, the regression results were
as follows:
Variable Coefficient Std. Error t-Statistic Prob.

C 6.738082 2.384860 2.825358 0.0117
X 0.221484 0.555568 0.398663 0.6951

R-squared 0.009262

As you can see, in (a) the slope coefficient was very significant, but
in this regression it is not. See how a single extreme point, an
outlier, can distort regression results. The squared residuals from
this regression when plotted against X showed the following graph.
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(d) Comparing the residual graphs in () and (c), we see that once
Chile is removed from the data there is little relationship between Y
and X. Hence, any appearance of heteroscedasticity is spurious.
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12.1

12.2

12.3

124

CHAPTER 12
AUTOCORRELATION: WHAT HAPPENS IF THE ERROR
TERMS ARE CORRELATED
(a) False. The estimators are unbiased but they are not efficient.
(b) True. We are still retaining the other assumptions of CLRM.

(c) False. The assumption is that p =+1.

(d) True. To compare R’s, the regressand in the two models must be
the same.

(e) True. It could also signify specification errors.

(f) True. Since the forecast error involves o, which is incorrectly
estimated by the usual OLS formula.

(2) True. See (e) above.

(h) False. It can only be made by the B-W g, statistic, although we
use the Durbin-Watson tables to test that p = 1.

(i).True Write the model as: ¥, = f, + B, X, + Bt + B,t* +u,. Take
the first difference of this equation and verify.

For n =50 and k' = 4, and a = 5%, the critical d values are:
d.=1.38 4—-d. =262
dU= 1.72 4-dU=2.28

(a) positive autocorrelation; (b) inconclusive, (c¢) inconclusive; and
(d) negative autocorrelation.

(a) There is serial correlation in Model A, but not in Model B.

(b) The autocorrelation may be due to misspecification of Model A
because it excludes the quadratic trend term.

(¢) One would need prior knowledge of the probable functional
form.

(a) Compute the Von Neumann (V-N) ratio, its mean, and its
variance.
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Using the normal distribution table, determine how many standard
deviation units the ratio lies from the calculated mean value. Select
a confidence level and perform a confidence interval test.

(b) VN = (L)d

n-1

(c)The limits are 2(LJand 4(%). Hence if n is sufficiently
n-— n-—

large, the V-N ratio, like the Durbin-Watson d, lies between 0 and 4.

(d)The OLS residuals are consistent estimates of the true error
terms; hence in large samples the normality assumption may be
valid.

(e) Given n =100, the mean and variance of the V-N ratio can be
seen to be 2.02 and 0.04, respectively. Using these values, the
interval 2.02+ 3(,/0.04) =(1.4203,2.6197) covers about 99.7%

of the area under the normal curve. Since the given value of
2.88 does not lie in the preceding interval, we could conclude
that there is autocorrelation in the present case.

12.5 Yes, there is evidence of autocorrelation with 3 or 14 runs, positive
in the first case, and negative in the second.

12.6 Dividing the numerator and denominator by n?, we obtain:

2
-9y 5
A 2 n
,D - kz
1-2
n2
For a given k, as n — o, the second term in the numerator as well as

. n d
the denominator approaches zero. As aresult, p ~1 —3

12.7 (a) The main advantage is simplicity. It can also handle problems
where there is more than one local minimum by fine-tuning the
search procedure.

(b) This a matter of trial and error and fine-tuning the grid search.

12.8 (a) This is a matter of verification.

(b) The C-O procedure does not guarantee the global minimum.

Davidson and MacKinnon therefore argue that it is advisable to use
the C-O procedure "only after a preliminary grid search has either
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12.9

12.10

12.11

12.12

established that there is only one local minimum or determined
approximately where the global minimum is located."(p. 335).

Using the p estimated from Eq. (3) of the C-O procedure, it can be
seen that this value is 0.9142. This value is not much different from
the value of p underlying (12.9.16), which is 0.8919 or of 0.9610
underlying (12.9.17). Hence you will not see much difference in the
regression results using the C-O two-step procedure.

(a) The regression results are as follows:
Dependent Variable: Y

Sample(adjusted): 1960 1998
Included observations: 39 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.

C 4.445970 1.865601 2.383131 0.0227
X 0.601715 0.144098 4.175736 0.0002
X(-1) -0.554695 0.162254 -3.418688 0.0016
Y(-1) 0.907369 0.057311 15.83237 0.0000

R-squared 0.995363

From the coefficient of Y., we see that p = 0.9073, which is not
much different from the C-O two-step procedure or the C-O iterative
method. Hence the results using the p estimated from the Durbin-
Watson two-step procedure will not be much different from the ones
using these other methods.

(b) This is a topic in non-linear (in parameter) regression models.

(a) The figure shows that there is probably specification bias due to
a misspecification of the functional form.

(b) Introduce [log(output)] as an additional regressor. This
probably will pick up the quadratic nature of the relationship
between cost and output.

(a) There are many reasons for an outlier. It may be an observation
that is simply very different from the rest of the sample; it may be
the result of measurement error, or it may be due to poor sampling.

(b) The observation should not be discarded unless there is some

plausible reason to believe that it is erroneous (e.g., measured
incorrectly, recorded in error, etc).
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12.13

12.14

12.15

12.16

12.17

(c) No. The outlier may dominate the RSS.

See answer to Exercise 12.3

E(s)=E(u, - pu,_)=0

var(e,) = E[(4, - pu,_, ), — pu,_)] = (1+ p*)o’

because of the independence of the u's.

cov(g,,&,_,) =—pa’ . Again, note that the u's are independent.
Thus, although the u's are uncorrelated, the €'s are not.

Since the model contains the lagged dependent variable as a
regressor, the Durbin-Watson d is not the appropriate test statistic. It
is the Durbin's A statistic given in Exercise 12.36 that should be used
in this case.

Given the AR(1) scheme,
(a) The first difference method is appropriate when p is close to 1.
(b) If p is about —1, the moving average regression is appropriate.

(c) The Theil-Nagar transformation is appropriate when the first
and second differences of the regressors are small compared with the
range of the variables themselves.

(d) The C-O procedure is appropriate when the RSS converges.
(e) See answer to Exercise 12.7.

(Y 1f the value of p estimated from the coefficient of lagged
Y variable is about the same as that estimated by dividing the
coefficient of the lagged X variable by the coefficient of the X
variable (pay attention to the signs of the coefficients).

Transform the model as follows:
Y -pY.-pY ))=B0-p—-p)+ L (X, —p X, - P X, ) +E
Ifthe p's are known, one can transform the data as suggested. If
they are not known, first estimate the original model by OLS and
obtain the residuals #,. Then run the following regression:

U, = Pyt + Pyl + Vi

where v, is an error term. Use the estimated p's from the preceding
regression and transform the data as suggested at the beginning. If

the sample is reasonably large, the estimated p's provide consistent
estimates of their population counterparts.
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12.18C = Z(xt — f"x:-l)2 [(l - pz)xlyl] - Z(x, - pxt-l )(yt - pyt-l )[(l - pz)xlz]
Z(xl —PX, )2[(1 - pz )xl2 + Z(xz - pxt-l)z]
All summations run fromt=2to¢=n.

12.19Start with (12.9.6), which in deviation form can be written as:
Y, = Box; +(¢,~F).
Using the standard OLS formula, we obtain:
B‘ _ Zy,'x,' - Z(yl =PV )X, = pX,,)
> x? X(x, - px, )
Note that the first observation is omitted due to the differencing
procedure.

12.20 This sequence has 22 positive signs and 11 negative signs. The
number of runs is 14. Using the normal approximation given in the
text, it can be seen that the expected number of runs is 18.83 and the
variance of the runs is 0.4955. Therefore, the 95% confidence
interval is: 18.83 + 1.96(0.7039), that is, 17.45 to 18.83. Since the
observed number of runs of 14 is below the lower limit, we conclude
that the observed sequence is not random.

12.21 The formula would be:
Z(ﬁ, - &1—12)2
dy, = 2 n -
2.0
1

12.22 As noted in the text, if there is an intercept term in the first difference
regression, it means that there was a linear trend term in the original
regression. Given that capital and labor are fixed, one could interpret
the intercept term as giving the growth rate of output on account of
technological change, if we assume that time or trend is a proxy for
technological change.

12.23 Since, p~1 —% ~1when d is very small. In that case the
generalized difference equation reduces to first-difference form
regression.

12.24 If r =0, Eq. (12.4.1) reduces to:

1- o 2
= Eame i)
n-2 n-2 1-p

(a) If p is positive but less than one, E(&?)is still biased in that it
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will underestimate the true o.

(b) If p is negative but less than —1, E(S?)is also biased, but in
this case, it will overestimate the true o*.

(c¢) The bias will be reasonably small if p s close to zero.

12.25 (a) As you can see from the computer output, only the residual at
lag 1 is statistically significant. Of course, it is possible that the
non-significance of the other five lagged residuals is due to
collinearity.

(b) Since statistically the AR(1) coefficient of 0.8149 is not
significantly different from 1, the first difference transformation may
be appropriate.

Problems

12.26 (a) The estimated regression is as follows:
InC, =-1.500+0.4681n I, +0.2791n L, + —0.005In H, +0.4411n 4,
se =(1.003) (0.166)  (0.115)  ( 0.143)  (0.107)
t =(-1.496)(2.817)  (2436)  (-0.036)  (4.415)

R?*=0.936;R* =0.926; F =91.543;d =0.955
As you can see, the coefficients of 1, L and A4 are individually

statistically significant and have the economically meaningful impact
on C.

(b) If you plot the residuals and standardized residuals, you will see
that they probably suggest autocorrelation.

(c)As shown in the regression output given in (a) above, the d
statistic 1s 0.955. Now for n = 30, k' =4 and a = 5%, the lower
limit of d is 1.138.Since the computed d value is below this critical d
value, there is evidence of positive first-order autocorrelation.

(d) For the runs test, n=30,n, =17 ,n, =13, and R=9. From the
Swed and Eisenhart tables, the 5% lower and upper values of runs
arel0 and 22. Since the observed R = 9 falls below the lower limit,
it would suggest that there is (positive) autocorrelation in the data,
reinforcing the finding based on the d test

(e) Perhaps one could use the Breusch-Godfrey test discussed in the
text.
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12.27 The regression results are:

A

¥ =246.240+15.182.X,
se=( 5.849) (0.643)
t =(42.104) (23.603)

r’ =0.977;d =0.4148
(a) From the results given above, d = 0.4148.

(b) Yes. Forn=15,k'=1and o = 0.05, d. = 1.077. Since
the computed d is smaller than d|, there is evidence of positive
first-order autocorrelation.

(¢) (i): The Theil-Nagar statistic (see Exercise 12.6) for n =15 and
k=2,is: p=0.8251.

(i) The Durbin two-step method may not be appropriate here
due to high collinearity between the current and lagged explanatory
variables.

(#ii) The C-O method gives an estimate of p of 0.6691
(converging at the 0.005 level after three iterations).

(d) Using the Theil-Nagar estimate of p of 0.8251, transform the
data as .[Y, —(0.8251)Y,_,Jand[ X, —(0.8251).X, ,]. Using the
transformed data, the regression results are as follows:

¥’ =32.052+19.404.X;

se =(4.925) (2.038)

t =(6.508) (9.522)

r’ =0.883;d =1.923
Note : * denotes transformed var iables.

Note that the preceding regression does not correct for the loss of
the first observation in the manner suggested by Prais-Winsten.

(e) Although the d value of 1.923 may suggest that there is no
autocorrelation, it is not clear if the Durbin-Watson d is appropriate
here because it would suggest an AR(2) model for the original
regression. Therefore, one could use a non-parametric test, such as
the runs test, to test for serial correlation in the preceding regression.
For this regression, n =14, n; = 8, n, = 6, and R = 10. From the
Swed-Eisenhart table, the critical runs values are 3 and 12. Since
the observed runs value of 10 lies between these bounds, we could
conclude that there is no autocorrelation in the present case.

12.28 (a) The regression results for the C-O two stage procedure are:
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12.30

Y =-1.214+0.398InI +0.336In L, —0.055In H," +0.456In 4,

se=(1.137) (0247)  (0.121) ( 0.147)  (0.162)

t =(-1.067)(1.610)  (2.766) (-0.378) (2.818)
R*=0.951;F =89.476;d =1.448

Note : The starsindicate transformed var iables.

The coefficient of In £ is now insignificant, whereas the coefficients
of In L and In 4 are still significant, although their numerical values
have changed somewhat. On the basis of the runs test, this
regression too does not seem to suffer from autocorrelation: n = 29,
n =15, n, =14, R = 11 and the 5% critical runs values are 10 and
22.

(b) The estimated p value from the C-O two-step procedure is 0.524,
whereas that estimated from the d statistic is (See Problem 12.26)

:p=1-d/2=1-0.955/2=0.5225.So, the two methods essentially
give the same estimate.

The results of the linear total cost regression are:

A

¥, =166.4667+19.933.X,
se=(19.021) ( 3.066)

t =(8.752) (6.502) r’=0.841,d=0.716
Forn=10,k=1and a=0.05, d. =0.879. Since the
computed d lies below this value, it "seems" that there
is positive autocorrelation. However, this autocorrelation may be
more apparent than real. As noted in Ch. 7., the total cost function
may be more appropriately specified as a third-degree polynomial.
Hence the observed autocorrelation in the preceding regression is
due to model misspecification.

The regression results in the level form are already given in Problem
7.21.That regression shows that the d value is 0.2187, which is quite
low, suggesting that the error term is autocorrelated. From this d
value, we can compute pas follows: p=1-d/2=0.8906. This
value may be close enough to 1 to try the first difference
transformation. The results of the first difference transformation are
as follows:

Dependent Variable: DLOG(RM2)

Variable Coefficient Std. Error t-Statistic Prob.

DLOG(RGRDP) 0.6086  0.1665 3.6551 0.0021
DLOG(LTRATE)-0.1354  0.0427 -3.168 0.0060
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R-squared  0.5461; d=0.3832
Note: The letter "D" is Eviews command for taking first differences.
Also note that there is no intercept term in this model (why?).

The results of this regression are interesting compared to the original
regression results given in Problem 7.21. Whereas before the long-
term interest elasticity was statistically insignificant, it is now highly
significant. Also, the income elasticity has increased from 0.4946 to
0.6086 and is also highly significant. Perhaps this difference in the
results may have to do with the nature of the time series involved. It
is quite possible that the time series in question may not be
stationary. But we do not yet have the tools to handle this question,
which we shall do when we discuss the topic of time series
econometrics later in the text.

Since the X values are already arranged in the ascending order, the
computed d value and the d value computed by the procedure
suggested by Theil are the same. For a justification of this
procedure, refer to Theil.

The regression results are already given in Problem 11.22. For this
regression the estimated d value is 2.6072, which would suggest that
there is no autocorrelation. But this autocorrelation is suspect, for
there is one unusual observation (that pertaining to Chile).

Dropping this observation, we obtain the regression results shown in
Problem 11.22. As this regression shows, there is now no relation
between the two variables and the estimated d value is about 2.6199.
There is really no autocorrelation in these data. We will study in
Chap. 13 the role of unusual observations, called outliers, leverage,
etc.

One set of data generated by the suggested scheme is as follows:

U, X Y

09.464 1 12.964
10.544 2 14.544
11.944 3 16.444
10.427 4 15.427
09.316 5 14.816
08.681 6 14.681
07.525 7 14.025
08.070 8 15.070
07.504 9 15.004
05.797 10 13.797
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A

¥ =14.694-0.003X,
@  se=(0.688)(0.111)

t =(21.354)(-0.027) r? =0.000,d =1.296
b) Individual results will vary as u, varies.

(©) Again, individual results will vary.

12.34 (a) The results of the regression of inventory on sales, each in

millions of dollars, are:

¥ = 1668.154+1.554X,
se =(1806.696) (0.007)
t = 0.910) (222.832) r* =0.999;d =1.374

where Y = inventory and X = sales.

(b) (i) Forn=42, k' = 1, the 5% d is 1.46. Since the observed
d of 1.374 is below this value, there is evidence of first-order positive
autocorrelation. (ii), From the d value of 1.374, we can obtain an

estimate of pas: p=1-d/2=0.3218. Using this value, we obtain:

z = (y/n )(0.3218) = 2.027. This z value is significant at about the 5%
level of significance, suggesting that there is autocorrelation.

(c) In view of the results in () it does not seem likely that the
the true pis one. But if you mechanically apply the test, we get
the following results:

RSS jrs-digeq _ 2.93x10°
RSS 2.22x10°

undifference eq

For 41 observations and £ = 1 and @ = 0.05, di. = 1.45. Since the
observed g is below this value, we do not reject the null that the true
p=1. But keep in mind the warning sounded earlier.

g= =1.320

(d)The Breusch-Godfrey test statistic is significant for 3 lags (p value
is 0.03), 4 lags (p value is 0.04) and 7 lags (p value is 0.07), although
not each individual lagged coefficient is zero. In the name of
parsimony, one may choose 3 lags.

(e)If you use only the first-order AR scheme, using the p value of
0.3218 obtained in (b) above, you can transform the data as:

[Y, —-0.3128Y_,]and [ X, —0.3128X,_, ] and run the regression on
these transformed data. If you want to use an AR(3) scheme, you
will have to transform the data as:[ Y, — p)Y,_, — p,¥,_, — p;Y, ]

and similarly for X;. You will have to obtain the three p values from
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the Breush-Godfrey procedure.
(f) The results of the log-linear model are as follows:
Variable Coefficient  Std. Error t-Statistic Prob.

C 0.507409 0.048561 10.44886 0.0000
LOG(SALES) 0.995128 0.004091 243.2302 0.0000

R-squared 0.999324; d=1.2077

The results of the log-linear model are qualitatively the same as that
of the linear model, except that in the former the Breusch-Godfrey
statistic is significant only at the first lag.

(g) See the discussion in Chap. 6 and Sec. 8.11.

12.35 (a) The regression results are as follows:

Variable Coefficient  Std. Error t-Statistic Prob.
C 23.98694 5.235037 4.582000 0.0001
INFLATION -4.375620 1.022227 -4.280479 0.0002
R-squared
Durbin-Watson 2.076724

)
Variable Coefficient  Std. Error t-Statistic Prob.
C 3.531812 8.111369 0.435415 0.6670

GROWTH 3.943315 1.293445 3.048693 0.0054
INFLATION  -2.499426 1.082101 -2.309789 0.0294

R-squared 0.572374 d=1.8965.

(d) Fama's statement is correct. To see this further, regressing
current inflation on output growth, we get:

Variable Coefficient  Std. Error t-Statistic Prob.

C 6.326759 0.788408 8.024730 0.0000
GROWTH  -0.679792 0.192818 -3.525570 0.0016

R-squared 0.323439
Durbin-Watson stat  0.538786
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(e) In both these regressions the d values are around 2, which would
suggest that there is no first-order autocorrelation. This result
should not be surprising because the variables in both these
regressions are expressed in growth form, implying implicit
first-differencing, which generally reduces autcorrelation.

(a) The regression results are:

Variable Coefficient  Std. Error t-Statistic
C 8.176797 1.723142 4.745284
X 0.124403 0.040598 3.064274
Y(-1) 0.801918 0.055007 14.57853

R-squared 0.993815

Durbin-Watson 1.5005
As these results indicate, the index of real wages depends not only
on the index of productivity but also on the index of real wages

12.37

prevailing in the prevailing period.

(b) Using the h statistic, we obtain:

R n 40

h=p |———— =(0.2497)

1-n[var(3,)] 1-40(0.003)

=1.

Prob.

0.0000
0.0041
0.0000

6835

where an estimate of p is obtained from the d value given in (a) and

where the var( ,33) is equal to the square of the standard error of i,

given in the regression in (a).

If we assume the sample size of 40 observations as reasonably large,
then the A value obtained above follows the standard normal
distribution. Now the 5% critical Z (i.e., standard normal variable)
value is 1.96. Since the computed 4 is smaller than this value, we
may conclude that there is no autocorrelation in the present instance.

The regression results based on the Maddala procedure discussed

in the text are as follows:

Variable Coefficient  Std. Error t-Statistic
C -4.041785 23.34284 -0.173149
ISTAR 0.086407 0.031605 2.733972
NDUM 67.37838 35.50361 1.897789
PROD -0.067809 0.036959 -1.834690

R-squared 0.551249
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Prob.

0.8642
0.0124
0.0716
0.0808



Durbin-Watson stat 2.203363
Note: ISTAR is the transformed income variable, NDUM is the

transformed dummy variable and PROD is the product of NDUM and
ISTAR.

If you compare these results with those given in Eq. (9.5.4), you will
observe that coefficient of the income variable and the differential
slope coefficient of the income variable are about the same. Because
of data transformation, the coefficients of intercept and the dummy
variable (NDUM) cannot be compared directly.
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CHAPTER 13

ECONOMETRIC MODELING: MODEL SPECIFICATION AND

13.1

13.2

13.3

13.4

DIAGNOISTIC TESTING

Since the model appears to be grounded in economic theory, it
seems to be well specified. However, the price variables are
strongly correlated and could lead to problems resulting from
multicollinearity. The choice of the functional form is an empirical
question.

In deviation form the true model can be written as:
Yi=px; +(u;—u)
Now
G, = LY _ 21 B.x; + (u, —u)lx,
X x? X x?
Therefore, E(a,) = f,, making use of the various properties of u;
and x;. That is, even if we introduce the unneeded intercept in the

second model, the slope coefficient remains unbiased. This is
as per theory.

The variances of the two estimators are:

Y 0-2 0'2
var(f) = —Z /{,?_ and var(q,) = f(,\’—v—,\—’)z
which are not the same.
We know that
B = XY, _ YX(%+aX +v)
X Xx? S X7
_ ao ZAZX, +al + ZV,-.XZI.
X T X
Therefore, E( [31) = a% %Y/ZY it

Here, the slope estimator in the incorrect model gives a biased
estimator of the true slope coefficient. The variances are as given
in Exercise 13.2.

(a) Recall the following formula from Chapter 7:

2, .2
_ a1 —2R,h30

RZ

1-r}
Since X, is irrelevant, r, =0, which reduces the preceding formula
to:
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13.5

13.6

13.7

2
RZ _ r12

- 2
1-r;

Typically, then, the addition of X, will increase the R? value.

However, if r,,is zero, the R’ value will remain unchanged.

(b) Yes, they are unbiased for reasons discussed in the chapter.
This can be easily proved from the multiple regression formulas

given in Chapter 7, noting that the true S, is zero.

(c) The variances of ,32 in the two models are:
2
A o'"
var 3, = Z_x,2 (truemodel)
A 0'2
varff, = —————(incorrect model
ST )

Thus the variances are not the same.

(a) As discussed in the chapter, omitting a relevant variable

will lead to biased estimation. Hence E( B,) #a, and E( ,Bz) £a,.
The derivations using scalar algebra leads to unwieldy expressions.
They can be easily derived using matrix algebra. But if you want to
proceed, estimate the parameters of the "incorrect” model and

then put the true model in the estimated parameters, take
expectations, and find out of if expected values of the parameters
from the incorrectly specified model equal their true values. If
they do not, then there is bias.

(b) If L, is an irrelevant variable, then the estimates remain
unbiased, except that they have larger variances due to the presence
of the "nuisance" variable L,.

If the smaller variance in &, more than compensates for the bias,

on the basis of the MSE criterion we may choose that estimator.
The point of this exercise is to note that sometimes a biased
estimator may be chosen because of its smaller variance. Of course,
this all depends on the purpose of research.

From Eq. (13.5.3), applying OLS, we obtain:

ﬁ_ inyi _ inx _ in(a"'ﬂXi +u; +€i)
Yx;  Xxl Yx;
TXU + 2 XE
=8+ i i%i
p Ty

Taking expectations of the preceding expression on both sides and
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13.8

13.9

13.10

13.11

13.12

noting the properties of x;,u,and ¢, it can be seen that B
is unbiased.

For Eq. (2), we obtain from OLS (Note: For convenience we have
omitted the observation subscripts):

5_2yx _Zly +@-n)][x -(v-7)]

Pose ™ S ro-oF
For Eq. (1), we obtain:

. _ Zytx.

ﬂ_ thz

Substituting this in the preceding expression and simplifying and
taking the limit as » — oo, we obtain the expression

plim(ﬁ) = p >, showing that ,Bis biased.
1+ 02"

Oy
(b) No, as you can see from the preceding formula. In other words,

,B is also not a consistent estimator.
(a) The method and results are the same as in Question 13.8.

(b) There are various remedial measures discussed in the advanced
literature.

The correct model is:

Y= B+ B Xy + BX; +u,
But if you omit X3 from this model, and regress Y on X; only and
then regress the residuals from this regression on X3 and obtain its
coefficient, say, @, , then @, is a biased as well as
inconsistent estimator of the true 5;. For a formal proof, see

A. R.Pagan and A. D. Hall," Diagnostic Tests as Residual
Analysis," Econometric Reviews, Vol. 2, 1983, pp. 159-218.

A _ PN 5 a
(a) '?l(lme) ﬂl + ﬂZ

ﬂZ(Irue) = 'éz
(b) ’il(lme) = ﬂl‘\
ﬂZ(lme) = 3ﬂ2

(¢) The intercept coefficient will be unbiased but the slope
coefficient will be biased and inconsistent.

For Eq. (13.3.2), we obtain
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13.14

13.15

13.16

13.17

& =7-4%,

Therefore,
E(&) =Y - (B, + B,b,,)X,, using (13.3.3)

= (B, + B, X, +.33X3)—(ﬂz + B,b,,) X,
=B "‘ﬂs(/?s _baz)?z)

Leamer is addressing the issue of theoretical versus applied
econometrics in somewhat skeptical manner. Essentially, he asserts
that theorists examine the field and identify areas of concern when
putting theory into practice. Some of these areas of concern are
autocorrelation, heteroscedasticity, multicollinearity, and model
specification. Practitioners, then, are expected to discuss how their
results may be influenced by the areas of concern that have been
identified by the theorists.

Theil's comment relates to regression strategies, the very title of
chapter from which this quote comes. He is referring to thinking
cautiously about the hypothesis tests. He bases this on the fact that
reported regression tests are born out of dynamic decision making in
which each successive decision made is dependent upon the
information available at the time when the decision is to be made.
For a further discussion, read his chapter.

Blaug may have a point. Sometimes researchers will "impose" a
model they have developed on a set of data without critically
evaluating the applicability of the model to the data. Whenever a
new econometric technique becomes available, researchers are
enamored with it and they start using that technique
indiscriminately. For example, when rational expectations models
became the fashion of the day, researchers applied it to all sorts of
economies without studying the structure of those economies.

As an illustration of Blaug's thinking, recall that in hypothesis
testing if the test statistic (say, the #) is not statistically significant,
we do not say that we accept the null hypothesis. We say that we do
not reject the null hypothesis. This is because it quite possible that
on the basis of another set of data we may be able to reject the same
null hypothesis. So, when we do not reject a null hypothesis, all we
are saying is that the sample at hand does not give us a reason to
reject the null hypothesis.

It may be argued that stipulating that "changes in the money
supply...determine changes in the (nominal) GNP" based on the
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13.19

13.20

13.21

St. Louis Model is much too strong a statement. Two of the five
coefficients for the rate of growth in full, or high, employment
government expenditure are statistically significant at the 95% level.
By the same token, two of the coefficients of the rate of growth of
the money supply are not statistically different from zero. Further,
there may be collinearity in the model between the rate of growth of
the money supply and the rate of growth in full employment
government budget.

It would be interesting to replicate the St. Louis model using more
modern data. The primacy of the M1 money supply is gone, M1
being replaced by M2 money supply.

It can be shown that
E(@)=p,+4p,and E(&,) = B, + 7B,
(Hint: Because of the values taken by X, X =0.)

Suppressing the observation subscript i for convenience,
since ¥ = 3, + B,X, , it follows that Y2 = 2 + 23 B, X + B2 X*.
If you substitute the latter value in the RESET equation, you will get
Y =G +&X +a,(B +2B. X + BiX?)
=(a, + dsﬁlz) +(a, + 26’3,&’;2 )X + (dalézz )X?
= 4, + L, X + A, X", which is the required result.
where the A's are a mixture of the original coefficients.

(a) True. See Fig. 13.4
(b) True. See Fig. 13.4
(c) True. See Fig. 13.4

(d) True. In a second degree equation, both linear and quadratic
terms are necessary.

(e) True. The first model in deviation form is:
Vi = BoXy; + Pixy + (u;, — )
In the second model ¢, is expected to be zero (why?).

Hence the two models are basically the same so that the
estimated regression line (plane) is the same.

(a) Equation (1) is the unrestricted model and Eq. (2) is the

restricted model. Applying the restricted F test discussed in Chapter
8, we can test if the restriction (that variable In X does not belong in
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13.24

the model) is valid. The unrestricted and restricted R are,
respectively, 0.9803 and 0.9801. Hence, we obtain

2 2
oo (R ;RR)/NR _ (0.9803-0.980)/1 _
(1-R%)/(n—k) (1-0.9803)/(23—4)

Since this F value is not significant, the restricted model (2)
is acceptable. So, there is no need to carry out an explicit
RESET test here. The same is true of the LM test.

(b) In the present case the variable In Xj is not statistically
significant. But it is quite possible that in another sample it may
turn out to be significant.

(c) No. The basis for entering explanatory variables in a model is
sound economic theory. It is not based on ¢ or F statistics.

(a) This would be the case of including unnecessary variables.

(b) The estimators would be unbiased and consistent. Their
variances, however, would be larger.

The results of the regression of Y on X, both measured incorrectly
are:

A

Y, =28.302+0.584.X,
se=(12.677)(0.071)  r*=0.895

The results are close to those using the correct data (See Eq.
13.5.11). But the coefficients given above reflect the expected bias.

(a) The bias of underfitting a model.

(b) As shown in the text, ,32 in the original CES function will
be biased as well as inconsistent.

(c) The results of the extended model are:

ln(%) =-3.385+2.126InW +1.505 ln(1+%)

t =(-0.534)(1.229)  (0.471)

R?=0.895; F = 67.91;d = 2.362
For comparison, the results of the original CES model are:
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In (%J =-0.472+1.340W

t =(-0.352)(3.022)

R*=0.413;d =1.826
As you can see, the results of the extended model are poor in that
none of the slope coefficients are statistically significant. It either
means that the additional variable in the extended model is
superfluous or that there are severe measurement errors in the
computed elasticities or that there is collinearity in the two
regressors, or all of these factors.

This is left as a class exercise, as the actual outcome will depend on
the sample at hand.

Since Model A cannot be derived from Model B and vice versa, the
J test may be more appropriate here. However, the nested F test
may be used to compare the unrestricted model in Problem 8.26
with the restricted models A and B. The results are as follows:

Comparison with model A:
Fe (Riz—Rz)/NR _ (0.823-0.601)/2 _ 6.
(1-R>)/(n-k) (1-0.823)/(16-6)
where the unrestricted R’is from the model of Problem 8.26

and the restricted R’ is from Model A. Since the estimated
F value is significant at the 5% level, we reject Model A as
the correct model.

271

Comparison with Model B

Fe (0.823-0.189)/2

(1-0.823)/(16-6)

where the values 0.823 and 0.189 are the R? values from the
model in Problem 8.26 and from Model B, respectively.

=17.910

Again, this F value is significant at the 5% level, suggesting
that Model B is also not the correct model.

It seems the model given in Problem 8.26 is the more appropriate
model.

The steps involved here as follows:
1.Estimate Model B and obtain the estimated values of Y from this

model, ¥?
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2.Add f’f as an added explanatory variable to Model A and estimate

the resulting regression. And test the hypothesis that the coefficient
of the added variable in this regression is not statistically significant.
If this hypothesis is rejected, probably Model A is not the correct
model.

3. Repeat steps 1 and 2, interchanging the roles of A and B.

The regression results are as follows (for convenience the
observation subscript ¢ is omitted):

¥ =6042.059+1.226.X, —820.010.X, —1115.888.X, +1.2137*
t=(1.8480 (0.831) (-3.658)  (03.908) (2.184)
R*>=0.722;F =7.138

The p value of the Y'® coefficient is about 5.15%. If we adhere to
the 5% level, then this coefficient is not significant. This would
suggest that perhaps Model A is the "correct” model.

Y =-8944.403+3.177X, +108.217.X, +572.812.X, +1.2107*
t (-3.016) (1.921) (1.070)  (2.293) (5.960)
R*=0.808; F =11.583

The coefficient of the ¥ variable is significant at the 0.0001
level.

Based on these results, it seems that Model A is the "correct” model.

(a) The difference between Model (1) and Model (2) in Exercise
7:19 is that there is one additional explanatory variable in Model (2).
If Model (2) is correct, estimating Model (1) would constitute the
omitted variable bias.

One can apply Ramsey's RESET test discussed in the chapter.
Applying the F statistic, whose value is 1.474, we do not reject the
hypothesis that Model (2) is the correctly specified model.

(b) On the basis of the Ramsey test, you will find that Model 5
is correctly specified.

There are several possibilities. We only consider one, namely, the
Davidson-MacKinnon J test. The steps involved are as follows:

1. Estimate Model A and obtain the forecast values from this
model, Yf*
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2. E;ﬁimate Model B and obtain forecast values from this model,
Y

3. Rerun Model A including the variable Yf2. If the coefficient of
Y£B is statistically significant, choose Model B.

4. Rerun Model B including the variable Yf*. If the coefficient of

5. Yf*is significant, choose Model A.

6. If Y2 in Model A and Yf* in Model B are both statistically
significant, it means both models are acceptable.

If you carry out the preceding steps, you will find that both Models

are acceptable. So, there is no clear preference here. However, if

you bring in the interest rate, it is quite possible that one of the two

models may be preferable. We give below the regression results

without the interest rate variable.

Y =-39.2316+0.3616X, —0.3801.X,_, +1.1188Yf2

t =(-1.7725) (3.8804) (-3.9028)  (4.2355)
R* =0.8965;d =1.8193

Y, =—43.4574-0.0269.X, +0.5864Y,_, +1.1430¥f*

t (-1.8294) (=2.1177) (4.2355) (3.9027)

R*=0.8965
where Y = savings and X = income. The Durbin-Watson for the
second model is 1.8193, but it cannot be used for testing serial
correlation in the model because of the presence of the lagged
regressand.

As you can see, both models are equally acceptable on the basis of
the J test. One may wonder why the coefficient of the income

variable in the second model above is negative.

The regression results of savings on income are as follows:

Time Period Intercept Slope R’

1970-1981 1.0161 0.0803 0.9021
(0.873) (9.6015)

1970-1985 9.7255 0.00591 0.9142
(0.8999) (12.2197)

1970-1990 50.2516 0.0444 0.7561
(3.6396) (7.6745)

1970-1995 62.4226 0.0376 0.7672

(4.8917) (8.8938)

As you can see, there is quite a bit of variability in the estimated
intercept and slopes coefficients, perhaps raising the question
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13.32

of stability of the savings-income relationship over the various
periods.

Follow Eq. (13.10.1). Using the given data, we obtain the following
F value:

Fe (23248.30-1785.032)/14
(1785.032)/10
Here nl =12andn2 =14

=8.5885

This F value is statistically highly significant (p value =0.0008),
leading to the conclusion that the savings-income relationship has
not been stable over the observation period.

Let us see the effect of excluding In X, on the coefficient of the

retained variable /n X,. Following the equation given in this
problem, it follows that:

E(B) = B, + Bibg
In the true model (1), the values of g, and B are, respectively,

0.4813 and —0.0610. Now the value of bg, can be shown to be
0.4875. Hence, we obtain:

E(f,) =0.4812—(0.0610)(0.4875) = 0.4515

That is, the bias is —0.0297. Put differently, by excluding In X,
the coefficient of f, is underestimated by about —0.03.

Follow the preceding procedure to find out the bias in the coefficient
of InX;.
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14.2

14.3

14.4

CHAPTER 14
NONLINEAR REGRESSION MODELS

If a regression model superficially looks nonlinear in the parameters
but with suitable transformations can be linearized in the
parameters, then that model is basically, or intrinsically, a linear (in
the parameter) regression model. But if there is no way to make
such a model a linear in the parameter model, then it is intrinsically
a nonlinear regression model.

Examples are already given in Exercises 2.6, 2.7 and 2.9.

If the error term is entered additively, the Cobb-Douglas (C-D)
model becomes an intrinsically nonlinear regression model.

If the error term enters multiplicatively, the model becomes

linear in the slope parameters (but not the intercept). But the
properties of the error term in this model depend how the error term
enters multiplicatively, in the form (14.1.2) or in the form (14.1.3).
The difference has different implications for estimation and
inference. Traditionally, it has been entered in the form of (14.1.2).

To determine whether the additive or multiplicative form for the
error term is appropriate in any given case, one can use a test similar
to the J test to choose between the two forms. Also, if we estimate
the C-D model both with additive and multiplicative error terms, one
can examine the estimated residuals from both these specifications
to find out whether the error terms are normally distributed, or
whether they are serially correlated, etc.

In OLS estimation we can obtain explicit, or analytical, solutions to
the unknown parameters. In NLLS we cannot obtain such explicit
solutions and the estimates must be obtained by an iterative
procedure.

First write the equation as:
Bt

u,=Y-p[10""

So, we want to minimize:
Byt

Yu} =X(Y, - 107*")?
There are three unknowns in this expression, S, f,andy .
Therefore, we have to differentiate the preceding equation with
respect to each of the unknowns, set the resulting expressions to
zero, and solve them simultaneously. As you can imagine, the
resulting expressions are highly nonlinear and no explicit solutions
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can be obtained. Hence, we will have to resort to one of the
methods of nonlinear estimation discussed in the chapter. For the
enterprising students, here are the three derivatives:

2 Bat Bt
OLU _ )51 - B107D)-100"D)]

op;
Bat Bat
aaZ » =23[(Y, - 10 (=41 0(’"))( )]
B,
azu Bt Byt ﬂ
— 0(l+') 10(7+l) 2
3 =2[(Y,-p1 =5 —= O+ )]

Set these expressions to zero to obtain the normal equations, which
must be solved iteratively.

14.5 (a) True. See the discussion in Sec. 14.5
(b) True. See the discussion in Sec. 14.5

14.6 Refer to App. 14A, Sec. 14A.3. Using only the first derivatives,
we can generalize Eq. (2) to more than two unknowns. To use this
formula we need the derivative of the CES function with respect to

the unknowns 4, fand §. These derivatives have rather unwieldy
expressmns The enterprising student may find them in the book by
Judge, at al.2

14.7 (a) Here % = f,. This model suggests that Y grows over time at

a constant rate, f,, positive or negative depending on the sign of

B,

(b) Here %(ji_}t, = f,, which suggests that the relative change in

Yis a constant equal to £,. If you multiply this by 100, you get
the percentage change, or the growth rate.

(c¢) The logistic growth model has an S-shape. When =0,

, So that this is the starting value of Y. Also,
1+ 8,

as t >, Y = B, which is the limiting growth value of Y. It
follows that S,>0.

2 See George G. Judge, R. Carter Hill , William E. Griffiths, Helmut Lutkepohl, and Tsoung-Chao Lee,
Introduction to the Theory and Practice of Econometrics, 2d ed., John Wiley & Sons, New York, 1988,
p.514
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(d) Like the logistic growth curve, the Gompertz growth curve is

also S-shaped, but it is not symmetrical about its point of

inflection, which is given by Y = §,/e =0.368 5,. (Note: To obtain
2

the point of inflection, set Y =0.) Further, note that

dar’
dy/adt
== 4, f ~In¥)
which implies that the relative growth rate in Y is linearly related to
the log of Y.
The Gompertz growth curve has been used to study
population growth and animal growth.

Problems

14.8

14.9

In the following models, Y = population and ¢ = time.
Linear Model

A

Y =221.7242+0.1389¢

t =(109.2408)(44.4368);r> =0.8178
Log-lin Model
InY, =5.3170+ 0.0098¢

t =(8739.399)(285.9826);r> = 0.9996

Logistic Model
7= 1432.739

1+1.7986¢ "’
Note the ¢ ratios of the estimated f,, £, and S, are, respectively,
2.8209, 4.3618, and —14.0658.

R? =0.9997

Gompertz Model
Y, =1440.733exp{1.9606¢"***} ; R* = 0.9995

Note that the t ratios of the estimated f,, 5, and f; are, respectively,
2.7921, 5.4893, 5.0197

It is left for the reader to interpret these results in view of
the theoretical discussion of these models in Exercise 14.7.

Cobb-Douglas Production Function with Additive Error
GDP =0.5292 (Labor)*'*'® (Capital)**?"; R? = 0.9942

Note: The ¢ ratios of the three coefficients are, respectively,
1.9511, 1.2814, and 12.4658

Cobb-Douglas Production Function with Multiplicative Error
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InGDP, =-1.6524+0.3397In Labor +0.84591n Capital,

t =(-2.7258)(1.82950) (9.0624)
R? =0.9950

As you can see, qualitatively the results of the two specifications
differ in the output/labor elasticity, which is higher for the
multiplicative model. Also, the marginal significance of this
coefficient in the multiplicative model is much higher than

that obtained from the additive error term model. But keep

in mind that the results of the additive error term model (i.e.,
nonlinear regression model) cannot be compared directly with the
other model. Besides, the estimated ¢ ratios are to be interpreted
in the large sample context for the nonlinear model.
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15.1

15.2

15.3

CHAPTER 15
QUALITATIVE RESPONSE REGRESSION MODELS

The regression results based on dropping the 12 observations are:

Y, =-1. 246\/_+O 120\/_
= (-10.332) (17.454)
And those based on retaining the 12 observations after making the
suggested adjustment are:

Y= 0.635—— +0.0820-2

o O R
t = (-12.576)  (26.305)

The difference between the two results is noticeable. Do not

forget that the revised regression is based on all the 40 observations,

whereas the original one was based only on 28 observations.

Perhaps the results of the revised model are preferable as they

include all the observations. Also, notice the change in the

estimated ¢ ratios.

These data will yield a perfect fit since all values of X above 16
correspond to Y =1 and all values of X below 16 correspond to

Y = 0. Therefore, an infinite number of curves would fit these data
In situations like this the method of maximum likelihood may break
down. Therefore, the ML estimates given in the exercise are of
questionable value.

Referencing the original model, one finds that the results are
from a Linear Probability Model and the unit for disposable income
Xj is thousands of dollars.

(a) Of the various regressors, only variables X, X}, and X (are

statistically significant at the 5% level and they have the correct
signs. The low R? value should not worry you, as this measure
may not be appropriate for the model at hand.

(b) Since this coefficient is not statistically significant, not much
meaning can be attached to this variable.

(c) The squared terms are used to capture the rate of change of
these effects. Since neither coefficient is statistically significant, the

negative signs have no practical meaning.

(d) This probability is 0.6431.
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(e) This probability is 0.6936.

15.4  Since the conventional R> measure is not particularly useful in
models with dichotomous regressand, there is little point in
testing its significance using the F test discussed in Chap. 8.
Alternative measures of goodness of fit are discussed in the
chapter and in the references (See also Exercise 15.13).

15.5 The estimated probabilities at the various income levels are:
0.2458,0.2761, 0.3086, 0.3611, 0.3981, 0.4950, 0.5923, 0.6828,
0.7614 and 0.8254.

If you plot these probabilities against income, you will almost
obtain an upward-sloping straight line.

1.2

0.8 0?

o
]

d404

0.4{ o
e

0.0

0 20 40 6
INCOME

15.6 Recall that
I=p+ ﬂzX i
Therefore, the standardized normal variable is:

! X_iu_HX

1 !

O-X O-X O-X
Hence,
1
p=-Lrand g, =—
o

15.7 (a) The log of the odds in favor of higher murder rate is positively
related to population size, the population growth rate but negatively
related to the reading quotient. The coefficient of 0.0014 attached to
P; is to be interpreted as follows: Take its antilog, subtract one from
it and multiply the result by 100. Thus, antilog (0.0014) =1.0014,
subtracting one from this and multiplying the difference by 100,
gives 0.14%. This means that if population increases by one unit
(i.e., by a thousand), the odds in favor of higher murder rate goes up
by 0.14%. Other coefficients are to be interpreted a similar fashion.
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(b) Individually, the coefficients of C and R are statistically
significant at the 5% or better level.

(c) Following the steps in (a) above, the effect of a unit increase
in the reading quotient is about 49.93% reduction in the odds ratio.

(d) The odds ratio will go up 5.77%.

Note: If you take the coefficients of the regressors at their face
value, they will give the approximate percent change in the odds
ratio. But to be precise, you have to go through the steps described
in (a) above.

15.8 The estimated coefficients differ little; the main difference comes in
the estimated standard errors. Equation (15.7.1) corrects for
heteroscedasticity, whereas Eq. (15.7.3) does not.

15.9 (a) Notice that here the log of the odds ratio is a function of the
log of income, so it is a double log model. Hence, if income goes
up by 1%, on average, the log of the odds in favor of owning a
house goes up by about 34.8%.

(b) Taking the antilog of the estimated equation, we obtain

£ _o.0625x03

(-F)
where X is income. Verify that taking the log of this expression you
get back to the equation given in the question.

From the preceding expression, we get the expression for probability
of owing a car as follows:

P 0.0625.X %7
" 140.0625X°%77
(c) This probability is:
_0.0625(20000)"**"
"7 140.0625(20000)°*"
~ (.66

That is, the probability is about 66%. Following this procedure, the
reader can verify that at the income level of 25,000 this probability
is about 68%. Following footnote 19 given in the text, the reader
can verify that the change in the probability from the income level
20,000 to 25,000 is rather small.

(d) From the given results you can see that the coefficients are
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15.10

15.11

15.12

individually highly significant and that the y*value, a measure of
goodness of fit, is also highly statistically significant.

As shown in App. A, for a Bernoulli distribution the mean value is
is P and the variance is P(1-P).

a) Although the results are not uniform, in several cases the logit
coefficients, in absolute value, are lower for black matriculants than
for all matriculants. In some cases, the difference may not be
statistically significant. However, in most cases the variables have
the expected signs.

(b) In most cases they do.

(c) As you can see, if you take all the matriculants, all the
coefficients are highly statistically significant. But this is not the
case for black matriculants. The overall significance of the model

can be judged by the z” values, which are highly significant for all

as well as for black matriculants. The y?value measures the
goodness of fit of the model; it compares the actual values with
those predicted from the model. On this see Exercise 15.13.

(a) To make the error term homoscedastic, the weight should
be the inverse of the standard error of the disturbance term ;.
The weight in the present case is:

N
" JRa-p)

(b) The weights and the transformed data are as follows:

Probability Weight (w,) I'=lw, X, =Xw,

0.20 0.075 -11.157 79.690
0.24 0.086 - 8.113 92.717
0.30 0.114 - 4.571 87.896
0.35 0.140 - 2.708 92.636
0.45 0.415 - 0.289 36.181
0.51 1.991 0.015 10.044
0.60 0.243 1.029 102.856
0.66 0.168 2.388 179.124
0.75 0.102 6.557 342.509
0.80 0.095 8.820 420.000

(c) The weighted least-squares results are:
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15.13

15.14

15.15

15.16

I =-1.086+0.049X"

se = (0.031) (0.001)
As you can see, the results of the unweighted and weighted least-
squares are not very dissimilar, although the standard errors are
relatively smaller for the weighted least-squares, as one would
expect.

The 7/ test statistic here is 2.3449, whose p value is about 0.97.
Therefore, do not reject the null hypothesis that there is no statistical
difference between the estimated probability values and the actual
probability values.

The results of the weighted logit model, relating the probability
of death as a function of the log of the dosage are:

L, =-4.837+7.058In X,
se=( 0.434) (0.599)
t = (-11.141)(11.782); 7* =1.4069

These results show that the estimated coefficients are highly
significant. The p value of the observed #* is 0.7039, suggesting
that there is no statistical difference between the estimated and the
actual probability values. That is, the fitted model is quite good.

(a) The results from the LPM model are as follows:
¥, = -2.867+0.003Q, +0.002V,
t =(-3.442)(2.976) (3.441)

where Y =1 if admitted to graduate program; 0 otherwise.

(b) Although the statistical results look satisfactory, the LPM
is not a satisfactory model because of the problems discussed
in the chapter, namely, ngn-normality of the error term,
heteroscedasticity, etc. ¥

(a) The estimated logit model is:
Y= -2.085+ 0.136X,

t =(—143.597) (151.621)
(b) The estimated probit model is:

[,=3722 + 0.083X,

t =(316.543)(115.254)
(c) Corresponding to the discount rate of 17 cents, the estimated
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logit value is 1,2548, from which the estimated probability is about
56%. For the probit model, the corresponding probability is about

0.70 ): ~2.085+0.136X,
1-0.70

Solving this, we get the value of X as about 21.56 cents.

15.17 (a) The marital status coefficient is statistically insignificant
for both time periods, so not much can be said about the
importance of this variable. But the variable has a positive
sign in both periods, which makes economic sense.

(b) The negative estimated coefficient for the minority
variable is probably capturing some income effect, indicating that
minorities have lower incomes and lower needs for bank accounts.

(c) This variable again may represent the income effect, suggesting
that as the number of children increases a family may have less
money to put into checking or savings account.

(d) The 7 statistic is a measure of goodness of fit. In the present
case the fit of the model is good: In 1977 the model predicted 91%
and in 1989 it predicted 90% correctly who will and who will not
have a bank account.

15.18 (a) The results of the weighted LPM are:
¥,=0.184+0.874X,
t =(1.373)(5.042)

(b) Given X =48,
True E(Y|X =0.48) =0.440
Estimated E(Y|X)=0.603
(c) Using the data, we can confirm the authors' results:
PY’ |X =0.48) =—-0.969 + 2.764(0.48) = 0.3579
The probability is 0.6398; this agrees with the authors' number.

(d) P(Y'|X =0.79) = —0.969 +2.764(0.79) =1.2145

The probability is 0.8878. The predicted change is 24.80, which
agrees with the authors' calculations.
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16.2

16.3

16.4

16.5

16.6

CHAPTER 16
PANETL DATA REGRESSION MODELS

In cross-sectional data we gather information about several
microunits at the same point in time. It is generally assumed that
such data are collected on the basis of a random sample. In time
series data we obtain information about a given micro, or individual,
unit over a period of time. Panel data combines features of both
cross-section and time series data in that data on several microunits
are obtained for several time periods.

In a fixed effects model (FEM) we allow each microunit to be
represented by its own intercept but that intercept remains the same
over time. We can allow for both the time and space dimensions
by introducing cross-sectional dummies and time dummies.

In the error components model (ECM), unlike FEM, we assume

that the intercept of a microunit is a random drawing with certain
mean and certain variance. This is an economical model in that

we do not introduce N separate intercept dummies for N cross-
sectional units. As noted in the text, if the error term and the
regressors are uncorrelated, ECM may be appropriate, but if they are
correlated, then, FEM may be appropriate.

They are all synonymous.

The answer is provided in Sec. 16.1. Briefly, by combining both
the space and time dimensions, we can study many aspects of

a problem that may not be feasible if we were to study only
cross-sectional or time series data. Two important examples of
panel data are the Panel Study of Income Dynamics and the Survey
of Income and Program Participation. By following the same
cross-sectional units over time, it is possible to study the dynamics
of change.

The new error term will be:
W, =& +V, +u,
with the assumptions that
g0 N(0,62);v,0 N(0,02);u, 0 N(0,07)
We further assume that
E(gv)=E(su,)=E(vu,)=0
E(g€;)=0# j);, E(vv,)=0(t # 5)

E(u,u,)=E@,u;)=EW,,w,)=0,i# jt#5)
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16.7

16.8

16.9

16.10

As aresult,
var(w,) =0’ =0’ +0’ +0!
that is, w, is homoscedastic. The coefficient of correlation between
w, andw,, (i # j), that is, between the errors of two different cross-
sectional units at a given point of time is:
cov(w,,w;) o’

= P sG#7)
Jvar(w,)var(w,) o, +o, +o, J

And the coefficient of correlation between w, andw), (f # 5), that is,

between the errors of a given cross-sectional unit at two different
times is,
2
cov(w;, W) o, :( #5)
- ’
Jvar(w,)var(w,) o +0,+0,

Here we have N = 50 cross-sectional units and 7 = 2 time series
data. Refer to Point #2 in Sec. 16.5. Since we cannot regard the 50
states in the union as a random drawing, here FEM may be more
appropriate.

They are —245.7924, -84.22, 93.8774 and —-59.2258 for GE, GM,
USS, and Westinghouse, respectively. As compared with GE,
the intercepts (i.e., fixed effects) of the other companies are
statistically different, as can be seen from regression (16.1.5).

The results are not substantially different insofar as the
coefficients of the X variables are concerned. The intercepts
are different, which you would expect because of the
differences in the underlying assumptions of the two models.

(a) On the whole, the results make economic sense. For example,
the log of the earnings is lower this year if one was unemployed in
the previous year; it is also lower if your health in the previous year
was poor.

(b) Qualitatively, the two models give similar results.

(¢) Since we have 3774 observations, we have enough degrees

of freedom to estimate a fixed effects model. But since the two
models generally give similar results, one can opt for either model.
More formally one can use the Hausman test to decide between
the two models.
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Problems

16.11 (a) Year Intercept slope R d
1990 3118.484 -22.4984 0.0834 1.98

(3.5718) (-2.0894)
1991 3149.356 -23.3485 0.0972 1.9

(3.8837) (-2.2742)
Note: Figures in the parentheses are the ¢ ratios.

(b) The pooled regression results are as follows:

Eggs =3132.258-22.8952Price
t =(5.3281) (-3.1173)

r? =0.0902;d = 2.0037
The assumptions made here are that the intercepts as well as the
slopes in the two time periods are the same and that the error
variances in the two time periods are the same.

(c) Letting D =0 for 1990 and D = 1 for 1991, the regression
results are:

Eggs =3153.082 - 34.6977D —22.9403 Price
t =(5.0767) (-0.1087) (-3.1027)

R? =0.0903;d =2.0047
As you can see, the dummy coefficient for 1991 is not statistically
significant, suggesting that the intercepts of the two time periods are
statistically the same.

(d) If we do that, we will have to use 49 dummies. This will
consume a lot of degrees of freedom. Also, note the point made
in# 2 of Sec. 16. 5.

(e) No, for the same reason as in (d).

() Since the ECM requires the number of cross-sectional units to
be greater than the number of coefficients to be estimated, in the
present case we cannot estimate the ECM. If you try to estimate
such a model for our data using, say, Eviews, you will get

the preceding statement.

16.12 Here are the necessary data:

Year RSS df
1990 1.24 E+08 48
1991 1.22 E+08 48
Pooled 2.46 E+08 98
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Note: 1.24 E+08 means 124,000,000, etc.

If you use the Chow test, you will find that one can reject

the null hypothesis that the error variances of the two periods are
different, suggesting that the data can be pooled.

16.13 (a) The regression results are given below in tabular form (¢ ratios in

parentheses).
Company Intercept F_| C, R RSS d
GE -9.9563 0.0265 0.1516 0.7053 13217 1.07
(-0.3173) (1.7057) (5.9015)
GM -149.4667 0.1192 0.3715 0.9214 143118 0.93

(-1.4137) (4.6192) (10.0270)

US Steel -50.0780 0.1714 0.4087 0.4810 154988 0.92
(-0.3413) (2.3254) (2.8208)

Westinghouse -0.5804  0.0530 0.0916 0.7450 1769 1.42
(-0.0724) (3.3776) (1.6334)

Pooled -63.3041 0.1101 0.3034 0.7565 1560690 0.22

(b) Chow test: Adding the RSS for the 4 companies, we get the
summed RSS as 313092. Following Chapter 8, we get the
following results:

Fe (1560690 -313092)/3 415866

313092/(80-12) 46043
This F value is highly significant, leading to the rejection of the
null hypothesis that the four error variances are the same.

=9.032

(¢) In view of the Chow test, it seems that one should not pool
the data in the present case. However, this does not destroy the
utility of the pooling technique, which was clear in our

eggs example in Problem 16.11.

16.14 (a) A priori one would expect an inverse relationship between
the two because if unemployment is high, there will be less

pressure for wage increases, assuming other things constant.

(b) & (¢) In tabular form, the results are as follows (¢ ratios in

parentheses):
Country Intercept Slope R’ RSS d
Canada 85.8286 -0.7294 0.0048 5372  0.0088
(3.8706) (-0.2946)
UK 156.4412 -9.1186 0.4248 7856 0.3591
(6.6952) (-3.6463)
USA 152.4665 -9.6686 0.5420 3375 0.4910
(10.9253) (—4.6159)
Pooled 132.3895 -6.3409 0.3365 1941 0.2440

(13.4746) (-5.4242)
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(d) The results here and in (e) below are obtained from Eviews.
Dependent Variable: COM?
Method: Pooled Least Squares

Sample: 1980 1999

Included observations: 20

Number of cross-sections used: 3

Total panel (balanced) observations: 60

Variable Coefficient  Std. Error t-Statistic
UN? -6.7307 1.4553 -4.6247
Fixed Effects

_CAN--C 138.7603

_UK--C 134.5800

_USA--C 133.3699

R-squared 0.3462 Sum squared resid 19123.6604
Durbin-Watson stat 0.2674

(e) Dependent Variable: COM?
Method: GLS (Variance Components)

Sample: 1980 1999

Included observations: 20

Number of cross-sections used: 3

Total panel (balanced) observations: 60

Variable Coefficient  Std. Error t-Statistic
C 131.3202 8.8974 14.7592
UN? -6.2098 1.0664 -5.8231
Random Effects

_USA-C  0.8264
"CAN--C  -1.7597
_UK--C 0.9333

R-squared 0.3312 Sum squared resid 19561.0217
Durbin-Watson stat  0.2358

(N Since the results from the two models are similar, one can
choose either model.
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CHAPTER 17
DYNAMIC ECONOMETRIC MODELS:
AUTOREGRESSIVE AND DISTRIBUTED LAG MODELS

17.1 (a) False. Econometric models are dynamic if they portray
-~ the time path of the dependent variable in relation to its past values.
Models using cross-sectional data are not dynamic, unless one
uses panel regression models with lagged values of the regressand.

(b) True. The Koyck model assumes that all the distributed lag
coefficients have the same sign.

(c) False. The estimators are biased as well as inconsistent.
(d) True. For proof, see the Johnston text cited in footnote # 30.

(e) False. The method produces consistent estimates, although
in small samples the estimates thus obtained are biased.

(f) True. In such situations, use the Durbin 4 statistic. However,
the Durbin d statistic can be used in the computation of the
h statistic.

(g) False. Strictly speaking, it is valid in large samples.

(h) True. The Granger test is a measure of precedence and
information content but does not, by itself, indicate causality
in the common use of the term.

17.2 Make use of Equations (17.7.1), (17.6.2), and (17.5.2).
Y =B+ B X, +y, M
Y-Y,=6(-%,)

X -X,=y(X,-X.)
Rewrite Equation (2) as

Y, =6Y +(1-9)Y,, 4)
Rewrite Equation (3) as

x=—7' _x )

1-(1-y)L

where L is the lag operator such that LX, = X, .
Substitute Eq. (1) into Eq. (4) to obtain

Y, =86, +6B.X, +6u,+(1-6)Y_, (6)
Substitute Eq. (5) into Eq. (6) to obtain
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17.3

174

17.5

17.6

/4
Y =68 +0[————X1+(1-0) .+ 7
1 ﬂo ﬂl[l—(l—}’)L 1] ( ) 1-1 ul ( )
Simplifying Eq. (7), we obtain

Y=o, +a,X,+a;Y,_ +a,)_, > (17.72)
where the o's are (nonlinear) combinations of the various
parameters entering into Eq. (7).

coVl¥, ., (u, = At )] = E{[(Y,, ~ E(Y,_))]l, - An, 1}, since E(u,)=0
= (), — A,,)], since [Yur-E (Ye)] = u,,

=-E[(u,,)*], since there is no serial
correlation.

=-Ac’.
The P’ values are 100, 105, 115, 135, and 160, respectively.

(a) The estimated Y values, which are a linear function of the
the nonstochastic X variables, are asymptotically uncorrelated with
the population error term, v.

(b) The problem of collinearity may be less serious.

(a) The median lag is the value of time for which the fraction of
adjustment completed is %2. To find the median lag for the Koyck
scheme, solve

tperiod response _ B, (1-A")/(1-4) _ 1
long run response B, /(1-2) 2
Simplifying, we get

A =%. Therefore,

tnd= ln(%) =—In2. Therefore,
_ —2In2

t , Which is the required answer.

A Ini In2 Median lag
0.2 -1.6094 0.6932 0.4307
() 0.4 -0.91630.6932 0.7565
0.6 —-0.5108 0.6932 1.3569
0.8 —-0.2231 0.6932  3.1063
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17.7

17.8

17.9

17.10

17.11

(@  Since B, = f,A";0<A<1;k=0,1,2...

Zo:kﬂ" _BRTkAY A-2Y) A
35 TRTA (-4 1-Z
k

mean lag =

(b) If Ais very large, the speed of adjustment will be slow.

2 kB,
WA

11316 _16.986~10.959

1.03

Use the formula . For the data of Table 17.1, this becomes:

(a) Following the steps in Exercise 17.2, we can write the
equation for M, as:

M=a+ ﬂl(l_}/l)x + B,(1-y,)
1-y,L 1-y,L
which can be written as:

M, =B, + B A=), - Br,A=-r)Y_ + B,(1-7,)R,
L=y )R+ + 7 )M —(ny)M, , +
Hou, = +y U +(ny)u,, ]
where fis a combination of «,y,,andy,.

R +u,

Note that if ¥, =y, =y, the model can be further simplified.

(b) The model just developed is highly nonlinear in the parameters
and needs to be estimated using some nonlinear iterative procedure
as discussed in Chapter 14.

The estimation of Eq. (17.7.2) poses the same estimation problem
as the Koyck or adaptive expectations model in that each is auto-
regressive with similar error structure. The model is intrinsically
a nonlinear regression model, requiring nonlinear estimation
techniques.

As explained by Griliches, since the serial correlation model
includes lagged values of the regressors and the Koyck and partial
adjustment models do not, the serial correlation model may be
appropriate in situations where we are transforming a model to get
rid of (first-order) serial correlation, even though it may resemble
the Koyck or the PAM.
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17.12

17.13

17.14

(a) Yes, in this case the Koyck model may be estimated with OLS.

(b) There will be a finite sample bias due to the lagged regressand,
but the estimates are consistent. The proof can be found in Henri
Theil, Principles of Econometrics, John Wiley & Sons, New York,
1971, pp. 408-411.

(c)Since both pand A are assumed to lie between 0 and 1, the
assumption that they both are equal is plausible.

Similar to Koyck, Alt, Tinbergen, and other models, this approach
is ad hoc and has little theoretical underpinning. It assumes that
the importance of the past values declines continuously from the
beginning, which may a reasonable assumption is some cases.

By using the weighted average of current and past explanatory
variables, this triangular model avoids the problems of
multicollinearity that may be present in other models.

(a) On average, over the sample period, the change in employment
is positively related to output, negatively related to employment in
the previous period and negatively related to time . The negative
sign of the time coefficient and the negative sign of the time-squared
variable suggest that over the sample period the change in
employment has been declining, but declining at a faster rate.

Note that the time coefficient is not significant at the 5% level, but
the time-squared coefficient is.

(b) It is 0.297

(c)To obtain the long-run demand curve, divide the short-run
demand function through by 6 and drop the lagged employment
term. This gives the long-run demand function as:

47.879 +0.579Q, +0.094¢ +0.002¢°

(d) The appropriate test statistic here is the Durbin A. Given that
n=44 and d=1.37, we obtain:

h=a-% 2
2"\ 1-nvar(coeff of E,_,)
=[1--1—d] 44 =2.414
2 1-44(0.001089)
Since h asymptotically follows the normal distribution, the
5% critical value is 1.96. Assuming the sample of 44 observations

is reasonably large, we can conclude that there is evidence of
first-order positive autocorrelation in the data.
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17.15

17.16

17.17

17.18

17.19

(a) Itis (1 — 0.0864) = 0.136.

(b) The short-run price elasticity is —0.218, and the long-run price
elasticity is (-0.218/0.136) = -1.602.

(c) The short-run interest rate elasticity is —0.855. The long-run
elasticity is (-0.855/0.136) = -6.287.

(d)The rate of adjustment of 0.136 is relatively low. This may be
due to the nature of technology in this market. Remember that
tractors are a durable good with a relatively long life.

The lagged term represents the combined influence of all the lagged
values of a regressor (s) in the model, as we saw in developing the
Koyck model.

The degree of the polynomial should be at least one more than the
number of turning points in the observed time series plotted over
time. Thus, for the first figure in the upper left hand corner, use a
4™ degree polynomial; for the figure in the upper right hand corner,
use a second degree polynomial; for the figure in the lower left hand
corner, use a 6™ degree polynomial, and for the figure in the bottom
right hand corner, use a second degree polynomial.

A 2 . p . A A
(a) var(B,) = i* var(a,)+2) i"*? cov(a;,a,)
Jj=0 Jj<p
A similar expression follows, except that now we have an additional
term.

(b) This is not necessarily so. This is because, as seen in part (a),
the variances of the estimates of £, involves both variances and

covariances of the estimated a coefficients and covariances can be
negative.

Given that B, =aq, +a,i +a,i’

If

B, =0—>a,=0and when §, =0 —> g, +4a, +16a, =0 —> a, = —4a,.
Therefore, the transformed model is:

4
Y, :a+2(ﬁiXi)+ul
i=0

= a+X(a, +ai+ai’ )X, +u,
= a+a,[4YiX,_ , +2i’X, ]+u,
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k
1720 Y, =a+) BX, +uy,
i=0

k/2
=a+2iﬂX,_,- + Z (k-DpX,_ +u,
i=0

i=(§+1)

= a+,B[ZiX,-,~ +Z(k—i)Xl-i]+ul

=a+ fZ +u,
17.21 Here n=19 and d =2.54. Although the sample is not very large,
just to illustrate the A test, we find the 4 value as:

n
1—(n) var(coefficient of PF,_,)

- -2 19 =-1.3773
2 "\1-19(0.0142)

This A value is not significant at the 5% level. So, there is

no evidence of first-order positive serial correlation, keeping in
mind that our sample may not be large enough to accept

this result.

d
h=(1-3)

Problems

17.22Using the stock adjustment, or partial adjustment model (PAM), the
short-run expenditure function can be written as (see Eq. 17.6.5):

Y;=5ﬂ0+5ﬂ1X1+(1_6)X1—|+ul (1)
where Y = expenditure for new plant and equipment and X = sales.

From the given data the regression results are as follows:
)Af =-15.104+0.629X, +0.272Y,_,
t =(-3.194) (6.433) (2.365) 2)
R? =0.987; F =690.056;d =1.519

From the coefficient of the lagged Y value we find that
6 =0.728.

The long-run expenditure function is:

Y’ =20.738+0.864.X,
which is obtained from (2) by dividing it by 0.728 and dropping the
lagged Y term.

We have to use the 4 statistic to find out if there is serial correlation

in the problem. Using the formula for the A statistics, it can be
shown that in the present example 2 = 1.364. Asymptotically, this
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value is not significant at the 5% level. So, asymptotically, there is
no serial correlation in our data.

17.23Using the same notation as in Exercise 17.22, the short-run
expenditure function can be written as:

InY,=In8f, +6f,In X, +(1-8)Y_, +u, (1)
The regression results are:
In¥ =-1.078+0.905In X, +0.260InY,_,
=(-5.854)(8.131)  (2.962) 2)
R? =0.994; F =1425.219;d =1.479
From these results, we find that 5=0.740.

The long-run expenditure function is:

In¥' =0376+1.222In X,

The h statistic for this problem is 1.34. Asymptotically, therefore,
we reject the hypothesis that there is first-order positive correlation
in the error term.

Both models give similar results. The advantage of the log model is
that the estimated slope coefficients give direct estimates of the
elasticity coefficients, whereas in the linear model the slopes only
measure the rate of change.

17.24The statistical results are the same as in Problem 17.22. However,
since this is the adaptive expectations model, the interpretation is
different. Now the estimated J is interpreted as the fraction that
expectations about investment in plant and equipment in
manufacturing are revised each period. The population error
structure is now different, as noted in the text.

17.25Here we use the combination of adaptive expectations and PAM.
The estimating equation is:

Y, = Bdy + Bor X, +[(1-6)+ A=Y +[1-8) + (A - )Y, W,
where vi= [du, +6(1-y)u,_,]

which, for convenience, we express as:
Y=a,+aX,+a,Y,_ +a,Y,_, +v,
Based on the data, the regression results are:
?, =-19.7701+0.715X, + 0.565Y,_, —0.409Y,_,
t =(—4.467) (8.323) (4.250) (-3.460)
R? =0.992; F = 5653.234;d =1.367
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The estimated coefficients are all statistically significant. But since
the estimated coefficients are nonlinear combinations of the original
coefficients, it is not easy to get their direct estimates. In principle,
we should estimate this model using the nonlinear methods
discussed in Chapter 14. That will give direct estimates of the
various parameters, which can then be compared with those
obtained from Problems 17.22,17.23 and 17.24.

17.26Null hypothesis Hy: sales do not Granger cause investment in plant
and equipment. The results of the Granger test are as follows:

Number of lags F statistic p value Conclusion
2 17.394 0.0001 reject Hy
3 5.687 0.0117 reject Hy
4 3.309 0.0628  do not reject Hy
5 2.379 0.1606  do not reject Hy
6 1.307 0.4463  do not reject Hy
Hy: Investment in plant and expenditure does not Granger cause
sales:
Number of lags F statistic p value Conclusion
2 22.865 0.0001 reject Hy
3 13.009 0.0004 reject Hy
4 7.346 0.0065 reject Hy
5 5.867 0.0262 reject Ho
6 3.053 0.1939 do not reject Hy

As you can see from these results, the Granger causality test is
sensitive to the number of lagged terms introduced in the model.
Up to 3 lags, there is bilateral causality, up to 5 lags there is
causality from investment to sales. At six lags, neither variable
causes the other variable.

17.270ne illustrative model fitted here is a second degree polynomial
model with 4 lags. Using the format of Eq. (17.13.15) and letting Y
represent investment and X sales, the regression results are:

= -35.4923 + 0.8910X; +0.3255X;.1-0.0312X;.5 — 0.1792.X; 3
t=(-43321) (5.1042) (3.6176) (-0.2530) (-2.1109)
-0.1183X4
(-0.6562)

The reader is urged to try other combinations of lags and the degree
of the polynomial. You may use the Akaike information criterion
to choose among the competing models.
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17.28 Using Eviews 4, we obtained the following results.

Coefficient

Xt

17.29

NER FER BER
Intercept  -23.3844 -36.0936 -5.9303
(-2.3578) (-4.6740) (-0.8799)
0.3188 0.8712 0.1215

(3.5791) (5.5205) (19.9423)

X1 0.4414 0.3515 0.1945
(3.9542) (10.4464)  (19.9423)

X2 0.3677 0.0045 0.2188
(5.4213) (0.0993) (19.9423)

X3 0.0976 -0.1697 0.1945
(2.1948) (-2.2065) (19.9423)

Xi4 -0.3686 -0.1712 0.1215

(-1.6678)  (-2.7730)  (19.9423)

Notes: NER, FER, and BER denote near-end, far-end, and both-
end restrictions. Figures in the parentheses are the ¢ ratios.

As you can see, putting restrictions on the coefficients of the
models produce vastly different results. Note the interesting finding
that imposing both-end restrictions give identical standard errors
and the ¢ ratios. Unless there is strong a priori expectation, it is

is better not to impose any restrictions. Of course, still the

number of lagged terms to be introduced and the degree of the
polynomial are the questions that need to answered in each case.

(a) Direction of causality #oflags F Probability

Y > X, 2 0.0695 0.9329
XY 2 2.8771 0.0705"
Y > X, 3 0.1338 0.9392
X,>Y 3 2.4892 0.0793*
Y > X, 4 0.1407 0.9655
X,o>Y 4 1.8239 0.1533

* Significant at the 10% level.

In each case the arrow indicates the direction of causality. The
null hypothesis in each case is that the variable on the

left of the arrow causes the variable on the right side of the arrow.
In each case it seems that investment in information processing
equipment does not Granger cause sales. But there is some weak
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evidence that sales cause investment. Try other lags and see if

this conclusion changes.

(b) The results of causality between investment and interest rate

are interesting in that up to 5 lags, there is no causal relationship
between the two, but at lag 6 interest rate causes investment but not
vice versa. At lags 7 and 8 again there is no causal connection
between the two. It is hard to justify these results intuitively.

(c)In the linear form there was no discernible distributed lag effect
of sales on investment. In the log-linear model with 4 lags and
second degree polynomial and imposing near end restriction, we get
the following results:

In¥, = —15.1508 +0.20081In X;, +0.32881n X, +0.3841In X, ,,

t =(-73.2185)(3.8962) (5.0794) (9.6896)
N 0.36651n X. 20-3 T 0.2762In X 20-4)
(15.0782) (2.1921)
If you plot the coefficients of the various In X; terms, you will

find that the coefficients increase up to lag 2 and then decline,
showing an inverted U-shaped curve.

17.30(a) &(b) Applying the Granger causality test, it can be shown that up
to 4 lags there is bilateral causality between the two variables, but beyond 4
lags there is no unilateral or bilateral causality. For example, at lag 3 we
find that

Productivity - compensation F = 3.84 (p value 0.0314)

Compensation — productivity F'=3.97 (p value 0.0284)
At lag 4 we find that

Productivity - compensation F = 2.27 (p value 0.0888)

Compensation — productivity F = 3.26 (p value 0.0265)

(c)For example, we could regress compensation on productivity and
the unemployment rate to see the (partial) effect of unemployment
net of the productivity effect. The results are as follows:

A

¥, =26.7834+0.6907.X,, + 0.6680.X,,
t =(12.8468)(33.2341)  (2.7053)

R? =0.9694;d =0.2427
where Y = compensation, X, = productivity and X3 = the
unemployment rate.

All the estimated coefficients seem to be statistically
significant. The positive sign of the unemployment rate variable
may be counter-intuitive, unless one can make an argument that
higher unemployment boosts productivity which then leads to higher
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compensation. Since the d statistic in the present instance is quite
low, it is possible that this model either suffers from autocorrelation

or specification bias, or both.

17.31Just to give a flavor of the Sim's test, we ran Y (investment in plant
and equipment) on X (sales) with two lag and two lead terms of X
and obtained the following results:

¥ =-2.6549+1.4421X, , - 0.4043X,_, +0.3290X,,, —0.5576 X,,,
t =(-0.4039)(7.1142) (-2.0425) (1.6786) (-3.0060)

R* =0.9912;d =3.0561
These results cast some doubt that sales "cause" investment, for the
lead term, X;+, seems to be statistically significant.

The reader should try other lead-lag structures to see if this
conclusion holds.
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18.1

18.2

18.3

CHAPTER 18
SIMULTANEOUS-EQUATION MODELS

The number of dentists demanded would be a function of the price
of dental care, the income of the patient population, the availability
of dental insurance, the level of education of the dental population,
family size, etc. The number of dentists supplied would be the
function of the price of dental care, the cost of dental education, the
size of the dental population, the number of dental schools, the state
licensing requirements, etc. The endogenous variables here are the
number of dentists demanded and supplied and the price of dental
care. The other variables may be regarded exogenous.

Brunner and Meltzer used variables such as interest rate, real public
wealth, ratio of current to permanent income, etc. Tiegen used
income, short-term interest rate, lagged money stock, etc. There is
debate in the literature whether it is the short-term interest rate or the
long-term interest rate that is the appropriate opportunity cost of
money.

In deviation form (deviation from the mean values) the demand and
supply functions can be expressed as:

qtd =qp, + (ult —ﬁl) =aqp + ul.l (1)
q, =B+, —1) =B, p, 'H‘;z ()

From (1), we obtain:
G, = Zq‘f‘ _ 2l(e,p, ";u;:]P
P Zp
=+ ZZLI’;;" 3)
In equilibrium, (1) = (2), hence we obtain, after simplification,
= — W
" ap @
Zpu, = Ty, —th Wy, _ Dtk — Tt/ .
Q, ‘ﬂl a - ﬂl
> pl= Ty +Xuy, -222 w o
(- 5)

Substituting the preceding expressions into (3), and simplifying, we
obtain:

. Suyu, - X u;
= + . : : . . - 7
= 2u23+2u"2 =22 uu, @=A) M

Remembering that #, and u;, are not correlated, on taking the
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18.4

18.5

18.6

18.7

18.8

probability limit (plim), we get
2
. A a L]
plimg, =a1_(a1-ﬂl)'2_'l'2" @®)
a L + a L
L ¥y

Since in general the last term in (8) is non-zero, ¢, is nota
consistent estimator of .

(b) If o, = B,, then the preceding probability will be equal to ;.

Equating Equations (18.2.13) and (18.2.18), we obtain:

Ty +mr =2+ AM + A,r 1)
Therefore,
r = ('10 —”o) + ’11 M (2)
(m-4) (m-4)

Substituting (2) into the IS equation, we get
Y=”o(”1_’12)+”1('10_”o)+ mA4 M
(7, - 4,) (- 4,)

(a) The variables Y (real per capita income) and L (real per

capita monetary base) reflect the liquidity preference approach. The
variable I (expected rate of inflation) reflects Fisher's theory. The
variables NIS (a new issue variable) and E (expected end-of-period
returns, proxied by lagged stock price ratios) introduce flow
elements. The variable Ry.; (lagged bond yield) allows for a
distributed lag effect. These are discussed in OQudet's article.

(b) & (c) The endogenous variables are Ry and Rg. Ry is @
predetermined variable (lagged endogenous). There is no lagged Ry
term in the model. All other variables are predetermined
(exogenous).

(a) Each Y variable is endogenous. Each X variable is exogenous.
(b) Yes, each equation can be estimated by OLS. However, since

this is a simultaneous equation system, the OLS estimators may be
biased as well as inconsistent.

(a) Bass is apparently not concerned with developing a general
supply and demand model; he is studying the relationship between
advertising expenditure and cigarette sales.

(b) If X; is to be treated as endogenous, we need an equation to
explain X5.

(a) The endogenous variables are Y, C, O, and I. The
predetermined variables are P, R, Y;.;, Ci.; and Q,.1, the first two
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of these being exogenous and the rest being lagged endogenous.
(c) This variable may account for inflation.

18.9 (a) There is no simultaneous equation system here. None of the
equations' dependent variables are used as regressors in another
equation. The estimators will be unbiased and consistent.

(b) When variables are expressed in first-difference form, the
(linear) trend, if any, in these variables is removed. This typically
lowers the R* value when the variables are used in the first-
difference form.

Problems

18.10 The regression results are as follows:
PCE, = -142.1826 +0.6889GDP

t =(-5.3883) (156.2434)
r’=0.9988;d =1.2019

18.11
I, =-289.0339+66.8100GDP
t =(—4.3262) (17.5783)
r* =0.9169;d = 0.3851
18.12

The regression results are as follows:
I, =588.1915+1.5007(Y, - Y,_,)
t =(7.1598) (4.0243)

r? =0.3749;d = 0.5245
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CHAPTER 19
THE IDENTIFICATION PROBLEM

19.1 Using the definitions of M, m, K, and k, and letting R equal
the number of variables (endogenous as well as predetermined)
excluded from a given equation, then, by Definition 19.1,
R=(M-m)+(K-k)=(M-1)
Subtracting (M — m) from each side, we obtain
(K - k) 2 m—1,which is Definition 19.2.

19.2 The structural coefficients are:

By =7, — By, Qy =Ty — 7,
T, 7s
B=— a =—
) 7T,
T, 7
B, =7 - O =Ty =
M U2

19.3 (a) The reduced form equations are:
Y =my+ml, +w, @
C =m+ml +w, 3]
For this system M =2 (C,Y) and K =1 (I). The order condition

applied to (2) shows that it is exactly identified. The income
identity is identified by definition.

(b) The reduced form equations are:
W,=n,+mUN,+m,M,+w, (1)
P=n,+aUN, +7 R +m,M, (2)

For this system, M =2 (W,P)and K=3 (UN,R,M).

By the order condition, Eq. (1) overidentified, but Eq. (2) is
just identified.

(c) This problem is designed to show the tedious nature of
developing reduced form equations. The solution is left to
the reader.

19.4  See Exercise 19.3. The rank condition test provides the same result.

19.5 The reason that the supply equation is overidentified is that the
demand equation contains two predetermined variables, /and R .
If it contained just one, the supply equation would be just identified.
Thus, if @, =00r a, =0, the supply equation would be just
identified.
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19.6

19.7

19.8

19.9

19.10

19.11

(a) For this system, M= 2 (Y}, Y2) and K =2 (X}, X3). By the order
condition, Y1 and Y2 are both exactly identified.

(b) In this case Y is identified, but not 1>,

(a) Following the system (19.2.12) and (19.2.22), it can be shown
that:

A A Ty A A T
B =75 _._22”101 ==3,p,= 2=125
12 0,

A A

A a Ty a A T
By =7 = 7] = =6; fy =2 =2

1 Ty

- L ATy . L Tty

Yu =7y —— ]'—'2-25,712:[”22——7? ]=-6
1 1

(b) To test this hypothesis, we need the standard error of 7,,. But as

you can see from (a), #,,is a nonlinear function of the 7 coefficients
and it is not easy to estimate its standard error.

(a) In this example, Y is not identified but Y> is. This system is
similar to the system (19.2.12) and (19.2.13). Thus,

A T A A A A
Bu= ;3 =1.5; B = (7, — P 7y) = —4
1
The other structural coefficients cannot be identified.

(b) In this case both Y; and Y> are identified.

In this system M =4 and K= 5. Here all the equations are
overidentified.

Here M =4 and K = 4. By the order condition, Y; and Y> are not
identified, but Y3 and Yj are just identified.

Here M =5 and K = 4. By the order condition, Y,Y,,and ¥; are
just identified, Y3 is not identified and Y4 is overidentified.

To show how the rank condition works, consider the first equation.
It excludes variables Y;,Y;, X,and X,. For this equation to be

identified, there must be at least one 4 x 4 non-zero determinant
from coefficients of the variables excluded from this equation but
included in the remaining equations. One such determinant is:
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Brs 0 ¥y ¥y

1 0
Bis 0 Ay 20
0 0 0 74

0 1 7,7

Thus by the rank condition also the first equation is identified.
Follow a similar procedure for the other equations.

19.12 For this model, M =4 and K = 2. By the order condition,
the equation for C is identified, and those for / and T are
overidentified.

With r treated as exogenous, M =4 and K = 3. By the order
condition now the equations for C, T, and I are all overidentified.

19.13 From Egq. (19.1.2), the reduced form of the income equation is:
Y=my+ml +u,
The OLS results are:

A

Y, =10.0000 +5.00001,
=(8.458) (12.503)

R?=0.897
From Eq. (19.1.4), the reduced form for consumption is:
C =m+ml +w,
The OLS results are:

A

¢, =10.000+4.0001,
t =(8.458) (10.002)

r’ =0.848
For this model, M =2 and K = 1. By the order condition, the
consumption function is just identified. The estimates of the
structural coefficients are:

19.14 See Exercise 19.1. From Eq. (19.3.1), with Definition 19.2,
K-k2m-1
Add k to each side. This yields
K>2m+k-1

19.15 (a) The reduced form equations are:
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Y
F=m+nr, (Fl +mF +za W, +n,C,_ + T, +m,F_ +v,

t

Y
O =m+m, (Fl +mo B+ W, +7m,C L + 7T+ B+ W,

t

(b) Here M =2, K="7. By the order condition, both equations are
overidentified.

19.16 (a) & (b) Here M =2 and K =2. By the order condition, the demand
function is not identified and the supply function is overidentified.

(c¢) The reduced form equations are:

Y =m,+mR, +m,F +v,
M, =7, +z,R +7F +W,

(d) To test for simultaneity in the supply function,
(1) Estimate the reduced form for Y; and obtain the

residuals, v,

(2) Regress M; on Y; and v,

(3) The null hypothesis is that there is no simultaneity, i.e.,
the coefficient of v, in step (2) is not statistically
significant.

The results of this exercise are as follows:

Dependent Variable: M2
Method: Least Squares
Sample: 1970 1999
Included observations: 30

Variable Coefficient  Std. Error t-Statistic
C -2021.6072 113.5850 -17.7981
Y 0.7650 0.0186 40.9533
v, -0.1608 0.0422 -3.8094

R?2=09872 d=0.5221

Since the coefficient of the residual term is statistically highly
significant, reject the null hypothesis that there is no simultaneity.

(e) Here we use the exogeneity test discussed in the chapter.
We estimate the following regression:
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M, =B+ BY,+ BT, +u, )
where )Aj is obtained from the regression of the reduced form for Y
given in (c).

If the estimated f; is statistically different from zero, reject the
hypothesis that Y; is exogenous.

Dependent Variable: M2
Method: Least Squares

Variable Coefficient  Std. Error t-Statistic
C -2295.7898  78.9873 -29.0652
Y, 0.3292 0.06825 4.8238 4
Y, 0.4791 0.0695 6.8929

R?=0.9928 d=0.5946

As these results show, the coefficient of };,is statistically
significant, leading to the conclusion that Y is not exogenous.
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20.1

20.2

20.3

20.4

CHAPTER 20
SIMULTANEOUS-EQUATION METHODS

(a) False. OLS can be used in the recursive systems.

(b) True. If an equation is not identified, no method will provide
estimates of the structural parameters.

(c) True.

(d) False. In a simultaneous-equation system we have endogenous
as well as exogenous variables. Sometime we are not sure whether
a variable is exogenous or endogenous. The exogeneity test allows
us to test for this.

(e) True. See App. 20A.1 regarding ILS and chapter footnote 14
regarding 2SLS.

(/) True. Only individual regressions have R* values.
(g) False. 2SLS can be modified to deal with autocorrelated errors.
(h) True. See Sec. 20.4.

(a) 2SLS is designed to provide unique estimates of the parameters
of an overidentified structural equation, which is not possible with
ILS. But if an equation is exactly identified, 2SLS will give the
same estimates as the ILS.

(a) The three reduced form equations are:

Y, =m,+mY_ +m,G, +v,

C =n+nY_+7nG, +v,

I =7 +mY_ +7mG, +v,,
For this system, M==3 and K =2. By the order condition, the
equation for C is overidentified and that for / is just identified.

(b) To estimate the overidentified consumption function, use 2SLS
and to estimate the investment function, use ILS.

If the value of the R in the first stage of 2SLS is high, it means that
the estimated values of the endogenous variables are very close to
their actual values; hence, the latter are less likely to be correlated
with the stochastic error term in the original structural equations. If,
however, the R value of the first-stage regression is low, the 2SLS
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20.5

20.6

estimates will be practically meaningless because one will be
replacing the original ¥'s from the second stage regression by the
estimated Y's from the first-stage regressions, which will essentially
represent the disturbances in the first-stage regressions. In other
words, the estimated Y values will be very poor proxies for the
actual Y values. In the system of results shown in this problem, the
estimated values of the endogenous variables are close to the actual
values.

The 2SLS values are not meaningless because in large samples they
provide consistent estimates of the structural coefficients.

(a) Writing the system in matrix notation, we obtain:

l-a-4| [InQ ln.;,
1-1 0 InL | = ln?—lnﬂ
1 0 -1 InK R
In— -lna
| P J

which can be written in matrix notation as:

Ay =x
Now if (@ + ) = 1, it can be shown that the determinant of the A,

|4], is zero, meaning that the matrix A cannot be inverted.
Therefore, there is no solution.

(b) Even if (a+ B) #1, there is an identification problem. Since
W/P and R/P are known, they can be treated as constants and be
absorbed in the constant term In A. As a result, any linear
combination of equations (2) and (3) will be indistinguishable from
Equation (1).

(c) There are various possibilities. For instance, we could add one
or more exogenous variables to either equation (2) or equation (3),
making sure that theoretically such variables do not appear in the
production function (1). For instance, we might introduce
distributed-lag mechanism in the marginal productivity relations,
which may lead to the inclusion of last period's capital

stock in the marginal productivity relation for capital.

(a) The demand function is unidentified.

(b) The supply function is overidentified.
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20.7

(c) 2SLS may be used to estimate the parameters of the
overidentified supply function.

(d) Both the functions are now overidentified. Hence, use 2SLS.

The reduced form equations are:

Y=n,+ml +v, 0))

C=m+nl +w, )
The OLS estimates of these reduced form regressions based on
the given data are as follows:

Y, =1831.8580 +4.67221,

t =(7.6427) (17.5784) (1-a)
r? =0.9169;d =0.3287

C, =1130.843 +3.20591

t =(6.5225) (16.6752) (2-a)

r* =0.9085;d = 0.3751
The ILS estimates of the original structural equations are:
p="-3209_ 686
7, 4.6722
B, =#%,(1- B)=574.8370
For comparison, the OLS regression of C on Y gave the
following results:

C, =-142.1826 +0.6889Y,
t =(-5.3883) (156.2434)
r’ =0.9988;d =1.2019
As you can see, the estimates of the marginal propensity to consume
(MPC) from the ILS estimate is 0.6862 and from the OLS estimate

it is 0.6889. This difference may not be statistically significant, but
practically it might be. In the first case, the multiplier, M =

, 15 3.1565 and in the second (OLS) case it is 3.2144. In

1
1-MPC
any case, since the OLS estimates in the presence of simultaneity are
biased as well as inconsistent, one may want to keep this fact in
mind in comparing the OLS and ILS estimates.

Problems

20.8 (a) The IS-LM model of macroeconomics may be used to justify

this model.
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(b) By the order condition, the interest rate equation is not identified,
but the income equation is just identified.

(¢) In this example, M is the exogenous variable. Using the data
given in Table 20.2, we obtain the following results by ILS:

Y, =2834.488+1.2392M,
t =(32.0163) (37.3812)

r* =0.9803;d =0.3074
It is left as an exercise for the reader to retrieve the original
structural coefficients, namely, a,and q;.

20.9 (a) By the order condition, the interest rate equation is not
identified, and the income equation is overidentified.

(b) Here you may use 2SLS. We use M and Y;.; as instruments.
The regression results, using Eviews 4, are:

¥, =16977.06-1627.870R,

t =(3.0842) (-2.0350)
where R is the six-month treasury bill interest rate.

Note that we have not presented the R” value for reasons
discussed in the chapter.

20.10 Here both the equations are exactly identified. One can use ILS
or 2SLS to estimate the parameters, but they will give identical
results for reasons discussed in the chapter.

Here are the OLS estimates of the reduced form (RF) equations.
Note that in the RF, only the exogenous variables (/ and M) appear
on the right side of each equation.

R, =8.7056 —0.00049M, —0.000841,_,
t =(6.0589)(-05192) (~0.2281)
R*=0.1172
Y, =2421.074+0.8944 M, +1.45851,_,
t =(32.7247) (18.3144) (7.6607)

R*=0.9938

It is left for the reader to retrieve the original structural parameters
from the reduced form coefficients.
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20.11 (a) Now the equations for R and Y are not identified, while
the investment equation is exactly identified.

(b) First, we obtained the RF for the investment function. Since
there is only one exogenous variable, M, we regress / on M, which
gives the following results:

I, =283.4482+0.2364M,
t =(5.6424) (12.5681)

r’ =0.8494

We leave it to the reader to estimate the reduced form regressions
for R and Y and retrieve the coefficients of the investment function.

20.12 If you follow the procedure described in App.20A.2, you should get
the standard errors shown in (20.5.3), which were obtained directly
from the Eviews 4 package.

20.13 (a) Since supply is a function of the price in the previous period,
the system is recursive. So, there is no simultaneity problem here.

(b) Each equation may be estimated using OLS individually.
(c) The regression results are as follows:

Demand Function:

0 =69.512+0.201P, +0.001X,
t =(7.393) (1.782) (1.586)

R* =0.501
Since the coefficients of the two regressors are not individually
statistically significant, not much can be said about this
demand function. Note that the price coefficient is positive,
contrary to prior expectations.

Supply Function

A

OF =66.287+0.330P_,
t =(8.288) (4.579)

rt=0.525
As expected, the coefficient of the lagged price variable is
positive. It is also statistically significant.

20.14 This is left as a class exercise.
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CHAPTER 21

TIME SERIES ECONOMETRICS: SOME BASIC CONCEPTS

21.1

21.2

213

214

215

21.6

21.7

21.8

21.9

21.10

A stochastic process is said to be weakly stationary if its mean

and variance are constant over time and if the value of the
covariance between two time periods depends only on the distance
or lag between the two periods and not the actual time at which the
covariance is computed.

If a time series has to be differenced d times before it becomes
stationary, it is integrated of order d, denoted as I (d). In its
undifferenced form, such a time series is nonstationary.

Loosely speaking, the term unit root means that a given time
series is nonstationary. More technically, the term refers to the
root of the polynomial in the lag operator.

It has to be differenced three times.

The DF test is a statistical test that can be used to determine if a time
series is stationary. The ADF is similar to DF except that it takes
into account the possible correlation in the error terms.

The EG and AEG tests are statistical procedures that can be used to
to determine if two time series are cointegrated.

Two variables are said to be cointegrated if there is a stable long-run
relationship between them, even though individually each variable
is nonstationary. In that case the regression of one variable on the
other is not spurious.

Tests of unit roots are performed on individual time series.
Cointegration deals with the relationship among a group of
variables, where (unconditionally) each has a unit root.

If a nonstationary variable is regressed on another nonstationary
variable(s), the resulting regression may pass the usual statistical
criteria (high R® value, significant ¢ ratios, etc.) even though a priori
we do not expect any relationship between the two. This is
especially so if the two variables are not cointegrated. However, if
the two variables are cointegrated, even though individually they
are nonstationary, then such a regression may not be spurious.

See the answer to the preceding question.
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21.11

21.12

21.13

21.14

21.15

Most economic time series exhibit trends. If such trends are
perfectly predictable, we call them deterministic. If that is not case,
we call them stochastic. A nonstationary time series generally
exhibits a stochastic trend.

If a time series exhibits a deterministic trend, the residuals from

the regression of such a time series on the trend variable represents
what is called a trend-stationary process. If a time series is
nonstationary but becomes stationary after taking its first (or higher)
order differences, we call such a time series a difference-stationary
process.

A random walk is an example of a nonstationary process. If a
variable follows a random walk, it means its value today is equal to
its value in the previous time period plus a random shock (error
term). In such situations, we may not be able to forecast the course
of such a variable over time. Stock prices or exchange rates are
typical examples of the random walk phenomenon.

This is true. The proof is given in the chapter.

Cointegration implies a long term, or equilibrium, relationship
between two (or more variables). In the short run, however, there
may be disequilibrium between the two. The ECM brings the two
variables back to long term equilibrium.

Problems

21.16

21.17

(a) The correlograms for all these time series very much resemble
the GDP correlogram given in Fig. 21.8. All these correlograms
suggest that these time series are nonstationary.

The regression results are as follows:

APCE, =93.392+0.799t —0.044 PCE,_,
T =(1.678) (1.360) (-1.376)"

R?=0.022
*In absolute terms, this tau value is less than the critical tau value,
suggesting that there is a unit root in the PCE time series, that is, this
time series is nonstationary.
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APDI, =326.633+2.875t~0.0157PDI,
r =(2.755 (2.531) (-2.588)'

R*=0.076
* This tau value is not statistically significant, suggesting that the
PDI time series contains a unit root, that is, it is nonstationary.

AProfits, = 6.522 +0.084¢ — 0.069 Pr ofits,,
T =(2.154)(1.142) (-1.715)

R*=0.037
* This tau value is not statistically significant, suggesting that this
time series has a unit root.

Dividends, =0.565+0.113¢—0.063Dividends, ,

T =(1.515) (3.138) (-2.640)’

R?=0.148
* This tau value is not significant, suggesting that the
dividends time series is nonstationary.

Thus, we see that all the given time series are nonstationary. The
results of the Dickey-Fuller test with no trend and no trend and no
intercept did not alter the conclusion.

21.18 If the error terms in the model are serially correlated, ADF is the
more appropriate test. The 7 statistics for the appropriate coefficient
from the ADF regressions for the three series are:

PCE -1.605

Profits -2.297

Dividends -3.158
The critical 7 values remain the same as in Problem 21.17. Again,
the conclusion is the same, namely, that the three time series
are nonstationary.

21.19 (a) Probably yes, because individually the two time series
are nonstationary.

(b) The OLS regression of dividends on profits gave the following

results:

Variable Coefficient  Std. Error t-Statistic
C -13.3114 7.3626 -1.8079
PROFITS 0.6281 0.0526 11.9253

R-squared  0.6231 d=0.0712
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21.20

21.21

When the residuals from this regression were subjected to unit
root tests with no constant, constant, and constant and trend,
the results showed that the residuals were not stationary, thus
leading to the conclusion that dividends and profits are not
cointegrated. Since this is the case, the conclusion in (a) stays.

(c) There is little point in this exercise, as there is no long run
relationship between the two.

(d) They both exhibit stochastic trends, which is confirmed by
the unit root tests on each time series.

(e) If dividends and profits are cointegrated, it does not
matter which is the regressand and which is the regressor. Of
course, finance theory could resolve this matter.

The correlograms of the first differences of PDI, Profits, and
Dividends, all show diagrams similar to Fig. 21.9. In the first
difference form each of these time series is stationary. This can be
confirmed by the ADF test. The 7 statistics for the appropriate
coefficient from the ADF regressions for the four time series are:

PCE -4.852
PDI -6.856
Profits -5.517

Dividends -6.305
All these 7 values, in absolute terms, exceed the critical 7 values,
confirming that the first differences of these time series are
indeed stationary.

In theory there should not be an intercept in the model. But if there
was a trend term in the original model, then an intercept could be
included in the regression and the coefficient of that intercept term
will indicate the coefficient of the trend variable. This of course
assumes that the trend is deterministic and not stochastic.

To see this, we first regressed dividends on profit and the trend
variable, which gave the following results:

Dependent Variable: DIVIDEND

Variable Coefficient  Std. Error t-Statistic
C 11.8978 2.3538 5.05457
PROFITS -0.1096 0.02939 -3.7293
trend 1.6472 0.0554 29.7008
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21.22

21.23

R-squared  0.9668

But one should be wary of this regression because this regression
assumes that there is a deterministic trend. But we know that the
dividend time series has a stochastic trend.

Now regressing the first differences of dividends on the first
differences of profits and the intercept, we get the following results:

Variable Coefficient  Std. Error t-Statistic
C 1.3502 0.1953 6.9112
A Profits -0.0238 0.02080 -1.1470

R-squared 0.0152

In this regression the intercept is significant, but not the slope
coefficient. The intercept value of 1.3502 is in theory equal to the
coefficient of the trend variable in the previous equation; the two
values are not identical becaise of rounding errors as well as the fact
that the trend in the dividends series is not deterministic.

This exercise shows that one should be very careful in including the
trend variable in a time series regression unless one is sure that the
trend is in fact deterministic. Of course, one can use the DF and
ADF tests to determine if the trend is stochastic or deterministic.

From the first difference regression given in the preceding exercise,
we can obtain the residuals of this regression (#, ) and subject them

to unit root tests. We regressed A#, on its own lagged value without
intercept, with intercept, and with intercept and trend. In each case
the null hypothesis was that these residuals are nonstationary, that is,
they contain a unit root test. The Dickey-Fuller 7 values for the
three options were -3.9592, -3.9367, and-3.9726. In each case the
hypothesis was rejected at 5% or better level (i.e., p value lower than
5%). In other words, although dividends and profits were not
cointegrated, they were cointegrated in the first difference form.

(a) Since lrl is less than the critical |r| value, it seems that the

housing start time series is nonstationary. Therefore, there is
a unit root in this time series.

(b) Ordinarily, an absolute ¢ value of as much as 2.35 or greater
would be significant at the 5% level. But because of the unit
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root situation, the true |r|value here is 2.95 and not 2.35. This

example shows why one has to be careful in using the ¢ statistic
indiscriminately.

(c) Since the || of AX,_, is much greater than the corresponding

critical value, we conclude that there is no second unit root in the
housing start time series.

21.24 This is left for the reader.

2125 (a) & (b)

40
20-
Y
0 1 1
0 500 10«
X
Y exhibits a linear trend, whereas X represents a quadratic

trend.

Here is the graph of the actual and fitted Y values:
- 40
120

077'__\':"" 0

10 20 30

—— Residual ------- Actual ———- Fitted

From the given regression results you might think that this

is a "good" regression in that it has a high R and significant

t ratios. But it is a totally spurious relationship, because we

are regressing a linearly trended variable (Y) on a quadratically
trended variable (X). That something is not right with this model
can be gleaned from the very low Durbin-Watson d value.
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21.26

21.27

The point of this exercise is to warn us against reading too much in
the regression results of two deterministically trended variables with
divergent time paths.

(a) Regression (1) shows that the elasticity of M1 with respect to
GDP is about 1.60, which seems statistically significant, as the ¢
value of this coefficient is very high. But looking at the d value, we
suspect that there is correlation in the error terms or that this
regression is spurious.

(b) In the first difference form, there is still positive relationship
between the two variables, but now the elasticity coefficient has
dropped dramatically. Yes, the d values might suggest that there
is no serial correlation problem now. But the significant drop

in the elasticity coefficient suggests that the problem here may be
one of lack of cointegration between the two variables.

(c) & (d) From regression (3) it seems that the two variables are
cointegrated, for the 5% critical 7 value is —1.9495 and the
estimated tau value is more negative than this. However, the 1%
critical tau value is —2.6227, suggesting that the two variables
are not cointegrated. If we allow for intercept and intercept and
trend in equation (3), then the DF test will show that the two
variables are not cointegrated.

(e) Equation (2) gives the short-run relationship between the logs
of money and GDP. The equation given here takes into account the
error correction mechanism (ECM), which tries to restore the
equilibrium in case the two variables veer from their long-run path.
However, the error term in this regression is not statistically
significant at the 5% level.

Since, as discussed in (¢) and (d) above, the results of the
cointegration tests are rather mixed, it is hard to tell whether the
regression results presented in (1) are spurious or not.

(a) & (b) The time graph of CPI very much resembles Fig. 21.12.
This graph clearly shows that generally there is an upward trend in
the CPI. Therefore, regression (1) and (2) are not worth
considering. Note that the coefficient of the lagged CPI is positive
in both eases. For stationarity, we require this value to be negative.

Therefore, the more meaningful equation here is regression (3).

The DF unit root tests suggest that the CPI time series is

trend stationary. That is, the values of the CPI around its trend value
(which is statistically significant) are stationary.
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(c) Since Equation (1) omits two variables, we have to use the
F test.

Using the R? version of the F test, the R® value of regression (1)
is 0.0304, which is the restricted R®. The R? value of regression
(3), which is 0.4483, is the unrestricted R?. Hence the F value is:

. (0:4483-0.0304)/2

(1-0.4483)/37
Referring to the DF F values given in Table D.7 in App. D, you can
see that the observed F value is highly significant (Note: The table
does not give the F value for 40 observations, but mentally
interpolating the given F values, you will reach this conclusion.).
Hence, the conclusion is that the restrictions imposed by regression
(1) are invalid. More positively, it is regression (3) that seems valid.

=14.0234
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22.2

223

224

225

22.6

22.7

22.8

CHAPTER 22
TIME SERIES ECONOMETRICS: FORECASTING

As discussed in Sec. 22.1, broadly speaking there are five
methods of economic forecasting: (1) exponential smoothing, (2)
single-equation regression models, (3) simultaneous-equation
models, (4) ARIMA and (5) VAR.

Simultaneous-equation (SE) economic forecasting is based on a
system of equations (composed of at least two variables but usually
many more) that explain some economic phenomena on the basis of
some economic theory. The B-J method is based on analyzing the
stochastic properties of a single time series. Unlike SE forecasting
that is based on & regressors, B-J analysis is based on past (lagged)
values of the single variable under study. B-J analysis is often
described as a-theoretic since it is not derived from any economic
theory.

The major steps in the B-J methodology are: (1) identification, (2)
estimation, (3) diagnostic checking, and (4) forecasting.

Since the B-J method explicitly assumes that the underlying time
series is stationary, if it is applied to nonstationary time series, the
results may be totally unreliable. Think about forecasting a
random walk variable!

The B-J approach to forecasting is based on analyzing the
probabilistic properties of a single time series without relying on
any underlying economic theory. The VAR approach is based on

a simultaneous system in that all variables are considered
endogenous. In VAR, modeling the value of a variable is expressed
as a linear function of the lagged values of that variable and all other
variables included in the model.

It is a-theoretic because it uses less prior information than a SE
model. In SE models, the inclusion or exclusion of certain variables
plays a crucial role in the identification of the model.

As we discussed in Exercise 22.1, there are five methods of
forecasting. Each method has its strengths and weaknesses. There
is no one method that will suit all situations.

We want lags long enough to fully capture the dynamics of the
system being modeled. On the other hand, the longer the lags, the
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22.10

22.11

greater the number of parameters that must be estimated and hence
the fewer the degrees of freedom. Thus, there is a trade-off between
having sufficient number of lags and having sufficient degrees of
freedom. This is the weakness of VAR. Of course, one could use
Akaike or Schwarz information criteria to choose the lag length.

See the answers to Exercises 22.2 and 22.6.

Operationally, the two procedures are similar. The difference comes
in the purpose of research. In Granger causality our objective is to
test the causal connection between two or more variables. In the
VAR our main objective is to develop a model primarily for
forecasting purposes. Note that unless the underlying variables are
stationary or cointegrated, one should not use these procedures.

Problems

The steps involved are as follows:

(1) Examine the series for stationarity. We have already seen that
the PDI series is nonstationary, but its first differences are
stationary.

(2) Examine the autocorrelation function (ACF) and the partial
autocorrelation function (PACF) of the first-differenced PDI series
to decide which ARMA model may be appropriate. Note that the
PDI series is already first-differenced.

(3) Having chosen an appropriate ARMA model, the next task is to
estimate it and examine the residuals of the estimated model. If
these residuals are white noise, there is no need to further refine the
model. But if they are not, we will have to start the search, or
iterative, procedure once again.

An examination of the ACF and PACF functions does not exhibit
any clear cut pattern. The spike at lag 5 looks somewhat
pronounced, as it is very close to the upper 95% confidence limt. As
a trial, then, one could fit an autoregessive model using the intercept
and five lags.

However, there is no need to introduce all the five lags, as
correlations up to lag 4 are very small. So, we just introduce the
intercept and the fifth lag as the regressors. The regression results
were as follows:
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PDI; =22.2768-0.2423PDI,
t =(5.9678) (-2.1963)
r* =0.0568;d =2.11

where PDI represents the first differences of PDI.

The residuals from this regression seemed to be white noise,
suggesting that there is no need to refine the model.

Of course, you can add an MA component to the model and try to
re-estimate the model. We leave that as an exercise.

22.12 Follow Exercise 22.11 and try the model ARIMA (0,1,14).
22.13 Follow Exercise 22.11 and try the model ARIMA (8,1,8).
22.14 Follow Exercise 22.11 and try the model ARIMA (2,1,0).

22.15 According to the Schwarz criterion, choose the model
that has the lowest value of Schwarz statistic. The same also
applies to the (rival) Akaike criterion. Thus, in comparing a VAR
model with 8 lags against a VAR model with 10 lags, you choose
the model that has the lowest value of Schwarz statistic.

22.16 On the basis of the Schwarz criterion, it was determined that a
VAR model with 2 lags of PDI and PCE might suffice.
The regression results are as follows:

Dependent variable — PCE PDI
Explanatory Variables
J Intercept  14.655 60.944
(0.878) (2.582)
PCE,., 1.106 0.623
(8.756) (3.489)
PCE.. -0.102 -0.400
(-0.707) (-2.120)
PDI,., 0.069 0.682
(0.806) (5.630)
PDI, -0.072 0.099
(-0.877) (0.850)
R 0.998 0.997

Note. Figures in the parentheses are the # ratios.

Based on this model, the actual and forecast values of the two
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variables for 1991:1 to 1991:4 are as follows:

Quarter Actual PCE Forecast PCEActual PDI  Forecast PDI

22.17

22.18

22.19

22.20

22.21

22.22

1991:1 3241.1 3262.062 3514.8 3532.343
1991:2 32524 3277.870 35374 3550.343
1991:3 3271.2 3295.359 3539.9 3569.230
1991:4 3271.1 3313.034 3547.5 3588.260

We leave it for the reader to carry out the actual steps using
a lag length of 3.

See, for example, Eviews 4 for a discussion of the impulse response
analysis as well as the actual steps involved.

See answer to Exercise 22.18.

Although the model did not specifically test for causality, we can
get some idea about it from the reported F statistic. For the variable
x, only its own lagged values are significant. For the variable y, it
seems that besides its own lagged values, the lagged values of x are
also important. Perhaps there is some causality from x toy. For
variable z, it seems that besides its own lagged values, the lagged
values of y are also important. This suggests that there is some
causality from y to z.

For the application of the VAR methodology all the variables
entering into the model must be (jointly stationary). Perhaps in the
level form the authors found that all the three variables were non-
stationary. Taking percentage changes is one way of accomplishing
stationarity.

In the level form, M1 is nonstationary on the basis of the DF test
in its various forms. The same is true about R.

To see if they are integrated, we regressed M1 on R and obtained the
following results:

M1, =36622.11-744.4635R,
t =(19.2627) (—4.7581)

r? =0.3997;d = 0.2346
Residuals from this regression were subjected to unit root
analysis. Applying the DF tests in various forms, it was found that
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22.23

22.24

the two time series are not cointegrated.

The regression results are as follows:

Variable Coefficient  Std. Error t-Statistic

C -7.8618 1.2807 -6.1385
LOG(GDP) 1.4254 0.0962 14.8173
LOG(R) -0.0780 0.0302 -2.5822
R-squared  0.9316 Durbin-Watson d 0.3476

Since this is a double log model, the slope coefficients represent
(partial) elasticities. Here the income elasticity is 1.4254 and the
interest rate elasticity is —0.0780, and both are statistically
significant. But note that the low Durbin-Watson value suggests the
possibility of serial correlation, which may raise doubt about the
computed ¢ values.

(b) To see if the ARCH effect is present, we obtained residuals (#,)

from the regression given in (a) and obtained the following
ARCH (1) regression:

4} =0.00064 +0.344247
t =(3.1173) (2.9206)
r’ =0.2054;d = 2.11

We tried an ARCH (2) model, but the results were not significant.
It seems then that there is some ARCH effect in the present
example.

The model given here is the restricted version of the model

given in Equation (22.11.4). Therefore, we can use the restricted F
test of Chapter 8. The unrestricted R” here is 0.2153 and the
restricted R? is 0.1397. Hence the F value is:

F= (0.2153-0.1397)/2 _ 315
(1-0.2153)/(649-4)
This F value is highly significant, suggesting that one should
choose the model given in Eq. (22.11.4) over that given in the
present exercise.
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