
ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 216 October 15, 2016

216

C H A P T E R 4

More Applications

of Differentiation

“
In the fall of 1972 President Nixon announced that the rate of increase

of inflation was decreasing. This was the first time a sitting president

used the third derivative to advance his case for reelection.

”Hugo Rossi

Mathematics Is an Edifice, Not a Toolbox, Notices of the AMS, v. 43, Oct. 1996

Introduction Differential calculus can be used to analyze many kinds

of problems and situations that arise in applied disciplines.

Calculus has made and will continue to make significant contributions to every field

of human endeavour that uses quantitative measurement to further its aims. From

economics to physics and from biology to sociology, problems can be found whose

solutions can be aided by the use of some calculus.

In this chapter we will examine several kinds of problems to which the techniques

we have already learned can be applied. These problems arise both outside and within

mathematics. We will deal with the following kinds of problems:

1. Related rates problems, where the rates of change of related quantities are ana-

lyzed.

2. Root finding methods, where we try to find numerical solutions of equations.

3. Evaluation of limits.

4. Optimization problems, where a quantity is to be maximized or minimized.

5. Graphing problems, where derivatives are used to illuminate the behaviour of

functions.

6. Approximation problems, where complicated functions are approximated by poly-

nomials.

Do not assume that most of the problems we present here are “real-world” problems.

Such problems are usually too complex to be treated in a general calculus course.

However, the problems we consider, while sometimes artificial, do show how calculus

can be applied in concrete situations.

4.1 Related Rates
When two or more quantities that change with time are linked by an equation, that

equation can be differentiated with respect to time to produce an equation linking the

rates of change of the quantities. Any one of these rates may then be determined when

the others, and the values of the quantities themselves, are known. We will consider

a couple of examples before formulating a list of procedures for dealing with such

problems.
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E X A M P L E 1
An aircraft is flying horizontally at a speed of 600 km/h. How fast

is the distance between the aircraft and a radio beacon increasing

1 min after the aircraft passes 5 km directly above the beacon?

Solution A diagram is useful here; see Figure 4.1. LetC be the point on the aircraft’s

path directly above the beacon B . Let A be the position of the aircraft

t min after it is at C , and let x and s be the distances CA and BA, respectively. From

the right triangle BCA we have

x
600 km/h

5 km s

A

B

C

Figure 4.1

s
2
D x

2
C 5

2
:

We differentiate this equation implicitly with respect to t to obtain

2s
ds

dt
D 2x

dx

dt
:

We are given that dx=dt = 600 km/h = 10 km/min. Therefore, x D 10 km at time

t D 1 min. At that time s D
p

102
C 52

D 5
p

5 km and is increasing at the rate

ds

dt
D

x

s

dx

dt
D

10

5
p

5
.600/ D

1; 200
p

5
� 536:7 km/h:

One minute after the aircraft passes over the beacon, its distance from the beacon is

increasing at about 537 km/h.

E X A M P L E 2
How fast is the area of a rectangle changing if one side is 10 cm

long and is increasing at a rate of 2 cm/s and the other side is 8 cm

long and is decreasing at a rate of 3 cm/s?

Solution Let the lengths of the sides of the rectangle at time t be x cm and y cm,

respectively. Thus, the area at time t is A D xy cm2. (See Figure 4.2.) We want

to know the value of dA=dt when x D 10 and y D 8, given that dx=dt D 2 and

dy=dt D �3. (Note the negative sign to indicate that y is decreasing.) Since all

the quantities in the equation A D xy are functions of time, we can differentiate that

equation implicitly with respect to time and obtain

dA

dt

ˇ

ˇ

ˇ

ˇ

xD10
yD8

D

�

dx

dt
y C x

dy

dt

�
ˇ

ˇ

ˇ

ˇ

xD10
yD8

D 2.8/C 10.�3/ D �14:

At the time in question, the area of the rectangle is decreasing at a rate of 14 cm2/s.

yA D xy

x

Figure 4.2 Rectangle with sides changing

Procedures for Related-Rates Problems
In view of these examples we can formulate a few general procedures for dealing with

related-rates problems.
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How to solve related-rates problems

1. Read the problem very carefully. Try to understand the relationships be-

tween the variable quantities. What is given? What is to be found?

2. Make a sketch if appropriate.

3. Define any symbols you want to use that are not defined in the statement

of the problem. Express given and required quantities and rates in terms

of these symbols.

4. From a careful reading of the problem or consideration of the sketch,

identify one or more equations linking the variable quantities. (You will

need as many equations as quantities or rates to be found in the problem.)

5. Differentiate the equation(s) implicitly with respect to time, regarding all

variable quantities as functions of time. You can manipulate the equa-

tion(s) algebraically before the differentiation is performed (for instance,

you could solve for the quantities whose rates are to be found), but it is

usually easier to differentiate the equations as they are originally obtained

and solve for the desired items later.

6. Substitute any given values for the quantities and their rates, then solve

the resulting equation(s) for the unknown quantities and rates.

7. Make a concluding statement answering the question asked. Is your an-

swer reasonable? If not, check back through your solution to see what

went wrong.

E X A M P L E 3
A lighthouse L is located on a small island 2 km from the nearest

point A on a long, straight shoreline. If the lighthouse lamp rotates

at 3 revolutions per minute, how fast is the illuminated spot P on the shoreline moving

along the shoreline when it is 4 km from A?

Solution Referring to Figure 4.3, let x be the distance AP , and let � be the angle

PLA. Then x D 2 tan � and

dx

dt
D 2 sec2

�
d�

dt
:

Now

L

�

2 km

A x P

Figure 4.3

d�

dt
D .3 rev/min/.2� radians/rev/ D 6� radians/min:

When x D 4, we have tan � D 2 and sec2 � D 1C tan2 � D 5. Thus,

dx

dt
D .2/.5/.6�/ D 60� � 188:5:

The spot of light is moving along the shoreline at a rate of about 189 km/min when it

is 4 km from A.

(Note that it was essential to convert the rate of change of � from revolutions per

minute to radians per minute. If � were not measured in radians we could not assert

that .d=d�/ tan � D sec2 � .)

E X A M P L E 4
A leaky water tank is in the shape of an inverted right circular cone

with depth 5 m and top radius 2 m. When the water in the tank is

4 m deep, it is leaking out at a rate of 1=12 m3/min. How fast is the water level in the

tank dropping at that time?
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Solution Let r and h denote the surface radius and depth of water in the tank at time

t (both measured in metres). Thus, the volume V (in cubic metres) of water in the tank

at time t is

V D
1

3
� r

2
h:

Using similar triangles (see Figure 4.4), we can find a relationship between r and h:

r

h
D

2

5
; so r D

2h

5
and V D

1

3
�

�

2h

5

�2

h D
4�

75
h

3
:

Differentiating this equation with respect to t , we obtain

dV

dt
D

4�

25
h

2 dh

dt
:

Since dV=dt D �1=12 when h D 4, we have

�1

12
D

4�

25
.4

2
/
dh

dt
; so

dh

dt
D �

25

768�
:

When the water in the tank is 4 m deep, its level is dropping at a rate of

25=.768�/ m/min, or about 1.036 cm/min.

5

h

2

r

Figure 4.4 The conical tank of Example 4

A x
400 km/h

100 km/h

y

C

1 km

45ı

Z

X

s

Y

Figure 4.5 Aircraft and car paths in Example 5

E X A M P L E 5
At a certain instant an aircraft flying due east at 400 km/h passes

directly over a car travelling due southeast at 100 km/h on a straight,

level road. If the aircraft is flying at an altitude of 1 km, how fast is the distance be-

tween the aircraft and the car increasing 36 s after the aircraft passes directly over the

car?

Solution A good diagram is essential here. See Figure 4.5. Let time t be measured in

hours from the time the aircraft was at position A directly above the car at position C .

LetX and Y be the positions of the aircraft and the car, respectively, at time t . Let x be

the distanceAX , y the distance CY; and s the distanceXY; all measured in kilometres.

LetZ be the point 1 km above Y: Since angle XAZ D 45ı, the Pythagorean Theorem

and Cosine Law yield

s
2
D 1C .ZX/

2
D 1C x

2
C y

2
� 2xy cos 45ı

D 1C x
2
C y

2
�

p

2 xy:

9780134154367_Calculus   238 05/12/16   3:14 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 218 October 15, 2016

218 CHAPTER 4 More Applications of Differentiation

How to solve related-rates problems

1. Read the problem very carefully. Try to understand the relationships be-

tween the variable quantities. What is given? What is to be found?

2. Make a sketch if appropriate.

3. Define any symbols you want to use that are not defined in the statement

of the problem. Express given and required quantities and rates in terms

of these symbols.

4. From a careful reading of the problem or consideration of the sketch,

identify one or more equations linking the variable quantities. (You will

need as many equations as quantities or rates to be found in the problem.)

5. Differentiate the equation(s) implicitly with respect to time, regarding all

variable quantities as functions of time. You can manipulate the equa-

tion(s) algebraically before the differentiation is performed (for instance,

you could solve for the quantities whose rates are to be found), but it is

usually easier to differentiate the equations as they are originally obtained

and solve for the desired items later.

6. Substitute any given values for the quantities and their rates, then solve

the resulting equation(s) for the unknown quantities and rates.

7. Make a concluding statement answering the question asked. Is your an-

swer reasonable? If not, check back through your solution to see what

went wrong.

E X A M P L E 3
A lighthouse L is located on a small island 2 km from the nearest

point A on a long, straight shoreline. If the lighthouse lamp rotates

at 3 revolutions per minute, how fast is the illuminated spot P on the shoreline moving

along the shoreline when it is 4 km from A?

Solution Referring to Figure 4.3, let x be the distance AP , and let � be the angle

PLA. Then x D 2 tan � and

dx

dt
D 2 sec2

�
d�

dt
:

Now

L

�

2 km

A x P

Figure 4.3

d�

dt
D .3 rev/min/.2� radians/rev/ D 6� radians/min:

When x D 4, we have tan � D 2 and sec2 � D 1C tan2 � D 5. Thus,

dx

dt
D .2/.5/.6�/ D 60� � 188:5:

The spot of light is moving along the shoreline at a rate of about 189 km/min when it

is 4 km from A.

(Note that it was essential to convert the rate of change of � from revolutions per

minute to radians per minute. If � were not measured in radians we could not assert

that .d=d�/ tan � D sec2 � .)

E X A M P L E 4
A leaky water tank is in the shape of an inverted right circular cone

with depth 5 m and top radius 2 m. When the water in the tank is

4 m deep, it is leaking out at a rate of 1=12 m3/min. How fast is the water level in the

tank dropping at that time?

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 219 October 15, 2016

SECTION 4.1: Related Rates 219

Solution Let r and h denote the surface radius and depth of water in the tank at time

t (both measured in metres). Thus, the volume V (in cubic metres) of water in the tank

at time t is

V D
1

3
� r

2
h:

Using similar triangles (see Figure 4.4), we can find a relationship between r and h:

r

h
D

2

5
; so r D

2h

5
and V D

1

3
�

�

2h

5

�2

h D
4�

75
h

3
:

Differentiating this equation with respect to t , we obtain

dV

dt
D

4�

25
h

2 dh

dt
:

Since dV=dt D �1=12 when h D 4, we have

�1

12
D

4�

25
.4

2
/
dh

dt
; so

dh

dt
D �

25

768�
:

When the water in the tank is 4 m deep, its level is dropping at a rate of

25=.768�/ m/min, or about 1.036 cm/min.

5

h

2

r

Figure 4.4 The conical tank of Example 4

A x
400 km/h

100 km/h

y

C

1 km

45ı

Z

X

s

Y

Figure 4.5 Aircraft and car paths in Example 5

E X A M P L E 5
At a certain instant an aircraft flying due east at 400 km/h passes

directly over a car travelling due southeast at 100 km/h on a straight,

level road. If the aircraft is flying at an altitude of 1 km, how fast is the distance be-

tween the aircraft and the car increasing 36 s after the aircraft passes directly over the

car?

Solution A good diagram is essential here. See Figure 4.5. Let time t be measured in

hours from the time the aircraft was at position A directly above the car at position C .

LetX and Y be the positions of the aircraft and the car, respectively, at time t . Let x be

the distanceAX , y the distance CY; and s the distanceXY; all measured in kilometres.

LetZ be the point 1 km above Y: Since angle XAZ D 45ı, the Pythagorean Theorem

and Cosine Law yield

s
2
D 1C .ZX/

2
D 1C x

2
C y

2
� 2xy cos 45ı

D 1C x
2
C y

2
�

p

2 xy:

9780134154367_Calculus   239 05/12/16   3:14 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 220 October 15, 2016

220 CHAPTER 4 More Applications of Differentiation

Thus,

2s
ds

dt
D 2x

dx

dt
C 2y

dy

dt
�

p

2
dx

dt
y �
p

2 x
dy

dt

D 400.2x �
p

2 y/C 100.2y �
p

2 x/;

since dx=dt D 400 and dy=dt D 100. When t D 1=100 (i.e., 36 s after t D 0), we

have x D 4 and y D 1. Hence,

s
2
D 1C 16C 1 � 4

p

2 D 18 � 4
p

2

s � 3:5133:

ds

dt
D

1

2s

�

400.8 �
p

2/C 100.2 � 4
p

2/
�

� 322:86:

The aircraft and the car are separating at a rate of about 323 km/h after 36 s. (Note that

it was necessary to convert 36 s to hours in the solution. In general, all measurements

should be in compatible units.)

E X E R C I S E S 4.1

1. Find the rate of change of the area of a square whose side is

8 cm long, if the side length is increasing at 2 cm/min.

2. The area of a square is decreasing at 2 ft2/s. How fast is the

side length changing when it is 8 ft?

3. A pebble dropped into a pond causes a circular ripple to

expand outward from the point of impact. How fast is the area

enclosed by the ripple increasing when the radius is

20 cm and is increasing at a rate of 4 cm/s?

4. The area of a circle is decreasing at a rate of 2 cm2/min. How

fast is the radius of the circle changing when the area is 100

cm2?

5. The area of a circle is increasing at 1=3 km2/h. Express the

rate of change of the radius of the circle as a function of

(a) the radius r and (b) the area A of the circle.

6. At a certain instant the length of a rectangle is 16 m and the

width is 12 m. The width is increasing at 3 m/s. How fast is

the length changing if the area of the rectangle is not

changing?

7. Air is being pumped into a spherical balloon. The volume of

the balloon is increasing at a rate of 20 cm3/s when the radius

is 30 cm. How fast is the radius increasing at that time? (The

volume of a ball of radius r units is V D 4
3
�r3 cubic units.)

8. When the diameter of a ball of ice is 6 cm, it is decreasing at a

rate of 0.5 cm/h due to melting of the ice. How fast is the

volume of the ice ball decreasing at that time?

9. How fast is the surface area of a cube changing when the

volume of the cube is 64 cm3 and is increasing at 2 cm3/s?

10. The volume of a right circular cylinder is 60 cm3 and is

increasing at 2 cm3/min at a time when the radius is 5 cm and

is increasing at 1 cm/min. How fast is the height of the

cylinder changing at that time?

11. How fast is the volume of a rectangular box changing when

the length is 6 cm, the width is 5 cm, and the depth is 4 cm, if

the length and depth are both increasing at a rate of 1 cm/s and

the width is decreasing at a rate of 2 cm/s?

12. The area of a rectangle is increasing at a rate of 5 m2/s while

the length is increasing at a rate of 10 m/s. If the length is

20 m and the width is 16 m, how fast is the width changing?

13. A point moves on the curve y D x2. How fast is y changing

when x D �2 and x is decreasing at a rate of 3?

14. A point is moving to the right along the first-quadrant portion

of the curve x2y3
D 72. When the point has coordinates

.3; 2/, its horizontal velocity is 2 units/s. What is its vertical

velocity?

15. The point P moves so that at time t it is at the intersection of

the curves xy D t and y D tx2. How fast is the distance of P

from the origin changing at time t D 2?

16. (Radar guns) A police officer is standing near a highway

using a radar gun to catch speeders. (See Figure 4.6.) He aims

the gun at a car that has just passed his position and, when the

gun is pointing at an angle of 45ı to the direction of the

highway, notes that the distance between the car and the gun is

increasing at a rate of 100 km/h. How fast is the car travelling?

k s

x

A C

P

Figure 4.6

17. If the radar gun of Exercise 16 is aimed at a car travelling at

90 km/h along a straight road, what will its reading be when it

is aimed making an angle of 30ı with the road?
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18. The top of a ladder 5 m long rests against a vertical wall. If the

base of the ladder is being pulled away from the base of the

wall at a rate of 1/3 m/s, how fast is the top of the ladder

slipping down the wall when it is 3 m above the base of the

wall?

19. A man 2 m tall walks toward a lamppost on level ground at a

rate of 0.5 m/s. If the lamp is 5 m high on the post, how fast is

the length of the man’s shadow decreasing when he is 3 m

from the post? How fast is the shadow of his head moving at

that time?

20. A woman 6 ft tall is walking at 2 ft/s along a straight path on

level ground. There is a lamppost 5 ft to the side of the path.

A light 15 ft high on the lamppost casts the woman’s shadow

on the ground. How fast is the length of her shadow changing

when the woman is 12 feet from the point on the path closest

to the lamppost?

21. (Cost of production) It costs a coal mine owner $C each day

to maintain a production of x tonnes of coal, where

C D 10;000C 3x C x
2=8;000. At what rate is the production

increasing when it is 12,000 tonnes and the daily cost is

increasing at $600 per day?

22. (Distance between ships) At 1:00 p.m. ship A is 25 km due

north of ship B . If ship A is sailing west at a rate of

16 km/h and ship B is sailing south at 20 km/h, at what rate is

the distance between the two ships changing at 1:30 p.m?

23. What is the first time after 3:00 p.m. that the hands of a clock

are together?

24. (Tracking a balloon) A balloon released at point A rises

vertically with a constant speed of 5 m/s. Point B is level with

and 100 m distant from point A. How fast is the angle of

elevation of the balloon at B changing when the balloon is

200 m above A?

25. Sawdust is falling onto a pile at a rate of 1/2 m3/min. If the

pile maintains the shape of a right circular cone with height

equal to half the diameter of its base, how fast is the height of

the pile increasing when the pile is 3 m high?

26. (Conical tank) A water tank is in the shape of an inverted

right circular cone with top radius 10 m and depth 8 m. Water

is flowing in at a rate of 1/10 m3/min. How fast is the depth of

water in the tank increasing when the water is 4 m deep?

27. (Leaky tank) Repeat Exercise 26 with the added assumption

that water is leaking out of the bottom of the tank at a rate of

h3=1;000 m3/min when the depth of water in the tank is h m.

How full can the tank get in this case?

28. (Another leaky tank) Water is pouring into a leaky tank at a

rate of 10 m3/h. The tank is a cone with vertex down, 9 m in

depth and 6 m in diameter at the top. The surface of water in

the tank is rising at a rate of 20 cm/h when the depth is

6 m. How fast is the water leaking out at that time?

29. (Kite flying) How fast must you let out line if the kite you are

flying is 30 m high, 40 m horizontally away from you, and

moving horizontally away from you at a rate of 10 m/min?

30. (Ferris wheel) You are on a Ferris wheel of diameter 20 m. It

is rotating at 1 revolution per minute. How fast are you rising

or falling when you are 6 m horizontally away from the

vertical line passing through the centre of the wheel?

31. (Distance between aircraft) An aircraft is 144 km east of an

airport and is travelling west at 200 km/h. At the same time, a

second aircraft at the same altitude is 60 km north of the

airport and travelling north at 150 km/h. How fast is the

distance between the two aircraft changing?

32. (Production rate) If a truck factory employs x workers and

has daily operating expenses of $y, it can produce

P D .1=3/x
0:6y0:4 trucks per year. How fast are the daily

expenses decreasing when they are $10,000 and the number of

workers is 40, if the number of workers is increasing at

1 per day and production is remaining constant?

33. A lamp is located at point .3; 0/ in the xy-plane. An ant is

crawling in the first quadrant of the plane and the lamp casts

its shadow onto the y-axis. How fast is the ant’s shadow

moving along the y-axis when the ant is at position .1; 2/ and

moving so that its x-coordinate is increasing at rate

1/3 units/s and its y-coordinate is decreasing at 1/4 units/s?

34. A straight highway and a straight canal intersect at right

angles, the highway crossing over the canal on a bridge 20 m

above the water. A boat travelling at 20 km/h passes under the

bridge just as a car travelling at 80 km/h passes over it. How

fast are the boat and car separating after one minute?

35. (Filling a trough) The cross section of a water trough is an

equilateral triangle with top edge horizontal. If the trough is

10 m long and 30 cm deep, and if water is flowing in at a rate

of 1/4 m3/min, how fast is the water level rising when the

water is 20 cm deep at the deepest?

36. (Draining a pool) A rectangular swimming pool is 8 m wide

and 20 m long. (See Figure 4.7.) Its bottom is a sloping plane,

the depth increasing from 1 m at the shallow end to 3 m at the

deep end. Water is draining out of the pool at a rate of

1 m3/min. How fast is the surface of the water falling when

the depth of water at the deep end is (a) 2.5 m? (b) 1 m?

20 m

1 m

8 m

3 m

Figure 4.7

37.I One end of a 10 m long ladder is on the ground. The ladder is

supported partway along its length by resting on top of a 3 m

high fence. (See Figure 4.8.) If the bottom of the ladder is 4 m

from the base of the fence and is being dragged along the

ground away from the fence at a rate of 1/5 m/s, how fast is the

free top end of the ladder moving (a) vertically and (b)

horizontally?

x

1=5 m/s

3 m

10 m

Figure 4.8
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Thus,

2s
ds

dt
D 2x

dx

dt
C 2y

dy

dt
�

p

2
dx

dt
y �
p

2 x
dy

dt

D 400.2x �
p

2 y/C 100.2y �
p

2 x/;

since dx=dt D 400 and dy=dt D 100. When t D 1=100 (i.e., 36 s after t D 0), we

have x D 4 and y D 1. Hence,

s
2
D 1C 16C 1 � 4

p

2 D 18 � 4
p

2

s � 3:5133:

ds

dt
D

1

2s

�

400.8 �
p

2/C 100.2 � 4
p

2/
�

� 322:86:

The aircraft and the car are separating at a rate of about 323 km/h after 36 s. (Note that

it was necessary to convert 36 s to hours in the solution. In general, all measurements

should be in compatible units.)

E X E R C I S E S 4.1

1. Find the rate of change of the area of a square whose side is

8 cm long, if the side length is increasing at 2 cm/min.

2. The area of a square is decreasing at 2 ft2/s. How fast is the

side length changing when it is 8 ft?

3. A pebble dropped into a pond causes a circular ripple to

expand outward from the point of impact. How fast is the area

enclosed by the ripple increasing when the radius is

20 cm and is increasing at a rate of 4 cm/s?

4. The area of a circle is decreasing at a rate of 2 cm2/min. How

fast is the radius of the circle changing when the area is 100

cm2?

5. The area of a circle is increasing at 1=3 km2/h. Express the

rate of change of the radius of the circle as a function of

(a) the radius r and (b) the area A of the circle.

6. At a certain instant the length of a rectangle is 16 m and the

width is 12 m. The width is increasing at 3 m/s. How fast is

the length changing if the area of the rectangle is not

changing?

7. Air is being pumped into a spherical balloon. The volume of

the balloon is increasing at a rate of 20 cm3/s when the radius

is 30 cm. How fast is the radius increasing at that time? (The

volume of a ball of radius r units is V D 4
3
�r3 cubic units.)

8. When the diameter of a ball of ice is 6 cm, it is decreasing at a

rate of 0.5 cm/h due to melting of the ice. How fast is the

volume of the ice ball decreasing at that time?

9. How fast is the surface area of a cube changing when the

volume of the cube is 64 cm3 and is increasing at 2 cm3/s?

10. The volume of a right circular cylinder is 60 cm3 and is

increasing at 2 cm3/min at a time when the radius is 5 cm and

is increasing at 1 cm/min. How fast is the height of the

cylinder changing at that time?

11. How fast is the volume of a rectangular box changing when

the length is 6 cm, the width is 5 cm, and the depth is 4 cm, if

the length and depth are both increasing at a rate of 1 cm/s and

the width is decreasing at a rate of 2 cm/s?

12. The area of a rectangle is increasing at a rate of 5 m2/s while

the length is increasing at a rate of 10 m/s. If the length is

20 m and the width is 16 m, how fast is the width changing?

13. A point moves on the curve y D x2. How fast is y changing

when x D �2 and x is decreasing at a rate of 3?

14. A point is moving to the right along the first-quadrant portion

of the curve x2y3
D 72. When the point has coordinates

.3; 2/, its horizontal velocity is 2 units/s. What is its vertical

velocity?

15. The point P moves so that at time t it is at the intersection of

the curves xy D t and y D tx2. How fast is the distance of P

from the origin changing at time t D 2?

16. (Radar guns) A police officer is standing near a highway

using a radar gun to catch speeders. (See Figure 4.6.) He aims

the gun at a car that has just passed his position and, when the

gun is pointing at an angle of 45ı to the direction of the

highway, notes that the distance between the car and the gun is

increasing at a rate of 100 km/h. How fast is the car travelling?

k s

x

A C

P

Figure 4.6

17. If the radar gun of Exercise 16 is aimed at a car travelling at

90 km/h along a straight road, what will its reading be when it

is aimed making an angle of 30ı with the road?
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18. The top of a ladder 5 m long rests against a vertical wall. If the

base of the ladder is being pulled away from the base of the

wall at a rate of 1/3 m/s, how fast is the top of the ladder

slipping down the wall when it is 3 m above the base of the

wall?

19. A man 2 m tall walks toward a lamppost on level ground at a

rate of 0.5 m/s. If the lamp is 5 m high on the post, how fast is

the length of the man’s shadow decreasing when he is 3 m

from the post? How fast is the shadow of his head moving at

that time?

20. A woman 6 ft tall is walking at 2 ft/s along a straight path on

level ground. There is a lamppost 5 ft to the side of the path.

A light 15 ft high on the lamppost casts the woman’s shadow

on the ground. How fast is the length of her shadow changing

when the woman is 12 feet from the point on the path closest

to the lamppost?

21. (Cost of production) It costs a coal mine owner $C each day

to maintain a production of x tonnes of coal, where

C D 10;000C 3x C x
2=8;000. At what rate is the production

increasing when it is 12,000 tonnes and the daily cost is

increasing at $600 per day?

22. (Distance between ships) At 1:00 p.m. ship A is 25 km due

north of ship B . If ship A is sailing west at a rate of

16 km/h and ship B is sailing south at 20 km/h, at what rate is

the distance between the two ships changing at 1:30 p.m?

23. What is the first time after 3:00 p.m. that the hands of a clock

are together?

24. (Tracking a balloon) A balloon released at point A rises

vertically with a constant speed of 5 m/s. Point B is level with

and 100 m distant from point A. How fast is the angle of

elevation of the balloon at B changing when the balloon is

200 m above A?

25. Sawdust is falling onto a pile at a rate of 1/2 m3/min. If the

pile maintains the shape of a right circular cone with height

equal to half the diameter of its base, how fast is the height of

the pile increasing when the pile is 3 m high?

26. (Conical tank) A water tank is in the shape of an inverted

right circular cone with top radius 10 m and depth 8 m. Water

is flowing in at a rate of 1/10 m3/min. How fast is the depth of

water in the tank increasing when the water is 4 m deep?

27. (Leaky tank) Repeat Exercise 26 with the added assumption

that water is leaking out of the bottom of the tank at a rate of

h3=1;000 m3/min when the depth of water in the tank is h m.

How full can the tank get in this case?

28. (Another leaky tank) Water is pouring into a leaky tank at a

rate of 10 m3/h. The tank is a cone with vertex down, 9 m in

depth and 6 m in diameter at the top. The surface of water in

the tank is rising at a rate of 20 cm/h when the depth is

6 m. How fast is the water leaking out at that time?

29. (Kite flying) How fast must you let out line if the kite you are

flying is 30 m high, 40 m horizontally away from you, and

moving horizontally away from you at a rate of 10 m/min?

30. (Ferris wheel) You are on a Ferris wheel of diameter 20 m. It

is rotating at 1 revolution per minute. How fast are you rising

or falling when you are 6 m horizontally away from the

vertical line passing through the centre of the wheel?

31. (Distance between aircraft) An aircraft is 144 km east of an

airport and is travelling west at 200 km/h. At the same time, a

second aircraft at the same altitude is 60 km north of the

airport and travelling north at 150 km/h. How fast is the

distance between the two aircraft changing?

32. (Production rate) If a truck factory employs x workers and

has daily operating expenses of $y, it can produce

P D .1=3/x
0:6y0:4 trucks per year. How fast are the daily

expenses decreasing when they are $10,000 and the number of

workers is 40, if the number of workers is increasing at

1 per day and production is remaining constant?

33. A lamp is located at point .3; 0/ in the xy-plane. An ant is

crawling in the first quadrant of the plane and the lamp casts

its shadow onto the y-axis. How fast is the ant’s shadow

moving along the y-axis when the ant is at position .1; 2/ and

moving so that its x-coordinate is increasing at rate

1/3 units/s and its y-coordinate is decreasing at 1/4 units/s?

34. A straight highway and a straight canal intersect at right

angles, the highway crossing over the canal on a bridge 20 m

above the water. A boat travelling at 20 km/h passes under the

bridge just as a car travelling at 80 km/h passes over it. How

fast are the boat and car separating after one minute?

35. (Filling a trough) The cross section of a water trough is an

equilateral triangle with top edge horizontal. If the trough is

10 m long and 30 cm deep, and if water is flowing in at a rate

of 1/4 m3/min, how fast is the water level rising when the

water is 20 cm deep at the deepest?

36. (Draining a pool) A rectangular swimming pool is 8 m wide

and 20 m long. (See Figure 4.7.) Its bottom is a sloping plane,

the depth increasing from 1 m at the shallow end to 3 m at the

deep end. Water is draining out of the pool at a rate of

1 m3/min. How fast is the surface of the water falling when

the depth of water at the deep end is (a) 2.5 m? (b) 1 m?

20 m

1 m

8 m

3 m

Figure 4.7

37.I One end of a 10 m long ladder is on the ground. The ladder is

supported partway along its length by resting on top of a 3 m

high fence. (See Figure 4.8.) If the bottom of the ladder is 4 m

from the base of the fence and is being dragged along the

ground away from the fence at a rate of 1/5 m/s, how fast is the

free top end of the ladder moving (a) vertically and (b)

horizontally?

x

1=5 m/s

3 m

10 m

Figure 4.8
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AB

P

4 m

y x

Q
1/2 m/s

Figure 4.9

38.I Two crates, A and B , are on the floor of a warehouse. The

crates are joined by a rope 15 m long, each crate being hooked

at floor level to an end of the rope. The rope is stretched tight

and pulled over a pulley P that is attached to a rafter 4 m

above a point Q on the floor directly between the two crates.

(See Figure 4.9.) If crate A is 3 m from Q and is being pulled

directly away from Q at a rate of 1/2 m/s, how fast is crate B

moving toward Q?

39. (Tracking a rocket) Shortly after launch, a rocket is

100 km high and 50 km downrange. If it is travelling at

4 km/s at an angle of 30ı above the horizontal, how fast is its

angle of elevation, as measured at the launch site, changing?

40. (Shadow of a falling ball) A lamp is 20 m high on a pole. At

time t D 0 a ball is dropped from a point level with the lamp

and 10 m away from it. The ball falls under gravity (its

acceleration is 9.8 m/s2) until it hits the ground. How fast is

the shadow of the ball moving along the ground (a) 1 s after

the ball is dropped? (b) just as the ball hits the ground?

41. (Tracking a rocket) A rocket blasts off at time t D 0 and

climbs vertically with acceleration 10 m/s2. The progress of

the rocket is monitored by a tracking station located 2 km

horizontally away from the launch pad. How fast is the

tracking station antenna rotating upward 10 s after launch?

4.2 Finding Roots of Equations

Finding solutions (roots) of equations is an important mathematical problem to which

calculus can make significant contributions. There are only a few general classes of

equations of the form f .x/ D 0 that we can solve exactly. These include linear

equations:

ax C b D 0; .a ¤ 0/ ) x D �
b

a

and quadratic equations:

ax
2
C bx C c D 0; .a ¤ 0/ ) x D

�b ˙
p

b2
� 4ac

2a
:

Cubic and quartic (3rd- and 4th-degree polynomial) equations can also be solved, but

the formulas are very complicated. We usually solve these and most other equations

approximately by using numerical methods, often with the aid of a calculator or com-

puter.

In Section 1.4 we discussed the Bisection Method for approximating a root of an

equation f .x/ D 0. That method uses the Intermediate-Value Theorem and depends

only on the continuity of f and our ability to find an interval Œx1; x2� that must contain

the root because f .x1/ and f .x2/ have opposite signs. The method is rather slow; it

requires between three and four iterations to gain one significant figure of precision in

the root being approximated.

If we know that f is more than just continuous, we can devise better (i.e., faster)

methods for finding roots of f .x/ D 0. We study two such methods in this section:

(a) Fixed-Point Iteration, which looks for solutions of an equation of the form x D

f .x/. Such solutions are called fixed points of the function f:

(b) Newton’s Method, which looks for solutions of the equation f .x/ D 0 as fixed

points of the function g.x/ D x �
f .x/

f 0.x/
, that is, points x such that x D g.x/.

This method is usually very efficient, but it requires that f be differentiable.
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Like the Bisection Method, both of these methods require that we have at the outset a

rough idea of where a root can be found, and they generate sequences of approxima-

tions that get closer and closer to the root.

Discrete Maps and Fixed-Point Iteration
A discrete map is an equation of the form

xnC1 D f .xn/; for n D 0; 1; 2; : : : ;

which generates a sequence of values x1, x2, x3, : : : , from a given starting value x0. In

certain circumstances this sequence of numbers will converge to a limit,

r D limn!1 xn, in which case this limit will be a fixed point of f : r D f .r/.

(A thorough discussion of convergence of sequences can be found in Section 9.1. For

our purposes here, an intuitive understanding will suffice: limn!1 xn D r if jxn � r j

approaches 0 as n!1.)

For certain kinds of functions f; we can solve the equation f .r/ D r by starting

with an initial guess x0 and calculating subsequent values of the discrete map until

sufficient accuracy is achieved. This is the Method of Fixed-Point Iteration. Let us

begin by investigating a simple example:

E X A M P L E 1
Find a root of the equation cos x D 5x.

Solution This equation is of the form f .x/ D x, where f .x/ D 1
5

cos x. Since cos x

is close to 1 for x near 0, we see that 1
5

cos x will be close to 1
5

when x D 1
5

. This

suggests that a reasonable first guess at the fixed point is x0 D
1
5
D 0:2. The values of

Table 1.

n xn

0 0:2

1 0:196 013 32

2 0:196 170 16

3 0:196 164 05

4 0:196 164 29

5 0:196 164 28

6 0:196 164 28

subsequent approximations

x1 D
1

5
cos x0; x2 D

1

5
cos x1; x3 D

1

5
cos x2; : : :

are presented in Table 1. The root is 0:196 164 28 to 8 decimal places.

Why did the method used in Example 1 work? Will it work for any function f ‹

In order to answer these questions, examine the polygonal line in Figure 4.10. Starting

at x0 it goes vertically to the curve y D f .x/, the height there being x1. Then it goes

horizontally to the line y D x, meeting that line at a point whose x-coordinate must

therefore also be x1. Then the process repeats; the line goes vertically to the curve

y D f .x/ and horizontally to y D x, arriving at x D x2. The line continues in this

way, “spiralling” closer and closer to the intersection of y D f .x/ and y D x. Each

value of xn is closer to the fixed point r than the previous value.

Now consider the function f whose graph appears in Figure 4.11(a). If we try the

same method there, starting with x0, the polygonal line spirals outward, away from the

root, and the resulting values xn will not “converge” to the root as they did in Example

1. To see why the method works for the function in Figure 4.10 but not for the function

in Figure 4.11(a), observe the slopes of the two graphs y D f .x/ near the fixed point

r . Both slopes are negative, but in Figure 4.10 the absolute value of the slope is less

than 1 while the absolute value of the slope of f in Figure 4.11(a) is greater than 1.

Close consideration of the graphs should convince you that it is this fact that caused

the points xn to get closer to r in Figure 4.10 and farther from r in Figure 4.11(a).
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Figure 4.9

38.I Two crates, A and B , are on the floor of a warehouse. The

crates are joined by a rope 15 m long, each crate being hooked

at floor level to an end of the rope. The rope is stretched tight

and pulled over a pulley P that is attached to a rafter 4 m

above a point Q on the floor directly between the two crates.

(See Figure 4.9.) If crate A is 3 m from Q and is being pulled

directly away from Q at a rate of 1/2 m/s, how fast is crate B

moving toward Q?

39. (Tracking a rocket) Shortly after launch, a rocket is

100 km high and 50 km downrange. If it is travelling at

4 km/s at an angle of 30ı above the horizontal, how fast is its

angle of elevation, as measured at the launch site, changing?

40. (Shadow of a falling ball) A lamp is 20 m high on a pole. At

time t D 0 a ball is dropped from a point level with the lamp

and 10 m away from it. The ball falls under gravity (its

acceleration is 9.8 m/s2) until it hits the ground. How fast is

the shadow of the ball moving along the ground (a) 1 s after

the ball is dropped? (b) just as the ball hits the ground?

41. (Tracking a rocket) A rocket blasts off at time t D 0 and

climbs vertically with acceleration 10 m/s2. The progress of

the rocket is monitored by a tracking station located 2 km

horizontally away from the launch pad. How fast is the

tracking station antenna rotating upward 10 s after launch?

4.2 Finding Roots of Equations

Finding solutions (roots) of equations is an important mathematical problem to which

calculus can make significant contributions. There are only a few general classes of

equations of the form f .x/ D 0 that we can solve exactly. These include linear

equations:

ax C b D 0; .a ¤ 0/ ) x D �
b

a

and quadratic equations:

ax
2
C bx C c D 0; .a ¤ 0/ ) x D

�b ˙
p

b2
� 4ac

2a
:

Cubic and quartic (3rd- and 4th-degree polynomial) equations can also be solved, but

the formulas are very complicated. We usually solve these and most other equations

approximately by using numerical methods, often with the aid of a calculator or com-

puter.

In Section 1.4 we discussed the Bisection Method for approximating a root of an

equation f .x/ D 0. That method uses the Intermediate-Value Theorem and depends

only on the continuity of f and our ability to find an interval Œx1; x2� that must contain

the root because f .x1/ and f .x2/ have opposite signs. The method is rather slow; it

requires between three and four iterations to gain one significant figure of precision in

the root being approximated.

If we know that f is more than just continuous, we can devise better (i.e., faster)

methods for finding roots of f .x/ D 0. We study two such methods in this section:

(a) Fixed-Point Iteration, which looks for solutions of an equation of the form x D

f .x/. Such solutions are called fixed points of the function f:

(b) Newton’s Method, which looks for solutions of the equation f .x/ D 0 as fixed

points of the function g.x/ D x �
f .x/

f 0.x/
, that is, points x such that x D g.x/.

This method is usually very efficient, but it requires that f be differentiable.
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Like the Bisection Method, both of these methods require that we have at the outset a

rough idea of where a root can be found, and they generate sequences of approxima-

tions that get closer and closer to the root.

Discrete Maps and Fixed-Point Iteration
A discrete map is an equation of the form

xnC1 D f .xn/; for n D 0; 1; 2; : : : ;

which generates a sequence of values x1, x2, x3, : : : , from a given starting value x0. In

certain circumstances this sequence of numbers will converge to a limit,

r D limn!1 xn, in which case this limit will be a fixed point of f : r D f .r/.

(A thorough discussion of convergence of sequences can be found in Section 9.1. For

our purposes here, an intuitive understanding will suffice: limn!1 xn D r if jxn � r j

approaches 0 as n!1.)

For certain kinds of functions f; we can solve the equation f .r/ D r by starting

with an initial guess x0 and calculating subsequent values of the discrete map until

sufficient accuracy is achieved. This is the Method of Fixed-Point Iteration. Let us

begin by investigating a simple example:

E X A M P L E 1
Find a root of the equation cos x D 5x.

Solution This equation is of the form f .x/ D x, where f .x/ D 1
5

cos x. Since cos x

is close to 1 for x near 0, we see that 1
5

cos x will be close to 1
5

when x D 1
5

. This

suggests that a reasonable first guess at the fixed point is x0 D
1
5
D 0:2. The values of

Table 1.

n xn

0 0:2

1 0:196 013 32

2 0:196 170 16

3 0:196 164 05

4 0:196 164 29

5 0:196 164 28

6 0:196 164 28

subsequent approximations

x1 D
1

5
cos x0; x2 D

1

5
cos x1; x3 D

1

5
cos x2; : : :

are presented in Table 1. The root is 0:196 164 28 to 8 decimal places.

Why did the method used in Example 1 work? Will it work for any function f ‹

In order to answer these questions, examine the polygonal line in Figure 4.10. Starting

at x0 it goes vertically to the curve y D f .x/, the height there being x1. Then it goes

horizontally to the line y D x, meeting that line at a point whose x-coordinate must

therefore also be x1. Then the process repeats; the line goes vertically to the curve

y D f .x/ and horizontally to y D x, arriving at x D x2. The line continues in this

way, “spiralling” closer and closer to the intersection of y D f .x/ and y D x. Each

value of xn is closer to the fixed point r than the previous value.

Now consider the function f whose graph appears in Figure 4.11(a). If we try the

same method there, starting with x0, the polygonal line spirals outward, away from the

root, and the resulting values xn will not “converge” to the root as they did in Example

1. To see why the method works for the function in Figure 4.10 but not for the function

in Figure 4.11(a), observe the slopes of the two graphs y D f .x/ near the fixed point

r . Both slopes are negative, but in Figure 4.10 the absolute value of the slope is less

than 1 while the absolute value of the slope of f in Figure 4.11(a) is greater than 1.

Close consideration of the graphs should convince you that it is this fact that caused

the points xn to get closer to r in Figure 4.10 and farther from r in Figure 4.11(a).
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Figure 4.10 Iterations of xnC1 D f .xn/

“spiral” toward the fixed point

y

xx0x1 x3 x2

y D f .x/

y D x

r

Figure 4.11

(a) A function f for which the iterations

xnC1 D f .xn/ do not converge

(b) “Staircase” convergence to the fixed

point

y

xx0 x1 x3x2

y D x

y D f .x/

r

y

xx0 x1 x2 x3 r

y D x

y D f .x/

(a) (b)

A third example, Figure 4.11(b), shows that the method can be expected to work

for functions whose graphs have positive slope near the fixed point r , provided that the

slope is less than 1. In this case the polygonal line forms a “staircase” rather than a

“spiral,” and the successive approximations xn increase toward the root if x0 < r and

decrease toward it if x0 > r .

Remark Note that if jf 0.x/j > 1 near a fixed point r of f , you may still be able to

find that fixed point by applying fixed-point iteration to f �1.x/. Evidently f �1.r/ D

r if and only if r D f .r/.

The following theorem guarantees that the method of fixed-point iteration will

work for a particular class of functions.

T H E O R E M

1

A fixed-point theorem

Suppose that f is defined on an interval I D Œa; b� and satisfies the following two

conditions:

(i) f .x/ belongs to I whenever x belongs to I and

(ii) there exists a constant K with 0 < K < 1 such that for every u and v in I;

jf .u/� f .v/j � Kju� vj:
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Then f has a unique fixed point r in I; that is, f .r/ D r , and starting with any number

x0 in I; the iterates

x1 D f .x0/; x2 D f .x1/; : : : converge to r .

You are invited to prove this theorem by a method outlined in Exercises 26 and 27 at

the end of this section.

E X A M P L E 2
Show that if 0 < k < 1, then f .x/ D k cos x satisfies the con-

ditions of Theorem 1 on the interval I D Œ0; 1�. Observe that if

k D 1=5, the fixed point is that calculated in Example 1 above.

Solution Since 0 < k < 1, f maps I into I . If u and v are in I , then the Mean-Value

Theorem says there exists c between u and v such that

jf .u/� f .v/j D j.u � v/f
0
.c/j D kju� vj sin c � kju� vj:

Thus, the conditions of Theorem 1 are satisfied and f has a fixed point r in Œ0; 1�.

Of course, even if k � 1, f may still have a fixed point in I locatable by iteration,

provided the slope of f near that point is less than 1.

Newton’s Method
We want to find a root of the equation f .x/ D 0, that is, a number r such that f .r/ D

0. Such a number is also called a zero of the function f: If f is differentiable near the

root, then tangent lines can be used to produce a sequence of approximations to the root

that approaches the root quite quickly. The idea is as follows (see Figure 4.12). Make an

initial guess at the root, say x D x0. Draw the tangent line to y D f .x/ at .x0; f .x0//,

and find x1, the x-intercept of this tangent line. Under certain circumstances x1 will

be closer to the root than x0 was. The process can be repeated over and over to get

numbers x2, x3, : : : , getting closer and closer to the root r . The number xnC1 is the

x-intercept of the tangent line to y D f .x/ at .xn; f .xn//.

Figure 4.12

y

x

r

y D f .x/

x3 x2 x1 x0

The tangent line to y D f .x/ at x D x0 has equation

y D f .x0/C f
0
.x0/.x � x0/:
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Figure 4.10 Iterations of xnC1 D f .xn/

“spiral” toward the fixed point
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Figure 4.11

(a) A function f for which the iterations
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A third example, Figure 4.11(b), shows that the method can be expected to work

for functions whose graphs have positive slope near the fixed point r , provided that the

slope is less than 1. In this case the polygonal line forms a “staircase” rather than a

“spiral,” and the successive approximations xn increase toward the root if x0 < r and

decrease toward it if x0 > r .

Remark Note that if jf 0.x/j > 1 near a fixed point r of f , you may still be able to

find that fixed point by applying fixed-point iteration to f �1.x/. Evidently f �1.r/ D

r if and only if r D f .r/.

The following theorem guarantees that the method of fixed-point iteration will

work for a particular class of functions.

T H E O R E M

1

A fixed-point theorem

Suppose that f is defined on an interval I D Œa; b� and satisfies the following two

conditions:

(i) f .x/ belongs to I whenever x belongs to I and

(ii) there exists a constant K with 0 < K < 1 such that for every u and v in I;

jf .u/� f .v/j � Kju� vj:
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Then f has a unique fixed point r in I; that is, f .r/ D r , and starting with any number

x0 in I; the iterates

x1 D f .x0/; x2 D f .x1/; : : : converge to r .

You are invited to prove this theorem by a method outlined in Exercises 26 and 27 at

the end of this section.

E X A M P L E 2
Show that if 0 < k < 1, then f .x/ D k cos x satisfies the con-

ditions of Theorem 1 on the interval I D Œ0; 1�. Observe that if

k D 1=5, the fixed point is that calculated in Example 1 above.

Solution Since 0 < k < 1, f maps I into I . If u and v are in I , then the Mean-Value

Theorem says there exists c between u and v such that

jf .u/� f .v/j D j.u � v/f
0
.c/j D kju� vj sin c � kju� vj:

Thus, the conditions of Theorem 1 are satisfied and f has a fixed point r in Œ0; 1�.

Of course, even if k � 1, f may still have a fixed point in I locatable by iteration,

provided the slope of f near that point is less than 1.

Newton’s Method
We want to find a root of the equation f .x/ D 0, that is, a number r such that f .r/ D

0. Such a number is also called a zero of the function f: If f is differentiable near the

root, then tangent lines can be used to produce a sequence of approximations to the root

that approaches the root quite quickly. The idea is as follows (see Figure 4.12). Make an

initial guess at the root, say x D x0. Draw the tangent line to y D f .x/ at .x0; f .x0//,

and find x1, the x-intercept of this tangent line. Under certain circumstances x1 will

be closer to the root than x0 was. The process can be repeated over and over to get

numbers x2, x3, : : : , getting closer and closer to the root r . The number xnC1 is the

x-intercept of the tangent line to y D f .x/ at .xn; f .xn//.

Figure 4.12
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The tangent line to y D f .x/ at x D x0 has equation

y D f .x0/C f
0
.x0/.x � x0/:
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Since the point .x1; 0/ lies on this line, we have 0 D f .x0/Cf
0.x0/.x1�x0/. Hence,

x1 D x0 �
f .x0/

f 0.x0/
:

Similar formulas produce x2 from x1, then x3 from x2, and so on. The formula pro-

ducing xnC1 from xn is the discrete map xnC1 D g.xn/, where g.x/ D x �
f .x/

f 0.x/
.

That is,

xnC1 D xn �
f .xn/

f 0.xn/
;

which is known as the Newton’s Method formula. If r is a fixed point of g then

f .r/ D 0 and r is a zero of f . We usually use a calculator or computer to calculate

the successive approximations x1, x2, x3, : : : ; and observe whether these numbers

appear to converge to a limit. Convergence will not occur if the graph of f has a

horizontal or vertical tangent at any of the numbers in the sequence. However, if

limn!1 xn D r exists, and if f=f 0 is continuous near r , then r must be a zero of f:

This method is known as Newton’s Method or The Newton-Raphson Method. Since

Newton’s Method is just a special case of fixed-point iteration applied to the function

g.x/ defined above, the general properties of fixed-point iteration apply to Newton’s

Method as well.

E X A M P L E 3
Use Newton’s Method to find the only real root of the equation

x3
� x � 1 D 0 correct to 10 decimal places.

Solution We have f .x/ D x3
� x � 1 and f 0

.x/ D 3x
2
� 1. Since f is continuous

and since f .1/ D �1 and f .2/ D 5, the equation has a root in the interval Œ1; 2�.

Figure 4.13 shows that the equation has only one root to the right of x D 0. Let us
y

x

y D x3

y D x C 1

Figure 4.13 The graphs of x3 and x C 1

meet only once to the right of x D 0, and

that meeting is between 1 and 2

make the initial guess x0 D 1:5. The Newton’s Method formula here is

xnC1 D xn �
x3

n � xn � 1

3x2
n � 1

D

2x3
n C 1

3x2
n � 1

;

so that, for example, the approximation x1 is given by

x1 D
2.1:5/

3
C 1

3.1:5/2 � 1
� 1:347 826 : : : :

The values of x1, x2, x3, : : : are given in Table 2.

Table 2.

n xn f .xn/

0 1:5 0:875 000 000 000 � � �

1 1:347 826 086 96 � � � 0:100 682 173 091 � � �

2 1:325 200 398 95 � � � 0:002 058 361 917 � � �

3 1:324 718 174 00 � � � 0:000 000 924 378 � � �

4 1:324 717 957 24 � � � 0:000 000 000 000 � � �

5 1:324 717 957 24 � � �

The values in Table 2 were obtained with a scientific calculator. Evidently r D

1:324 717 957 2 correctly rounded to 10 decimal places.

Observe the behaviour of the numbers xn. By the third iteration, x3, we have appar-

ently achieved a precision of 6 decimal places, and by x4 over 10 decimal places. It is

characteristic of Newton’s Method that when you begin to get close to the root the con-

vergence can be very rapid. Compare these results with those obtained for the same

equation by the Bisection Method in Example 12 of Section 1.4; there we achieved

only 3 decimal place precision after 11 iterations.
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E X A M P L E 4
Solve the equation x3

D cos x to 11 decimal places.

Solution We are looking for the x-coordinate r of the intersection of the curves y D

x
3 and y D cos x. From Figure 4.14 it appears that the curves intersect slightly to the

left of x D 1. Let us start with the guess x0 D 0:8. If f .x/ D x3
� cos x, then

f 0.x/ D 3x2
C sin x. The Newton’s Method formula for this function is

y

x

y D cos x

y D x3

r 1

Figure 4.14 Solving x3
D cosx

xnC1 D xn �
x3

n � cos xn

3x2
n C sin xn

D

2x3
n C xn sin xn C cos xn

3x2
n C sinxn

:

The approximations x1, x2, : : : are given in Table 3.

Table 3.

n xn f .xn/

0 0:8 �0:184 706 709 347 � � �

1 0:870 034 801 135 � � � 0:013 782 078 762 � � �

2 0:865 494 102 425 � � � 0:000 006 038 051 � � �

3 0:865 474 033 493 � � � 0:000 000 001 176 � � �

4 0:865 474 033 102 � � � 0:000 000 000 000 � � �

5 0:865 474 033 102 � � �

The two curves intersect at x D 0:865 474 033 10, rounded to 11 decimal places.

Remark Example 4 shows how useful a sketch can be for determining an initial guess

x0. Even a rough sketch of the graph of y D f .x/ can show you how many roots the

equation f .x/ D 0 has and approximately where they are. Usually, the closer the

initial approximation is to the actual root, the smaller the number of iterations needed

to achieve the desired precision. Similarly, for an equation of the form g.x/ D h.x/,

making a sketch of the graphs of g and h (on the same set of axes) can suggest starting

approximations for any intersection points. In either case, you can then apply Newton’s

Method to improve the approximations.

Remark When using Newton’s Method to solve an equation that is of the form

g.x/ D h.x/ (such as the one in Example 4), we must rewrite the equation in the form

f .x/ D 0 and apply Newton’s Method to f: Usually we just use f .x/ D g.x/�h.x/,

although f .x/ D
�

g.x/=h.x/
�

� 1 is also a possibility.

Remark If your calculator is programmable, you should learn how to program the

Newton’s Method formula for a given equation so that generating new iterations re-

quires pressing only a few buttons. If your calculator has graphing capabilities, you

can use them to locate a good initial guess.

Newton’s Method does not always work as well as it does in the preceding exam-

ples. If the first derivative f 0 is very small near the root, or if the second derivative f 00

is very large near the root, a single iteration of the formula can take us from quite close

y

x

x0

x2 x1r

y D f .x/

Figure 4.15 Here the Newton’s Method

iterations do not converge to the root

to the root to quite far away. Figure 4.15 illustrates this possibility. (Also see Exercises

21 and 22 at the end of this section.)

Before you try to use Newton’s Method to find a real root of a funcion f; you

should make sure that a real root actually exists. If you use the method starting with a

real initial guess, but the function has no real root nearby, the successive “approxima-

tions” can exhibit strange behaviour. The following example illustrates this for a very

simple function.

E X A M P L E 5
Consider the function f .x/ D 1C x2. Clearly f has no real roots

though it does have complex roots x D ˙i . The Newton’s Method
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Since the point .x1; 0/ lies on this line, we have 0 D f .x0/Cf
0.x0/.x1�x0/. Hence,

x1 D x0 �
f .x0/

f 0.x0/
:

Similar formulas produce x2 from x1, then x3 from x2, and so on. The formula pro-

ducing xnC1 from xn is the discrete map xnC1 D g.xn/, where g.x/ D x �
f .x/

f 0.x/
.

That is,

xnC1 D xn �
f .xn/

f 0.xn/
;

which is known as the Newton’s Method formula. If r is a fixed point of g then

f .r/ D 0 and r is a zero of f . We usually use a calculator or computer to calculate

the successive approximations x1, x2, x3, : : : ; and observe whether these numbers

appear to converge to a limit. Convergence will not occur if the graph of f has a

horizontal or vertical tangent at any of the numbers in the sequence. However, if

limn!1 xn D r exists, and if f=f 0 is continuous near r , then r must be a zero of f:

This method is known as Newton’s Method or The Newton-Raphson Method. Since

Newton’s Method is just a special case of fixed-point iteration applied to the function

g.x/ defined above, the general properties of fixed-point iteration apply to Newton’s

Method as well.

E X A M P L E 3
Use Newton’s Method to find the only real root of the equation

x3
� x � 1 D 0 correct to 10 decimal places.

Solution We have f .x/ D x3
� x � 1 and f 0

.x/ D 3x
2
� 1. Since f is continuous

and since f .1/ D �1 and f .2/ D 5, the equation has a root in the interval Œ1; 2�.

Figure 4.13 shows that the equation has only one root to the right of x D 0. Let us
y

x

y D x3

y D x C 1

Figure 4.13 The graphs of x3 and x C 1

meet only once to the right of x D 0, and

that meeting is between 1 and 2

make the initial guess x0 D 1:5. The Newton’s Method formula here is

xnC1 D xn �
x3

n � xn � 1

3x2
n � 1

D

2x3
n C 1

3x2
n � 1

;

so that, for example, the approximation x1 is given by

x1 D
2.1:5/

3
C 1

3.1:5/2 � 1
� 1:347 826 : : : :

The values of x1, x2, x3, : : : are given in Table 2.

Table 2.

n xn f .xn/

0 1:5 0:875 000 000 000 � � �

1 1:347 826 086 96 � � � 0:100 682 173 091 � � �

2 1:325 200 398 95 � � � 0:002 058 361 917 � � �

3 1:324 718 174 00 � � � 0:000 000 924 378 � � �

4 1:324 717 957 24 � � � 0:000 000 000 000 � � �

5 1:324 717 957 24 � � �

The values in Table 2 were obtained with a scientific calculator. Evidently r D

1:324 717 957 2 correctly rounded to 10 decimal places.

Observe the behaviour of the numbers xn. By the third iteration, x3, we have appar-

ently achieved a precision of 6 decimal places, and by x4 over 10 decimal places. It is

characteristic of Newton’s Method that when you begin to get close to the root the con-

vergence can be very rapid. Compare these results with those obtained for the same

equation by the Bisection Method in Example 12 of Section 1.4; there we achieved

only 3 decimal place precision after 11 iterations.
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E X A M P L E 4
Solve the equation x3

D cos x to 11 decimal places.

Solution We are looking for the x-coordinate r of the intersection of the curves y D

x
3 and y D cos x. From Figure 4.14 it appears that the curves intersect slightly to the

left of x D 1. Let us start with the guess x0 D 0:8. If f .x/ D x3
� cos x, then

f 0.x/ D 3x2
C sin x. The Newton’s Method formula for this function is

y

x

y D cos x

y D x3

r 1

Figure 4.14 Solving x3
D cosx

xnC1 D xn �
x3

n � cos xn

3x2
n C sin xn

D

2x3
n C xn sin xn C cos xn

3x2
n C sinxn

:

The approximations x1, x2, : : : are given in Table 3.

Table 3.

n xn f .xn/

0 0:8 �0:184 706 709 347 � � �

1 0:870 034 801 135 � � � 0:013 782 078 762 � � �

2 0:865 494 102 425 � � � 0:000 006 038 051 � � �

3 0:865 474 033 493 � � � 0:000 000 001 176 � � �

4 0:865 474 033 102 � � � 0:000 000 000 000 � � �

5 0:865 474 033 102 � � �

The two curves intersect at x D 0:865 474 033 10, rounded to 11 decimal places.

Remark Example 4 shows how useful a sketch can be for determining an initial guess

x0. Even a rough sketch of the graph of y D f .x/ can show you how many roots the

equation f .x/ D 0 has and approximately where they are. Usually, the closer the

initial approximation is to the actual root, the smaller the number of iterations needed

to achieve the desired precision. Similarly, for an equation of the form g.x/ D h.x/,

making a sketch of the graphs of g and h (on the same set of axes) can suggest starting

approximations for any intersection points. In either case, you can then apply Newton’s

Method to improve the approximations.

Remark When using Newton’s Method to solve an equation that is of the form

g.x/ D h.x/ (such as the one in Example 4), we must rewrite the equation in the form

f .x/ D 0 and apply Newton’s Method to f: Usually we just use f .x/ D g.x/�h.x/,

although f .x/ D
�

g.x/=h.x/
�

� 1 is also a possibility.

Remark If your calculator is programmable, you should learn how to program the

Newton’s Method formula for a given equation so that generating new iterations re-

quires pressing only a few buttons. If your calculator has graphing capabilities, you

can use them to locate a good initial guess.

Newton’s Method does not always work as well as it does in the preceding exam-

ples. If the first derivative f 0 is very small near the root, or if the second derivative f 00

is very large near the root, a single iteration of the formula can take us from quite close
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y D f .x/

Figure 4.15 Here the Newton’s Method

iterations do not converge to the root

to the root to quite far away. Figure 4.15 illustrates this possibility. (Also see Exercises

21 and 22 at the end of this section.)

Before you try to use Newton’s Method to find a real root of a funcion f; you

should make sure that a real root actually exists. If you use the method starting with a

real initial guess, but the function has no real root nearby, the successive “approxima-

tions” can exhibit strange behaviour. The following example illustrates this for a very

simple function.

E X A M P L E 5
Consider the function f .x/ D 1C x2. Clearly f has no real roots

though it does have complex roots x D ˙i . The Newton’s Method
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formula for f is

xnC1 D xn �
1C x2

n

2xn

D

x2
n � 1

2xn

:

If we start with a real guess x0 D 2, iterate this formula 20,000 times, and plot the

resulting points .n; xn/, we obtain Figure 4.16, which was done using a Maple proce-

dure. It is clear from this plot that not only do the iterations not converge (as one might

otherwise expect), but they do not diverge to 1 or �1, and they are not periodic

either. This phenomenon is known as chaos.

Figure 4.16 Plot of 20,000 points .n; xn/

for Example 5
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A definitive characteristic of this phenomenon is sensitivity to initial conditions.

To demonstrate this sensitivity in the case at hand we make a change of variables. Let

yn D
1

1C x2
n

;

then the Newton’s Method formula for f becomes

ynC1 D 4yn.1 � yn/;

(see Exercise 24), which is a special case of a discrete map called the logistic map.

It represents one of the best-known and simplest examples of chaos. If, for example,

yn D sin2
.un/, for n D 0; 1; 2; : : : ; then it follows (see Exercise 25 below) that

un D 2
n
u0. Unless u0 is a rational multiple of � , it follows that two different choices

of u0 will lead to differences in the resulting values of un that grow exponentially with

n. In Exercise 25 it is shown that this sensitivity is carried through to the first order in

xn.

Remark The above example does not imply that Newton’s Method cannot be used to

find complex roots; the formula simply cannot escape from the real line if a real initial

guess is used. To accomodate a complex initial guess, z0 D a0Cib0, we can substitute,

zn D anC ibn into the complex version of Newton’s Method formula znC1 D
z2

n � 1

2zn
(see Appendix I for a discussion of complex arithmetic) to get the following coupled

equations:

anC1 D
a3

n C an.b
2
n � 1/

2.a2
n C b

2
n/

bnC1 D
b3

n C bn.a
2
n C 1/

2.a2
n C b

2
n/

:

With initial guess z0 D 1 C i , the next six members of the sequence of complex

numbers (in 14-figure precision) become

z1 D 0:250 000 000 000 00C i 0:750 000 000 000 00

z2 D �0:075 000 000 000 00C i 0:975 000 000 000 00

z3 D 0:001 715 686 274 51C i 0:997 303 921 568 63

z4 D �0:000 004 641 846 27C i 1:000 002 160 490 67

z5 D �0:000 000 000 010 03C i 0:999 999 999 991 56

z6 D 0:000 000 000 000 00C i 1:000 000 000 000 00
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converging to the rootCi . For an initial guess, 1� i , the resulting sequence converges

as rapidly to the root �i . Note that for the real initial guess z0 D 0 C i0, neither a1

nor b1 is defined, so the process fails. This corresponds to the fact that 1C x2 has a

horizontal tangent y D 1 at .0; 1/, and this tangent has no finite x-intercept.

The following theorem gives sufficient conditions for the Newton approximations

to converge to a root r of the equation f .x/ D 0 if the initial guess x0 is sufficiently

close to that root.

T H E O R E M

2

Error bounds for Newton’s Method

Suppose that f , f 0, and f 00 are continuous on an interval I containing xn, xnC1, and

a root x D r of f .x/ D 0. Suppose also that there exist constants K > 0 and L > 0

such that for all x in I we have

(i) jf 00.x/j � K and

(ii) jf 0.x/j � L.

Then

(a) jxnC1 � r j �
K

2L
jxnC1 � xnj

2 and

(b) jxnC1 � r j �
K

2L
jxn � r j

2.

Conditions (i) and (ii) assert that near r the slope of y D f .x/ is not too small in size

and does not change too rapidly. If K=.2L/ < 1, the theorem shows that xn converges

quickly to r once n becomes large enough that jxn � r j < 1.

The proof of Theorem 2 depends on the Mean-Value Theorem. We will not give

it since the theorem is of little practical use. In practice, we calculate successive ap-

proximations using Newton’s formula and observe whether they seem to converge to a

limit. If they do, and if the values of f at these approximations approach 0, we can be

confident that we have located a root.

“Solve” Routines
C M Many of the more advanced models of scientific calculators and most computer-based

mathematics software have built-in routines for solving general equations numerically

or, in a few cases, symbolically. These “Solve” routines assume continuity of the left

and right sides of the given equations and often require the user to specify an interval

in which to search for the root or an initial guess at the value of the root, or both.

Typically the calculator or computer software also has graphing capabilities, and you

are expected to use them to get an idea of how many roots the equation has and roughly

where they are located before invoking the solving routines. It may also be possible

to specify a tolerance on the difference of the two sides of the equation. For instance,

if we want a solution to the equation f .x/ D 0, it may be more important to us to be

sure that an approximate solution Ox satisfies jf . Ox/j < 0:0001 than it is to be sure that

Ox is within any particular distance of the actual root.

The methods used by the solve routines vary from one calculator or software pack-

age to another and are frequently very sophisticated, making use of numerical differ-

entiation and other techniques to find roots very quickly, even when the search interval

is large. If you have an advanced scientific calculator and/or computer software with

similar capabilities, it is well worth your while to read the manuals that describe how

to make effective use of your hardware/software for solving equations. Applications of

mathematics to solving “real-world” problems frequently require finding approximate

solutions of equations that are intractable by exact methods.
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formula for f is

xnC1 D xn �
1C x2

n

2xn

D

x2
n � 1

2xn

:

If we start with a real guess x0 D 2, iterate this formula 20,000 times, and plot the

resulting points .n; xn/, we obtain Figure 4.16, which was done using a Maple proce-

dure. It is clear from this plot that not only do the iterations not converge (as one might

otherwise expect), but they do not diverge to 1 or �1, and they are not periodic

either. This phenomenon is known as chaos.

Figure 4.16 Plot of 20,000 points .n; xn/

for Example 5
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A definitive characteristic of this phenomenon is sensitivity to initial conditions.

To demonstrate this sensitivity in the case at hand we make a change of variables. Let

yn D
1

1C x2
n

;

then the Newton’s Method formula for f becomes

ynC1 D 4yn.1 � yn/;

(see Exercise 24), which is a special case of a discrete map called the logistic map.

It represents one of the best-known and simplest examples of chaos. If, for example,

yn D sin2
.un/, for n D 0; 1; 2; : : : ; then it follows (see Exercise 25 below) that

un D 2
n
u0. Unless u0 is a rational multiple of � , it follows that two different choices

of u0 will lead to differences in the resulting values of un that grow exponentially with

n. In Exercise 25 it is shown that this sensitivity is carried through to the first order in

xn.

Remark The above example does not imply that Newton’s Method cannot be used to

find complex roots; the formula simply cannot escape from the real line if a real initial

guess is used. To accomodate a complex initial guess, z0 D a0Cib0, we can substitute,

zn D anC ibn into the complex version of Newton’s Method formula znC1 D
z2

n � 1

2zn
(see Appendix I for a discussion of complex arithmetic) to get the following coupled

equations:

anC1 D
a3

n C an.b
2
n � 1/

2.a2
n C b

2
n/

bnC1 D
b3

n C bn.a
2
n C 1/

2.a2
n C b

2
n/

:

With initial guess z0 D 1 C i , the next six members of the sequence of complex

numbers (in 14-figure precision) become

z1 D 0:250 000 000 000 00C i 0:750 000 000 000 00

z2 D �0:075 000 000 000 00C i 0:975 000 000 000 00

z3 D 0:001 715 686 274 51C i 0:997 303 921 568 63

z4 D �0:000 004 641 846 27C i 1:000 002 160 490 67

z5 D �0:000 000 000 010 03C i 0:999 999 999 991 56

z6 D 0:000 000 000 000 00C i 1:000 000 000 000 00
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converging to the rootCi . For an initial guess, 1� i , the resulting sequence converges

as rapidly to the root �i . Note that for the real initial guess z0 D 0 C i0, neither a1

nor b1 is defined, so the process fails. This corresponds to the fact that 1C x2 has a

horizontal tangent y D 1 at .0; 1/, and this tangent has no finite x-intercept.

The following theorem gives sufficient conditions for the Newton approximations

to converge to a root r of the equation f .x/ D 0 if the initial guess x0 is sufficiently

close to that root.

T H E O R E M

2

Error bounds for Newton’s Method

Suppose that f , f 0, and f 00 are continuous on an interval I containing xn, xnC1, and

a root x D r of f .x/ D 0. Suppose also that there exist constants K > 0 and L > 0

such that for all x in I we have

(i) jf 00.x/j � K and

(ii) jf 0.x/j � L.

Then

(a) jxnC1 � r j �
K

2L
jxnC1 � xnj

2 and

(b) jxnC1 � r j �
K

2L
jxn � r j

2.

Conditions (i) and (ii) assert that near r the slope of y D f .x/ is not too small in size

and does not change too rapidly. If K=.2L/ < 1, the theorem shows that xn converges

quickly to r once n becomes large enough that jxn � r j < 1.

The proof of Theorem 2 depends on the Mean-Value Theorem. We will not give

it since the theorem is of little practical use. In practice, we calculate successive ap-

proximations using Newton’s formula and observe whether they seem to converge to a

limit. If they do, and if the values of f at these approximations approach 0, we can be

confident that we have located a root.

“Solve” Routines
C M Many of the more advanced models of scientific calculators and most computer-based

mathematics software have built-in routines for solving general equations numerically

or, in a few cases, symbolically. These “Solve” routines assume continuity of the left

and right sides of the given equations and often require the user to specify an interval

in which to search for the root or an initial guess at the value of the root, or both.

Typically the calculator or computer software also has graphing capabilities, and you

are expected to use them to get an idea of how many roots the equation has and roughly

where they are located before invoking the solving routines. It may also be possible

to specify a tolerance on the difference of the two sides of the equation. For instance,

if we want a solution to the equation f .x/ D 0, it may be more important to us to be

sure that an approximate solution Ox satisfies jf . Ox/j < 0:0001 than it is to be sure that

Ox is within any particular distance of the actual root.

The methods used by the solve routines vary from one calculator or software pack-

age to another and are frequently very sophisticated, making use of numerical differ-

entiation and other techniques to find roots very quickly, even when the search interval

is large. If you have an advanced scientific calculator and/or computer software with

similar capabilities, it is well worth your while to read the manuals that describe how

to make effective use of your hardware/software for solving equations. Applications of

mathematics to solving “real-world” problems frequently require finding approximate

solutions of equations that are intractable by exact methods.
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E X E R C I S E S 4.2

Use fixed-point iteration to solve the equations in Exercises 1–6.

Obtain 5 decimal place precision.

C 1. 2x D e�x , start with x0 D 0:3

C 2. 1C 1
4

sinx D x 3.C cos
x

3
D x

C 4. .x C 9/1=3
D x 5.C

1

2C x2
D x

C 6. Solve x3
C 10x � 10 D 0 by rewriting it in the form

1 �
1

10
x

3
D x.

In Exercises 7–16, use Newton’s Method to solve the given

equations to the precision permitted by your calculator.

C 7. Find
p

2 by solving x2
� 2 D 0.

C 8. Find
p

3 by solving x2
� 3 D 0.

C 9. Find the root of x3
C 2x � 1 D 0 between 0 and 1.

C 10. Find the root of x3
C 2x2

� 2 D 0 between 0 and 1.

C 11. Find the two roots of x4
� 8x2

� x C 16 D 0 in Œ1; 3�.

C 12. Find the three roots of x3
C 3x2

� 1 D 0 in Œ�3; 1�.

C 13. Solve sinx D 1 � x. A sketch can help you make a guess x0.

C 14. Solve cosx D x2. How many roots are there?

C 15. How many roots does the equation tanx D x have? Find the

one between �=2 and 3�=2.

C 16. Solve
1

1C x2
D

p

x by rewriting it .1C x2
/
p

x � 1 D 0.

C 17. If your calculator has a built-in Solve routine, or if you use

computer software with such a routine, use it to solve the

equations in Exercises 7–16.

Find the maximum and minimum values of the functions in

Exercises 18–19.

C 18.
sinx

1C x2
19.C

cosx

1C x2

20. Let f .x/ D x2. The equation f .x/ D 0 clearly has solution

x D 0. Find the Newton’s Method iterations x1, x2, and x3,

starting with x0 D 1.

(a) What is xn?

(b) How many iterations are needed to find the root with error

less than 0:0001 in absolute value?

(c) How many iterations are needed to get an approximation

xn for which jf .xn/j < 0:0001?

(d) Why do the Newton’s Method iterations converge more

slowly here than in the examples done in this section?

21. (Oscillation) Apply Newton’s Method to

f .x/ D

(p

x if x � 0,
p

�x if x < 0,

starting with the initial guess x0 D a > 0. Calculate x1 and

x2. What happens? (Make a sketch.) If you ever observed this

behaviour when you were using Newton’s Method to find a

root of an equation, what would you do next?

22. (Divergent oscillations) Apply Newton’s Method to

f .x/ D x1=3 with x0 D 1. Calculate x1, x2, x3, and x4.

What is happening? Find a formula for xn.

23. (Convergent oscillations) Apply Newton’s Method to find

f .x/ D x2=3 with x0 D 1. Calculate x1, x2, x3, and x4.

What is happening? Find a formula for xn.

24. Verify that the Newton’s Method map for 1C x2, namely

xnC1 D xn �
1C x2

n

2xn
, transforms into the logistic map

ynC1 D 4yn.1� yn/ under the transformation yn D
1

1C x2
n

.

25.A Sensitivity to initial conditions is regarded as a definitive

property of chaos. If the initial values of two sequences differ,

and the differences between the two sequences tends to grow

exponentially, the map is said to be sensitive to initial values.

Growing exponentially in this sense does not require that each

sequence grow exponentially on its own. In fact, for chaos the

growth should only be exponential in the differential. More-

over, the growth only needs to be exponential for large n.

a) Show that the logistic map is sensitive to initial conditions

by making the substitution yj D sin2
uj and taking the

differential, given that u0 is not an integral multiple of � .

b) Use part (a) to show that the Newton’s Method map for

1C x2 is also sensitive to initial conditions. Make the

reasonable assumption, based on Figure 4.16, that the

iterates neither converge nor diverge.

Exercises 26–27 constitute a proof of Theorem 1.

26.A Condition (ii) of Theorem 1 implies that f is continuous on

I D Œa; b�. Use condition (i) to show that f has a unique fixed

point r on I . Hint: Apply the Intermediate-Value Theorem to

g.x/ D f .x/ � x on Œa; b�.

27.A Use condition (ii) of Theorem 1 and mathematical induction to

show that jxn � r j � K
n
jx0 � r j. Since 0 < K < 1, we know

that Kn
! 0 as n!1. This shows that limn!1 xn D r .

4.3 Indeterminate Forms
In Section 2.5 we showed that

lim
x!0

sinx

x
D 1:

We could not readily see this by substituting x D 0 into the function .sin x/=x because

both sinx and x are zero at x D 0. We call .sin x/=x an indeterminate form of type

Œ0=0� at x D 0. The limit of such an indeterminate form can be any number. For
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instance, each of the quotients kx=x, x=x3, and x3=x2 is an indeterminate form of

type Œ0=0� at x D 0, but

lim
x!0

kx

x
D k; lim

x!0

x

x3
D1; lim

x!0

x3

x2
D 0:

There are other types of indeterminate forms. Table 4 lists them together with an

example of each type.

Table 4. Types of indeterminate forms

Type Example

Œ0=0� lim
x!0

sin x

x

Œ1=1� lim
x!0

ln.1=x2/

cot.x2/

Œ0 � 1� lim
x!0C

x ln
1

x

Œ1�1� lim
x!.�=2/�

 

tan x �
1

� � 2x

!

Œ00� lim
x!0C

x
x

Œ10� lim
x!.�=2/�

.tan x/
cos x

Œ11� lim
x!1

 

1C
1

x

!x

Indeterminate forms of type Œ0=0� are the most common. You can evaluate many in-

determinate forms of type Œ0=0� with simple algebra, typically by cancelling common

factors. Examples can be found in Sections 1.2 and 1.3. We will now develop another

method called l’Hôpital’s Rules1 for evaluating limits of indeterminate forms of the

types Œ0=0� and Œ1=1�. The other types of indeterminate forms can usually be re-

duced to one of these two by algebraic manipulation and the taking of logarithms. In

Section 4.10 we will discover yet another method for evaluating limits of type Œ0=0�.

l’Hôpital’s Rules

T H E O R E M

3

The first l’Hôpital Rule

Suppose the functions f and g are differentiable on the interval .a; b/, and g0
.x/ ¤ 0

there. Suppose also that

(i) lim
x!aC

f .x/ D lim
x!aC

g.x/ D 0 and

(ii) lim
x!aC

f 0.x/

g0.x/
D L (where L is finite or1 or �1).

Then

lim
x!aC

f .x/

g.x/
D L:

Similar results hold if every occurrence of limx!aC is replaced by limx!b� or even

limx!c where a < c < b. The cases a D �1 and b D 1 are also allowed.

1 The Marquis de l’Hôpital (1661–1704), for whom these rules are named, published the first

textbook on calculus. The circumflex ( ^ ) did not come into use in the French language until

after the French Revolution. The Marquis would have written his name “l’Hospital.”
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E X E R C I S E S 4.2

Use fixed-point iteration to solve the equations in Exercises 1–6.

Obtain 5 decimal place precision.

C 1. 2x D e�x , start with x0 D 0:3

C 2. 1C 1
4

sinx D x 3.C cos
x

3
D x

C 4. .x C 9/1=3
D x 5.C

1

2C x2
D x

C 6. Solve x3
C 10x � 10 D 0 by rewriting it in the form

1 �
1

10
x

3
D x.

In Exercises 7–16, use Newton’s Method to solve the given

equations to the precision permitted by your calculator.

C 7. Find
p

2 by solving x2
� 2 D 0.

C 8. Find
p

3 by solving x2
� 3 D 0.

C 9. Find the root of x3
C 2x � 1 D 0 between 0 and 1.

C 10. Find the root of x3
C 2x2

� 2 D 0 between 0 and 1.

C 11. Find the two roots of x4
� 8x2

� x C 16 D 0 in Œ1; 3�.

C 12. Find the three roots of x3
C 3x2

� 1 D 0 in Œ�3; 1�.

C 13. Solve sinx D 1 � x. A sketch can help you make a guess x0.

C 14. Solve cosx D x2. How many roots are there?

C 15. How many roots does the equation tanx D x have? Find the

one between �=2 and 3�=2.

C 16. Solve
1

1C x2
D

p

x by rewriting it .1C x2
/
p

x � 1 D 0.

C 17. If your calculator has a built-in Solve routine, or if you use

computer software with such a routine, use it to solve the

equations in Exercises 7–16.

Find the maximum and minimum values of the functions in

Exercises 18–19.

C 18.
sinx

1C x2
19.C

cosx

1C x2

20. Let f .x/ D x2. The equation f .x/ D 0 clearly has solution

x D 0. Find the Newton’s Method iterations x1, x2, and x3,

starting with x0 D 1.

(a) What is xn?

(b) How many iterations are needed to find the root with error

less than 0:0001 in absolute value?

(c) How many iterations are needed to get an approximation

xn for which jf .xn/j < 0:0001?

(d) Why do the Newton’s Method iterations converge more

slowly here than in the examples done in this section?

21. (Oscillation) Apply Newton’s Method to

f .x/ D

(p

x if x � 0,
p

�x if x < 0,

starting with the initial guess x0 D a > 0. Calculate x1 and

x2. What happens? (Make a sketch.) If you ever observed this

behaviour when you were using Newton’s Method to find a

root of an equation, what would you do next?

22. (Divergent oscillations) Apply Newton’s Method to

f .x/ D x1=3 with x0 D 1. Calculate x1, x2, x3, and x4.

What is happening? Find a formula for xn.

23. (Convergent oscillations) Apply Newton’s Method to find

f .x/ D x2=3 with x0 D 1. Calculate x1, x2, x3, and x4.

What is happening? Find a formula for xn.

24. Verify that the Newton’s Method map for 1C x2, namely

xnC1 D xn �
1C x2

n

2xn
, transforms into the logistic map

ynC1 D 4yn.1� yn/ under the transformation yn D
1

1C x2
n

.

25.A Sensitivity to initial conditions is regarded as a definitive

property of chaos. If the initial values of two sequences differ,

and the differences between the two sequences tends to grow

exponentially, the map is said to be sensitive to initial values.

Growing exponentially in this sense does not require that each

sequence grow exponentially on its own. In fact, for chaos the

growth should only be exponential in the differential. More-

over, the growth only needs to be exponential for large n.

a) Show that the logistic map is sensitive to initial conditions

by making the substitution yj D sin2
uj and taking the

differential, given that u0 is not an integral multiple of � .

b) Use part (a) to show that the Newton’s Method map for

1C x2 is also sensitive to initial conditions. Make the

reasonable assumption, based on Figure 4.16, that the

iterates neither converge nor diverge.

Exercises 26–27 constitute a proof of Theorem 1.

26.A Condition (ii) of Theorem 1 implies that f is continuous on

I D Œa; b�. Use condition (i) to show that f has a unique fixed

point r on I . Hint: Apply the Intermediate-Value Theorem to

g.x/ D f .x/ � x on Œa; b�.

27.A Use condition (ii) of Theorem 1 and mathematical induction to

show that jxn � r j � K
n
jx0 � r j. Since 0 < K < 1, we know

that Kn
! 0 as n!1. This shows that limn!1 xn D r .

4.3 Indeterminate Forms
In Section 2.5 we showed that

lim
x!0

sinx

x
D 1:

We could not readily see this by substituting x D 0 into the function .sin x/=x because

both sinx and x are zero at x D 0. We call .sin x/=x an indeterminate form of type

Œ0=0� at x D 0. The limit of such an indeterminate form can be any number. For

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 231 October 15, 2016

SECTION 4.3: Indeterminate Forms 231

instance, each of the quotients kx=x, x=x3, and x3=x2 is an indeterminate form of

type Œ0=0� at x D 0, but

lim
x!0

kx

x
D k; lim

x!0

x

x3
D1; lim

x!0

x3

x2
D 0:

There are other types of indeterminate forms. Table 4 lists them together with an

example of each type.

Table 4. Types of indeterminate forms

Type Example

Œ0=0� lim
x!0

sin x

x

Œ1=1� lim
x!0

ln.1=x2/

cot.x2/

Œ0 � 1� lim
x!0C

x ln
1

x

Œ1�1� lim
x!.�=2/�

 

tan x �
1

� � 2x

!

Œ00� lim
x!0C

x
x

Œ10� lim
x!.�=2/�

.tan x/
cos x

Œ11� lim
x!1

 

1C
1

x

!x

Indeterminate forms of type Œ0=0� are the most common. You can evaluate many in-

determinate forms of type Œ0=0� with simple algebra, typically by cancelling common

factors. Examples can be found in Sections 1.2 and 1.3. We will now develop another

method called l’Hôpital’s Rules1 for evaluating limits of indeterminate forms of the

types Œ0=0� and Œ1=1�. The other types of indeterminate forms can usually be re-

duced to one of these two by algebraic manipulation and the taking of logarithms. In

Section 4.10 we will discover yet another method for evaluating limits of type Œ0=0�.

l’Hôpital’s Rules

T H E O R E M

3

The first l’Hôpital Rule

Suppose the functions f and g are differentiable on the interval .a; b/, and g0
.x/ ¤ 0

there. Suppose also that

(i) lim
x!aC

f .x/ D lim
x!aC

g.x/ D 0 and

(ii) lim
x!aC

f 0.x/

g0.x/
D L (where L is finite or1 or �1).

Then

lim
x!aC

f .x/

g.x/
D L:

Similar results hold if every occurrence of limx!aC is replaced by limx!b� or even

limx!c where a < c < b. The cases a D �1 and b D 1 are also allowed.

1 The Marquis de l’Hôpital (1661–1704), for whom these rules are named, published the first

textbook on calculus. The circumflex ( ^ ) did not come into use in the French language until

after the French Revolution. The Marquis would have written his name “l’Hospital.”
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PROOF We prove the case involving limx!aC for finite a. Define

F.x/ D

n

f .x/ if a < x < b

0 if x D a
and G.x/ D

n

g.x/ if a < x < b

0 if x D a

Then F and G are continuous on the interval Œa; x� and differentiable on the interval

.a; x/ for every x in .a; b/. By the Generalized Mean-Value Theorem (Theorem 16 of

Section 2.8) there exists a number c in .a; x/ such that

f .x/

g.x/
D

F.x/

G.x/
D

F.x/ � F.a/

G.x/ �G.a/
D

F 0.c/

G 0.c/
D

f 0.c/

g0.c/
:

Since a < c < x, if x ! aC, then necessarily c ! aC, so we have

lim
x!aC

f .x/

g.x/
D lim

c!aC

f 0.c/

g0.c/
D L:

The case involving limx!b� for finite b is proved similarly. The cases where a D �1

or b D 1 follow from the cases already considered via the change of variable x D

1=t :

lim
x!1

f .x/

g.x/
D lim

t!0C

f

�

1

t

�

g

�

1

t

� D lim
t!0C

f 0
�

1

t

��

�1

t2

�

g0
�

1

t

��

�1

t2

� D lim
x!1

f 0.x/

g0.x/
D L:

E X A M P L E 1 Evaluate lim
x!1

ln x

x2
� 1

.

Solution We have lim
x!1

lnx

x2
� 1

�

0

0

�

D lim
x!1

1=x

2x
D lim

x!1

1

2x2
D

1

2
:

BEWARE! Note that in

applying l’Hôpital’s Rule we

calculate the quotient of the

derivatives, not the derivative of the

quotient.

This example illustrates how calculations based on l’Hôpital’s Rule are carried out.

Having identified the limit as that of a Œ0=0� indeterminate form, we replace it by

the limit of the quotient of derivatives; the existence of this latter limit will justify

the equality. It is possible that the limit of the quotient of derivatives may still be

indeterminate, in which case a second application of l’Hôpital’s Rule can be made.

Such applications may be strung out until a limit can finally be extracted, which then

justifies all the previous applications of the rule.

E X A M P L E 2 Evaluate lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

.

Solution We have (using l’Hôpital’s Rule three times)

lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

�

0

0

�

D lim
x!0

2 cos x � 2 cos.2x/

2ex
� 2 � 2x

cancel the 2s

D lim
x!0

cos x � cos.2x/

ex
� 1 � x

still

�

0

0

�

D lim
x!0

� sin x C 2 sin.2x/

ex
� 1

still

�

0

0

�

D lim
x!0

� cos x C 4 cos.2x/

ex
D

�1C 4

1
D 3:
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E X A M P L E 3 Evaluate (a) lim
x!.�=2/�

2x � �

cos2 x
and (b) lim

x!1C

x

lnx
.

Solution

(a) lim
x!.�=2/�

2x � �

cos2 x

�

0

0

�

D lim
x!.�=2/�

2

�2 sin x cos x
D �1

(b) l’Hôpital’s Rule cannot be used to evaluate limx!1C x=.lnx/ because this is not

an indeterminate form. The denominator approaches 0 as x ! 1C, but the nu-

merator does not approach 0. Since ln x > 0 for x > 1, we have, directly,

BEWARE! Do not use

l’Hôpital’s Rule to evaluate a limit

that is not indeterminate.

lim
x!1C

x

ln x
D1:

(Had we tried to apply l’Hôpital’s Rule, we would have been led to the erroneous

answer limx!1C.1=.1=x// D 1.)

E X A M P L E 4 Evaluate lim
x!0C

�

1

x
�

1

sinx

�

.

Solution The indeterminate form here is of type Œ1�1�, to which l’Hôpital’s Rule

cannot be applied. However, it becomes Œ0=0� after we combine the fractions into one

fraction:

lim
x!0C

�

1

x
�

1

sin x

�

Œ1�1�

D lim
x!0C

sin x � x

x sin x

�

0

0

�

D lim
x!0C

cos x � 1

sinx C x cos x

�

0

0

�

D lim
x!0C

� sin x

2 cos x � x sin x
D

�0

2
D 0:

A version of l’Hôpital’s Rule also holds for indeterminate forms of the type Œ1=1�.

T H E O R E M

4

The second l’Hôpital Rule

Suppose that f and g are differentiable on the interval .a; b/ and that g0
.x/ ¤ 0 there.

Suppose also that

(i) lim
x!aC

g.x/ D ˙1 and

(ii) lim
x!aC

f 0.x/

g0.x/
D L (where L is finite, or1 or �1).

Then

lim
x!aC

f .x/

g.x/
D L:

Again, similar results hold for limx!b� and for limx!c , and the cases a D �1 and

b D1 are allowed.

The proof of the second l’Hôpital Rule is technically rather more difficult than that

of the first Rule and we will not give it here. A sketch of the proof is outlined in

Exercise 35 at the end of this section.
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PROOF We prove the case involving limx!aC for finite a. Define

F.x/ D

n

f .x/ if a < x < b

0 if x D a
and G.x/ D

n

g.x/ if a < x < b

0 if x D a

Then F and G are continuous on the interval Œa; x� and differentiable on the interval

.a; x/ for every x in .a; b/. By the Generalized Mean-Value Theorem (Theorem 16 of

Section 2.8) there exists a number c in .a; x/ such that

f .x/

g.x/
D

F.x/

G.x/
D

F.x/ � F.a/

G.x/ �G.a/
D

F 0.c/

G 0.c/
D

f 0.c/

g0.c/
:

Since a < c < x, if x ! aC, then necessarily c ! aC, so we have

lim
x!aC

f .x/

g.x/
D lim

c!aC

f 0.c/

g0.c/
D L:

The case involving limx!b� for finite b is proved similarly. The cases where a D �1

or b D 1 follow from the cases already considered via the change of variable x D

1=t :

lim
x!1

f .x/

g.x/
D lim

t!0C

f

�

1

t

�

g

�

1

t

� D lim
t!0C

f 0
�

1

t

��

�1

t2

�

g0
�

1

t

��

�1

t2

� D lim
x!1

f 0.x/

g0.x/
D L:

E X A M P L E 1 Evaluate lim
x!1

ln x

x2
� 1

.

Solution We have lim
x!1

lnx

x2
� 1

�

0

0

�

D lim
x!1

1=x

2x
D lim

x!1

1

2x2
D

1

2
:

BEWARE! Note that in

applying l’Hôpital’s Rule we

calculate the quotient of the

derivatives, not the derivative of the

quotient.

This example illustrates how calculations based on l’Hôpital’s Rule are carried out.

Having identified the limit as that of a Œ0=0� indeterminate form, we replace it by

the limit of the quotient of derivatives; the existence of this latter limit will justify

the equality. It is possible that the limit of the quotient of derivatives may still be

indeterminate, in which case a second application of l’Hôpital’s Rule can be made.

Such applications may be strung out until a limit can finally be extracted, which then

justifies all the previous applications of the rule.

E X A M P L E 2 Evaluate lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

.

Solution We have (using l’Hôpital’s Rule three times)

lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

�

0

0

�

D lim
x!0

2 cos x � 2 cos.2x/

2ex
� 2 � 2x

cancel the 2s

D lim
x!0

cos x � cos.2x/

ex
� 1 � x

still

�

0

0

�

D lim
x!0

� sin x C 2 sin.2x/

ex
� 1

still

�

0

0

�

D lim
x!0

� cos x C 4 cos.2x/

ex
D

�1C 4

1
D 3:
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E X A M P L E 3 Evaluate (a) lim
x!.�=2/�

2x � �

cos2 x
and (b) lim

x!1C

x

lnx
.

Solution

(a) lim
x!.�=2/�

2x � �

cos2 x

�

0

0

�

D lim
x!.�=2/�

2

�2 sin x cos x
D �1

(b) l’Hôpital’s Rule cannot be used to evaluate limx!1C x=.lnx/ because this is not

an indeterminate form. The denominator approaches 0 as x ! 1C, but the nu-

merator does not approach 0. Since ln x > 0 for x > 1, we have, directly,

BEWARE! Do not use

l’Hôpital’s Rule to evaluate a limit

that is not indeterminate.

lim
x!1C

x

ln x
D1:

(Had we tried to apply l’Hôpital’s Rule, we would have been led to the erroneous

answer limx!1C.1=.1=x// D 1.)

E X A M P L E 4 Evaluate lim
x!0C

�

1

x
�

1

sinx

�

.

Solution The indeterminate form here is of type Œ1�1�, to which l’Hôpital’s Rule

cannot be applied. However, it becomes Œ0=0� after we combine the fractions into one

fraction:

lim
x!0C

�

1

x
�

1

sin x

�

Œ1�1�

D lim
x!0C

sin x � x

x sin x

�

0

0

�

D lim
x!0C

cos x � 1

sinx C x cos x

�

0

0

�

D lim
x!0C

� sin x

2 cos x � x sin x
D

�0

2
D 0:

A version of l’Hôpital’s Rule also holds for indeterminate forms of the type Œ1=1�.

T H E O R E M

4

The second l’Hôpital Rule

Suppose that f and g are differentiable on the interval .a; b/ and that g0
.x/ ¤ 0 there.

Suppose also that

(i) lim
x!aC

g.x/ D ˙1 and

(ii) lim
x!aC

f 0.x/

g0.x/
D L (where L is finite, or1 or �1).

Then

lim
x!aC

f .x/

g.x/
D L:

Again, similar results hold for limx!b� and for limx!c , and the cases a D �1 and

b D1 are allowed.

The proof of the second l’Hôpital Rule is technically rather more difficult than that

of the first Rule and we will not give it here. A sketch of the proof is outlined in

Exercise 35 at the end of this section.
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Remark Do not try to use l’Hôpital’s Rules to evaluate limits that are not indeter-

minate of type Œ0=0� or Œ1=1�; such attempts will almost always lead to false con-

clusions, as observed in Example 3(b) above. (Strictly speaking, the second l’Hôpital

Rule can be applied to the form Œa=1�, but there is no point to doing so if a is not

infinite, since the limit is obviously 0 in that case.)

Remark No conclusion about limf .x/=g.x/ can be made using either l’Hôpital

Rule if limf 0.x/=g0.x/ does not exist. Other techniques might still be used. For

example, limx!0 .x
2 sin.1=x//= sin.x/ D 0 by the Squeeze Theorem even though

limx!0 .2x sin.1=x/ � cos.1=x//= cos.x/ does not exist.

E X A M P L E 5 Evaluate (a) lim
x!1

x
2

ex
and (b) lim

x!0C
x

a ln x, where a > 0.

Solution Both of these limits are covered by Theorem 5 in Section 3.4. We do them

here by l’Hôpital’s Rule.

(a) lim
x!1

x2

ex

h

1

1

i

D lim
x!1

2x

ex
still

h

1

1

i

D lim
x!1

2

ex
D 0:

Similarly, one can show that limx!1 xn=ex
D 0 for any positive integer n by repeated

applications of l’Hôpital’s Rule.

(b) lim
x!0C

x
a ln x .a > 0/ Œ0 � .�1/�

D lim
x!0C

ln x

x�a

h

�1

1

i

D lim
x!0C

1=x

�ax�a�1
D lim

x!0C

xa

�a
D 0:

The easiest way to deal with indeterminate forms of types Œ00�, Œ10�, and Œ11� is to

take logarithms of the expressions involved. Here are two examples.

E X A M P L E 6
Evaluate lim

x!0C
x

x.

Solution This indeterminate form is of type Œ00�. Let y D xx . Then

lim
x!0C

lny D lim
x!0C

x ln x D 0;

by Example 5(b). Hence, lim
x!0

x
x
D lim

x!0C
y D e

0
D 1.

E X A M P L E 7 Evaluate lim
x!1

�

1C sin
3

x

�x

.

Solution This indeterminate form is of type 11. Let y D

�

1C sin
3

x

�x

. Then,
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taking ln of both sides,

lim
x!1

ln y D lim
x!1

x ln

�

1C sin
3

x

�

Œ1 � 0�

D lim
x!1

ln

�

1C sin
3

x

�

1

x

�

0

0

�

D lim
x!1

1

1C sin
3

x

�

cos
3

x

��

�

3

x2

�

�

1

x2

D lim
x!1

3 cos
3

x

1C sin
3

x

D 3:

Hence, lim
x!1

�

1C sin
3

x

�x

D e
3.

E X E R C I S E S 4.3

Evaluate the limits in Exercises 1–32.

1. lim
x!0

3x

tan 4x
2. lim

x!2

ln.2x � 3/

x2
� 4

3. lim
x!0

sin ax

sin bx
4. lim

x!0

1 � cos ax

1 � cos bx

5. lim
x!0

sin�1
x

tan�1 x
6. lim

x!1

x1=3
� 1

x2=3
� 1

7. lim
x!0

x cotx 8. lim
x!0

1 � cosx

ln.1C x2/

9. lim
t!�

sin2
t

t � �
10. lim

x!0

10x
� ex

x

11. lim
x!�=2

cos 3x

� � 2x
12. lim

x!1

ln.ex/ � 1

sin�x

13. lim
x!1

x sin
1

x
14. lim

x!0

x � sinx

x3

15. lim
x!0

x � sinx

x � tanx
16. lim

x!0

2 � x
2
� 2 cos x

x4

17. lim
x!0C

sin2
x

tan x � x
18. lim

r!�=2

ln sin r

cos r

19. lim
t!�=2

sin t

t
20. lim

x!1�

arccos x

x � 1

21. lim
x!1

x.2 tan�1
x � �/ 22. lim

t!.�=2/�
.sec t � tan t /

23. lim
t!0

�

1

t
�

1

teat

�

24. lim
x!0C

x

p
x

25.I lim
x!0C

.csc x/sin2 x 26.I lim
x!1C

�

x

x � 1
�

1

lnx

�

27.I lim
t!0

3 sin t � sin 3t

3 tan t � tan 3t
28.I lim

x!0

�

sinx

x

�1=x2

29.I lim
t!0

.cos 2t/1=t2

30.I lim
x!0C

csc x

lnx

31.I lim
x!1�

ln sin�x

csc�x
32.I lim

x!0
.1C tan x/1=x

33. (A Newton quotient for the second derivative) Evaluate

limh!0

f .x C h/ � 2f .x/C f .x � h/

h2
if f is a twice

differentiable function.

34. If f has a continuous third derivative, evaluate

lim
h!0

f .x C 3h/ � 3f .x C h/C 3f .x � h/ � f .x � 3h/

h3
:

35.I (Proof of the second l’Hôpital Rule) Fill in the details of the

following outline of a proof of the second l’Hôpital Rule

(Theorem 4) for the case where a and L are both finite. Let

a < x < t < b and show that there exists c in .x; t/ such that

f .x/ � f .t/

g.x/ � g.t/
D

f 0.c/

g0.c/
:

Now juggle the above equation algebraically into the form

f .x/

g.x/
� L D

f 0.c/

g0.c/
� LC

1

g.x/

�

f .t/ � g.t/
f 0.c/

g0.c/

�

:

It follows that

ˇ

ˇ

ˇ

ˇ

f .x/

g.x/
� L

ˇ

ˇ

ˇ

ˇ

�

ˇ

ˇ

ˇ

ˇ

f
0
.c/

g0.c/
� L

ˇ

ˇ

ˇ

ˇ

C

1

jg.x/j

�

jf .t/j C jg.t/j

ˇ

ˇ

ˇ

ˇ

f
0
.c/

g0.c/

ˇ

ˇ

ˇ

ˇ

�

:

Now show that the right side of the above inequality can be

made as small as you wish (say, less than a positive number �)

by choosing first t and then x close enough to a. Remember,

you are given that limc!aC

�

f 0.c/=g0.c/
�

D L and

limx!aC jg.x/j D 1.
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Remark Do not try to use l’Hôpital’s Rules to evaluate limits that are not indeter-

minate of type Œ0=0� or Œ1=1�; such attempts will almost always lead to false con-

clusions, as observed in Example 3(b) above. (Strictly speaking, the second l’Hôpital

Rule can be applied to the form Œa=1�, but there is no point to doing so if a is not

infinite, since the limit is obviously 0 in that case.)

Remark No conclusion about limf .x/=g.x/ can be made using either l’Hôpital

Rule if limf 0.x/=g0.x/ does not exist. Other techniques might still be used. For

example, limx!0 .x
2 sin.1=x//= sin.x/ D 0 by the Squeeze Theorem even though

limx!0 .2x sin.1=x/ � cos.1=x//= cos.x/ does not exist.

E X A M P L E 5 Evaluate (a) lim
x!1

x
2

ex
and (b) lim

x!0C
x

a ln x, where a > 0.

Solution Both of these limits are covered by Theorem 5 in Section 3.4. We do them

here by l’Hôpital’s Rule.

(a) lim
x!1

x2

ex

h

1

1

i

D lim
x!1

2x

ex
still

h

1

1

i

D lim
x!1

2

ex
D 0:

Similarly, one can show that limx!1 xn=ex
D 0 for any positive integer n by repeated

applications of l’Hôpital’s Rule.

(b) lim
x!0C

x
a ln x .a > 0/ Œ0 � .�1/�

D lim
x!0C

ln x

x�a

h

�1

1

i

D lim
x!0C

1=x

�ax�a�1
D lim

x!0C

xa

�a
D 0:

The easiest way to deal with indeterminate forms of types Œ00�, Œ10�, and Œ11� is to

take logarithms of the expressions involved. Here are two examples.

E X A M P L E 6
Evaluate lim

x!0C
x

x.

Solution This indeterminate form is of type Œ00�. Let y D xx . Then

lim
x!0C

lny D lim
x!0C

x ln x D 0;

by Example 5(b). Hence, lim
x!0

x
x
D lim

x!0C
y D e

0
D 1.

E X A M P L E 7 Evaluate lim
x!1

�

1C sin
3

x

�x

.

Solution This indeterminate form is of type 11. Let y D

�

1C sin
3

x

�x

. Then,
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taking ln of both sides,

lim
x!1

ln y D lim
x!1

x ln

�

1C sin
3

x

�

Œ1 � 0�

D lim
x!1

ln

�

1C sin
3

x

�

1

x

�

0

0

�

D lim
x!1

1

1C sin
3

x

�

cos
3

x

��

�

3

x2

�

�

1

x2

D lim
x!1

3 cos
3

x

1C sin
3

x

D 3:

Hence, lim
x!1

�

1C sin
3

x

�x

D e
3.

E X E R C I S E S 4.3

Evaluate the limits in Exercises 1–32.

1. lim
x!0

3x

tan 4x
2. lim

x!2

ln.2x � 3/

x2
� 4

3. lim
x!0

sin ax

sin bx
4. lim

x!0

1 � cos ax

1 � cos bx

5. lim
x!0

sin�1
x

tan�1 x
6. lim

x!1

x1=3
� 1

x2=3
� 1

7. lim
x!0

x cotx 8. lim
x!0

1 � cosx

ln.1C x2/

9. lim
t!�

sin2
t

t � �
10. lim

x!0

10x
� ex

x

11. lim
x!�=2

cos 3x

� � 2x
12. lim

x!1

ln.ex/ � 1

sin�x

13. lim
x!1

x sin
1

x
14. lim

x!0

x � sinx

x3

15. lim
x!0

x � sinx

x � tanx
16. lim

x!0

2 � x
2
� 2 cos x

x4

17. lim
x!0C

sin2
x

tan x � x
18. lim

r!�=2

ln sin r

cos r

19. lim
t!�=2

sin t

t
20. lim

x!1�

arccos x

x � 1

21. lim
x!1

x.2 tan�1
x � �/ 22. lim

t!.�=2/�
.sec t � tan t /

23. lim
t!0

�

1

t
�

1

teat

�

24. lim
x!0C

x

p
x

25.I lim
x!0C

.csc x/sin2 x 26.I lim
x!1C

�

x

x � 1
�

1

lnx

�

27.I lim
t!0

3 sin t � sin 3t

3 tan t � tan 3t
28.I lim

x!0

�

sinx

x

�1=x2

29.I lim
t!0

.cos 2t/1=t2

30.I lim
x!0C

csc x

lnx

31.I lim
x!1�

ln sin�x

csc�x
32.I lim

x!0
.1C tan x/1=x

33. (A Newton quotient for the second derivative) Evaluate

limh!0

f .x C h/ � 2f .x/C f .x � h/

h2
if f is a twice

differentiable function.

34. If f has a continuous third derivative, evaluate

lim
h!0

f .x C 3h/ � 3f .x C h/C 3f .x � h/ � f .x � 3h/

h3
:

35.I (Proof of the second l’Hôpital Rule) Fill in the details of the

following outline of a proof of the second l’Hôpital Rule

(Theorem 4) for the case where a and L are both finite. Let

a < x < t < b and show that there exists c in .x; t/ such that

f .x/ � f .t/

g.x/ � g.t/
D

f 0.c/

g0.c/
:

Now juggle the above equation algebraically into the form

f .x/

g.x/
� L D

f 0.c/

g0.c/
� LC

1

g.x/

�

f .t/ � g.t/
f 0.c/

g0.c/

�

:

It follows that

ˇ

ˇ

ˇ

ˇ

f .x/

g.x/
� L

ˇ

ˇ

ˇ

ˇ

�

ˇ

ˇ

ˇ

ˇ

f
0
.c/

g0.c/
� L

ˇ

ˇ

ˇ

ˇ

C

1

jg.x/j

�

jf .t/j C jg.t/j

ˇ

ˇ

ˇ

ˇ

f
0
.c/

g0.c/

ˇ

ˇ

ˇ

ˇ

�

:

Now show that the right side of the above inequality can be

made as small as you wish (say, less than a positive number �)

by choosing first t and then x close enough to a. Remember,

you are given that limc!aC

�

f 0.c/=g0.c/
�

D L and

limx!aC jg.x/j D 1.
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4.4 Extreme Values
The first derivative of a function is a source of much useful information about the

behaviour of the function. As we have already seen, the sign of f 0 tells us whether f

is increasing or decreasing. In this section we use this information to find maximum

and minimum values of functions. In Section 4.8 we will put the techniques developed

here to use solving problems that require finding maximum and minimum values.

Maximum and Minimum Values
Recall (from Section 1.4) that a function has a maximum value at x0 if f .x/ � f .x0/

for all x in the domain of f: The maximum value is f .x0/. To be more precise, we

should call such a maximum value an absolute or global maximum because it is the

largest value that f attains anywhere on its entire domain.

D E F I N I T I O N

1

Absolute extreme values

Function f has an absolute maximum value f .x0/ at the point x0 in its

domain if f .x/ � f .x0/ holds for every x in the domain of f:

Similarly, f has an absolute minimum value f .x1/ at the point x1 in its

domain if f .x/ � f .x1/ holds for every x in the domain of f:

A function can have at most one absolute maximum or minimum value, although this

value can be assumed at many points. For example, f .x/ D sinx has absolute maxi-

mum value 1 occurring at every point of the form x D .�=2/C2n� , where n is an inte-

ger, and an absolute minimum value �1 at every point of the form x D �.�=2/C2n� .

A function need not have any absolute extreme values. The function f .x/ D 1=x be-

comes arbitrarily large as x approaches 0 from the right, so has no finite absolute

maximum. (Remember,1 is not a number and is not a value of f:) It doesn’t have an

absolute minimum either. Even a bounded function may not have an absolute maxi-

mum or minimum value. The function g.x/ D x with domain specified to be the open

interval .0; 1/ has neither; the range of g is also the interval .0; 1/, and there is no

largest or smallest number in this interval. Of course, if the domain of g (and therefore

also its range) were extended to be the closed interval Œ0; 1�, then g would have both a

maximum value, 1, and a minimum value, 0.

Maximum and minimum values of a function are collectively referred to as ex-

treme values. The following theorem is a restatement (and slight generalization) of

Theorem 8 of Section 1.4. It will prove very useful in some circumstances when we

want to find extreme values.

T H E O R E M

5

Existence of extreme values

If the domain of the function f is a closed, finite interval or a union of finitely many

such intervals, and if f is continuous on that domain, then f must have an absolute

maximum value and an absolute minimum value.

Consider the graph y D f .x/ shown in Figure 4.17. Evidently the absolute maxi-

mum value of f is f .x2/, and the absolute minimum value is f .x3/. In addition to

these extreme values, f has several other “local” maximum and minimum values cor-

responding to points on the graph that are higher or lower than neighbouring points.

Observe that f has local maximum values at a, x2, x4, and x6 and local minimum

values at x1, x3, x5, and b. The absolute maximum is the highest of the local maxima;

the absolute minimum is the lowest of the local minima.
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Figure 4.17 Local extreme values

y
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a x1 x2 x3 x4 x5 x6 b

D E F I N I T I O N

2

Local extreme values

Function f has a local maximum value (loc max) f .x0/ at the point x0 in

its domain provided there exists a number h > 0 such that f .x/ � f .x0/

whenever x is in the domain of f and jx � x0j < h.

Similarly, f has a local minimum value (loc min) f .x1/ at the point x1 in

its domain provided there exists a number h > 0 such that f .x/ � f .x1/

whenever x is in the domain of f and jx � x1j < h.

Thus, f has a local maximum (or minimum) value at x if it has an absolute maximum

(or minimum) value at x when its domain is restricted to points sufficiently near x.

Geometrically, the graph of f is at least as high (or low) at x as it is at nearby points.

Critical Points, Singular Points, and Endpoints
Figure 4.17 suggests that a function f .x/ can have local extreme values only at points

x of three special types:

(i) critical points of f (points x in D.f / where f 0.x/ D 0),

(ii) singular points of f (points x in D.f / where f 0.x/ is not defined), and

(iii) endpoints of the domain of f (points in D.f / that do not belong to any open

interval contained in D.f /).

In Figure 4.17, x1, x3, x4, and x6 are critical points, x2 and x5 are singular points, and

a and b are endpoints.

T H E O R E M

6

Locating extreme values

If the function f is defined on an interval I and has a local maximum (or local mini-

mum) value at point x D x0 in I, then x0 must be either a critical point of f; a singular

point of f; or an endpoint of I:

PROOF Suppose that f has a local maximum value at x0 and that x0 is neither an

endpoint of the domain of f nor a singular point of f: Then for some h > 0, f .x/ is

defined on the open interval .x0 � h; x0 C h/ and has an absolute maximum (for that

interval) at x0. Also, f 0.x0/ exists. By Theorem 14 of Section 2.8, f 0.x0/ D 0. The

proof for the case where f has a local minimum value at x0 is similar.

Although a function cannot have extreme values anywhere other than at endpoints,

critical points, and singular points, it need not have extreme values at such points.

Figure 4.18 shows the graph of a function with a critical point x0 and a singular point

x1 at neither of which it has an extreme value. It is more difficult to draw the graph of a

function whose domain has an endpoint at which the function fails to have an extreme

value. See Exercise 49 at the end of this section for an example of such a function.

y

xx1x0

y D f .x/

Figure 4.18 A function need not have

extreme values at a critical point or a

singular point
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4.4 Extreme Values
The first derivative of a function is a source of much useful information about the

behaviour of the function. As we have already seen, the sign of f 0 tells us whether f

is increasing or decreasing. In this section we use this information to find maximum

and minimum values of functions. In Section 4.8 we will put the techniques developed

here to use solving problems that require finding maximum and minimum values.

Maximum and Minimum Values
Recall (from Section 1.4) that a function has a maximum value at x0 if f .x/ � f .x0/

for all x in the domain of f: The maximum value is f .x0/. To be more precise, we

should call such a maximum value an absolute or global maximum because it is the

largest value that f attains anywhere on its entire domain.

D E F I N I T I O N

1

Absolute extreme values

Function f has an absolute maximum value f .x0/ at the point x0 in its

domain if f .x/ � f .x0/ holds for every x in the domain of f:

Similarly, f has an absolute minimum value f .x1/ at the point x1 in its

domain if f .x/ � f .x1/ holds for every x in the domain of f:

A function can have at most one absolute maximum or minimum value, although this

value can be assumed at many points. For example, f .x/ D sinx has absolute maxi-

mum value 1 occurring at every point of the form x D .�=2/C2n� , where n is an inte-

ger, and an absolute minimum value �1 at every point of the form x D �.�=2/C2n� .

A function need not have any absolute extreme values. The function f .x/ D 1=x be-

comes arbitrarily large as x approaches 0 from the right, so has no finite absolute

maximum. (Remember,1 is not a number and is not a value of f:) It doesn’t have an

absolute minimum either. Even a bounded function may not have an absolute maxi-

mum or minimum value. The function g.x/ D x with domain specified to be the open

interval .0; 1/ has neither; the range of g is also the interval .0; 1/, and there is no

largest or smallest number in this interval. Of course, if the domain of g (and therefore

also its range) were extended to be the closed interval Œ0; 1�, then g would have both a

maximum value, 1, and a minimum value, 0.

Maximum and minimum values of a function are collectively referred to as ex-

treme values. The following theorem is a restatement (and slight generalization) of

Theorem 8 of Section 1.4. It will prove very useful in some circumstances when we

want to find extreme values.

T H E O R E M

5

Existence of extreme values

If the domain of the function f is a closed, finite interval or a union of finitely many

such intervals, and if f is continuous on that domain, then f must have an absolute

maximum value and an absolute minimum value.

Consider the graph y D f .x/ shown in Figure 4.17. Evidently the absolute maxi-

mum value of f is f .x2/, and the absolute minimum value is f .x3/. In addition to

these extreme values, f has several other “local” maximum and minimum values cor-

responding to points on the graph that are higher or lower than neighbouring points.

Observe that f has local maximum values at a, x2, x4, and x6 and local minimum

values at x1, x3, x5, and b. The absolute maximum is the highest of the local maxima;

the absolute minimum is the lowest of the local minima.
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Figure 4.17 Local extreme values
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Local extreme values

Function f has a local maximum value (loc max) f .x0/ at the point x0 in

its domain provided there exists a number h > 0 such that f .x/ � f .x0/

whenever x is in the domain of f and jx � x0j < h.

Similarly, f has a local minimum value (loc min) f .x1/ at the point x1 in

its domain provided there exists a number h > 0 such that f .x/ � f .x1/

whenever x is in the domain of f and jx � x1j < h.

Thus, f has a local maximum (or minimum) value at x if it has an absolute maximum

(or minimum) value at x when its domain is restricted to points sufficiently near x.

Geometrically, the graph of f is at least as high (or low) at x as it is at nearby points.

Critical Points, Singular Points, and Endpoints
Figure 4.17 suggests that a function f .x/ can have local extreme values only at points

x of three special types:

(i) critical points of f (points x in D.f / where f 0.x/ D 0),

(ii) singular points of f (points x in D.f / where f 0.x/ is not defined), and

(iii) endpoints of the domain of f (points in D.f / that do not belong to any open

interval contained in D.f /).

In Figure 4.17, x1, x3, x4, and x6 are critical points, x2 and x5 are singular points, and

a and b are endpoints.

T H E O R E M

6

Locating extreme values

If the function f is defined on an interval I and has a local maximum (or local mini-

mum) value at point x D x0 in I, then x0 must be either a critical point of f; a singular

point of f; or an endpoint of I:

PROOF Suppose that f has a local maximum value at x0 and that x0 is neither an

endpoint of the domain of f nor a singular point of f: Then for some h > 0, f .x/ is

defined on the open interval .x0 � h; x0 C h/ and has an absolute maximum (for that

interval) at x0. Also, f 0.x0/ exists. By Theorem 14 of Section 2.8, f 0.x0/ D 0. The

proof for the case where f has a local minimum value at x0 is similar.

Although a function cannot have extreme values anywhere other than at endpoints,

critical points, and singular points, it need not have extreme values at such points.

Figure 4.18 shows the graph of a function with a critical point x0 and a singular point

x1 at neither of which it has an extreme value. It is more difficult to draw the graph of a

function whose domain has an endpoint at which the function fails to have an extreme

value. See Exercise 49 at the end of this section for an example of such a function.

y

xx1x0

y D f .x/

Figure 4.18 A function need not have

extreme values at a critical point or a

singular point
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Finding Absolute Extreme Values
If a function f is defined on a closed interval or a union of finitely many closed in-

tervals, Theorem 5 assures us that f must have an absolute maximum value and an

absolute minimum value. Theorem 6 tells us how to find them. We need only check

the values of f at any critical points, singular points, and endpoints.

E X A M P L E 1
Find the maximum and minimum values of the function

g.x/ D x3
� 3x2

� 9x C 2 on the interval �2 � x � 2.

Solution Since g is a polynomial, it can have no singular points. For critical points,

we calculate

g
0
.x/ D 3x

2
� 6x � 9 D 3.x

2
� 2x � 3/

D 3.x C 1/.x � 3/

D 0 if x D �1 or x D 3:

However, x D 3 is not in the domain of g, so we can ignore it. We need to consider

only the values of g at the critical point x D �1 and at the endpoints x D �2 and

x D 2:

g.�2/ D 0; g.�1/ D 7; g.2/ D �20:

The maximum value of g.x/ on �2 � x � 2 is 7, at the critical point x D �1, and the

minimum value is �20, at the endpoint x D 2. See Figure 4.19.

y

x

y D g.x/

D x
3
� 3x

2
� 9x C 2

.2;�20/

.�1; 7/

.�2; 0/

Figure 4.19 g has maximum and

minimum values 7 and �20, respectively

E X A M P L E 2
Find the maximum and minimum values of h.x/ D 3x2=3

�2x on

the interval Œ�1; 1�.

Solution The derivative of h is

h
0
.x/ D 3

�

2

3

�

x
�1=3
� 2 D 2.x

�1=3
� 1/:

Note that x�1=3 is not defined at the point x D 0 in D.h/, so x D 0 is a singular

point of h. Also, h has a critical point where x�1=3
D 1, that is, at x D 1, which also

happens to be an endpoint of the domain of h. We must therefore examine the values

of h at the points x D 0 and x D 1, as well as at the other endpoint x D �1. We have

h.�1/ D 5; h.0/ D 0; h.1/ D 1:

The function h has maximum value 5 at the endpoint �1 and minimum value 0 at the

singular point x D 0. See Figure 4.20.

y

x

.1; 1/

.�1; 5/

y D h.x/

D 3x
2=3
� 2x

Figure 4.20 h has absolute minimum

value 0 at a singular point

The First Derivative Test
Most functions you will encounter in elementary calculus have nonzero derivatives ev-

erywhere on their domains except possibly at a finite number of critical points, singular

points, and endpoints of their domains. On intervals between these points the deriva-

tive exists and is not zero, so the function is either increasing or decreasing there. If

f is continuous and increases to the left of x0 and decreases to the right, then it must

have a local maximum value at x0. The following theorem collects several results of

this type together.
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T H E O R E M

7

The First Derivative Test

PART I. Testing interior critical points and singular points.

Suppose that f is continuous at x0, and x0 is not an endpoint of the domain of f:

(a) If there exists an open interval .a; b/ containing x0 such that f 0.x/ > 0 on .a; x0/

and f 0.x/ < 0 on .x0; b/, then f has a local maximum value at x0.

(b) If there exists an open interval .a; b/ containing x0 such that f 0.x/ < 0 on .a; x0/

and f 0
.x/ > 0 on .x0; b/, then f has a local minimum value at x0.

PART II. Testing endpoints of the domain.

Suppose a is a left endpoint of the domain of f and f is right continuous at a.

(c) If f 0.x/ > 0 on some interval .a; b/, then f has a local minimum value at a.

(d) If f 0.x/ < 0 on some interval .a; b/, then f has a local maximum value at a.

Suppose b is a right endpoint of the domain of f and f is left continuous at b.

(e) If f 0.x/ > 0 on some interval .a; b/, then f has a local maximum value at b.

(f) If f 0.x/ < 0 on some interval .a; b/, then f has a local minimum value at b.

Remark If f 0 is positive (or negative) on both sides of a critical or singular point,

then f has neither a maximum nor a minimum value at that point.

E X A M P L E 3
Find the local and absolute extreme values of f .x/ D x4

�2x2
�3

on the interval Œ�2; 2�. Sketch the graph of f:

Solution We begin by calculating and factoring the derivative f 0.x/:

f
0
.x/ D 4x

3
� 4x D 4x.x

2
� 1/ D 4x.x � 1/.x C 1/:

The critical points are 0, �1, and 1. The corresponding values are f .0/ D �3,

f .�1/ D f .1/ D �4. There are no singular points. The values of f at the endpoints

�2 and 2 are f .�2/ D f .2/ D 5. The factored form of f 0.x/ is also convenient for

determining the sign of f 0.x/ on intervals between these endpoints and critical points.

Where an odd number of the factors of f 0.x/ are negative, f 0.x/ will itself be nega-

tive; where an even number of factors are negative, f 0
.x/ will be positive. We sum-

marize the positive/negative properties of f 0
.x/ and the implied increasing/decreasing

behaviour of f .x/ in chart form:

EP CP CP CP EP

x �2 �1 0 1 2
������������������������������������������������������������!

f 0
� 0 C 0 � 0 C

f max & min % max & min % max

Note how the sloping arrows indicate visually the appropriate classification of the end-

.�2; 5/ .2; 5/

.�1;�4/ .1;�4/

�3

y

x

Figure 4.21 The graph y D x4
� 2x2

� 3

points (EP) and critical points (CP) as determined by the First Derivative Test. We

will make extensive use of such charts in future sections. The graph of f is shown

in Figure 4.21. Since the domain is a closed, finite interval, f must have absolute

maximum and minimum values. These are 5 (at˙2) and �4 (at ˙1).

E X A M P L E 4
Find and classify the local and absolute extreme values of the func-

tion f .x/ D x�x2=3 with domain Œ�1; 2�. Sketch the graph of f:
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Finding Absolute Extreme Values
If a function f is defined on a closed interval or a union of finitely many closed in-

tervals, Theorem 5 assures us that f must have an absolute maximum value and an

absolute minimum value. Theorem 6 tells us how to find them. We need only check

the values of f at any critical points, singular points, and endpoints.

E X A M P L E 1
Find the maximum and minimum values of the function

g.x/ D x3
� 3x2

� 9x C 2 on the interval �2 � x � 2.

Solution Since g is a polynomial, it can have no singular points. For critical points,

we calculate

g
0
.x/ D 3x

2
� 6x � 9 D 3.x

2
� 2x � 3/

D 3.x C 1/.x � 3/

D 0 if x D �1 or x D 3:

However, x D 3 is not in the domain of g, so we can ignore it. We need to consider

only the values of g at the critical point x D �1 and at the endpoints x D �2 and

x D 2:

g.�2/ D 0; g.�1/ D 7; g.2/ D �20:

The maximum value of g.x/ on �2 � x � 2 is 7, at the critical point x D �1, and the

minimum value is �20, at the endpoint x D 2. See Figure 4.19.

y

x

y D g.x/

D x
3
� 3x

2
� 9x C 2

.2;�20/

.�1; 7/

.�2; 0/

Figure 4.19 g has maximum and

minimum values 7 and �20, respectively

E X A M P L E 2
Find the maximum and minimum values of h.x/ D 3x2=3

�2x on

the interval Œ�1; 1�.

Solution The derivative of h is

h
0
.x/ D 3

�

2

3

�

x
�1=3
� 2 D 2.x

�1=3
� 1/:

Note that x�1=3 is not defined at the point x D 0 in D.h/, so x D 0 is a singular

point of h. Also, h has a critical point where x�1=3
D 1, that is, at x D 1, which also

happens to be an endpoint of the domain of h. We must therefore examine the values

of h at the points x D 0 and x D 1, as well as at the other endpoint x D �1. We have

h.�1/ D 5; h.0/ D 0; h.1/ D 1:

The function h has maximum value 5 at the endpoint �1 and minimum value 0 at the

singular point x D 0. See Figure 4.20.

y

x

.1; 1/

.�1; 5/

y D h.x/

D 3x
2=3
� 2x

Figure 4.20 h has absolute minimum

value 0 at a singular point

The First Derivative Test
Most functions you will encounter in elementary calculus have nonzero derivatives ev-

erywhere on their domains except possibly at a finite number of critical points, singular

points, and endpoints of their domains. On intervals between these points the deriva-

tive exists and is not zero, so the function is either increasing or decreasing there. If

f is continuous and increases to the left of x0 and decreases to the right, then it must

have a local maximum value at x0. The following theorem collects several results of

this type together.
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7

The First Derivative Test

PART I. Testing interior critical points and singular points.

Suppose that f is continuous at x0, and x0 is not an endpoint of the domain of f:

(a) If there exists an open interval .a; b/ containing x0 such that f 0.x/ > 0 on .a; x0/

and f 0.x/ < 0 on .x0; b/, then f has a local maximum value at x0.

(b) If there exists an open interval .a; b/ containing x0 such that f 0.x/ < 0 on .a; x0/

and f 0
.x/ > 0 on .x0; b/, then f has a local minimum value at x0.

PART II. Testing endpoints of the domain.

Suppose a is a left endpoint of the domain of f and f is right continuous at a.

(c) If f 0.x/ > 0 on some interval .a; b/, then f has a local minimum value at a.

(d) If f 0.x/ < 0 on some interval .a; b/, then f has a local maximum value at a.

Suppose b is a right endpoint of the domain of f and f is left continuous at b.

(e) If f 0.x/ > 0 on some interval .a; b/, then f has a local maximum value at b.

(f) If f 0.x/ < 0 on some interval .a; b/, then f has a local minimum value at b.

Remark If f 0 is positive (or negative) on both sides of a critical or singular point,

then f has neither a maximum nor a minimum value at that point.

E X A M P L E 3
Find the local and absolute extreme values of f .x/ D x4

�2x2
�3

on the interval Œ�2; 2�. Sketch the graph of f:

Solution We begin by calculating and factoring the derivative f 0.x/:

f
0
.x/ D 4x

3
� 4x D 4x.x

2
� 1/ D 4x.x � 1/.x C 1/:

The critical points are 0, �1, and 1. The corresponding values are f .0/ D �3,

f .�1/ D f .1/ D �4. There are no singular points. The values of f at the endpoints

�2 and 2 are f .�2/ D f .2/ D 5. The factored form of f 0.x/ is also convenient for

determining the sign of f 0.x/ on intervals between these endpoints and critical points.

Where an odd number of the factors of f 0.x/ are negative, f 0.x/ will itself be nega-

tive; where an even number of factors are negative, f 0
.x/ will be positive. We sum-

marize the positive/negative properties of f 0
.x/ and the implied increasing/decreasing

behaviour of f .x/ in chart form:

EP CP CP CP EP

x �2 �1 0 1 2
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f 0
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Figure 4.21 The graph y D x4
� 2x2

� 3

points (EP) and critical points (CP) as determined by the First Derivative Test. We

will make extensive use of such charts in future sections. The graph of f is shown

in Figure 4.21. Since the domain is a closed, finite interval, f must have absolute

maximum and minimum values. These are 5 (at˙2) and �4 (at ˙1).

E X A M P L E 4
Find and classify the local and absolute extreme values of the func-

tion f .x/ D x�x2=3 with domain Œ�1; 2�. Sketch the graph of f:
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Solution f 0.x/ D 1 �
2
3
x�1=3

D

�

x1=3
�

2
3

� ı

x1=3. There is a singular point,

x D 0, and a critical point, x D 8=27. The endpoints are x D �1 and x D 2. The

values of f at these points are f .�1/ D �2; f .0/ D 0; f .8=27/ D �4=27, and

f .2/ D 2 � 22=3
� 0:4126 (see Figure 4.22). Another interesting point on the graph

is the x-intercept at x D 1. Information from f 0 is summarized in the chart:

EP SP CP EP

x �1 0 8=27 2
���������������������������������������������������������������!

f 0
C undef � 0 C

f min % max & min % max

There are two local minima and two local maxima. The absolute maximum of f is

2 � 22=3 at x D 2; the absolute minimum is �2 at x D �1.

y

x�

8
27
;

�4
27

�

.�1;�2/

.2; 2 � 22=3/

y D x � x2=3

1

Figure 4.22 The graph for Example 4

Functions Not Defined on Closed, Finite Intervals
If the function f is not defined on a closed, finite interval, then Theorem 5 cannot be

used to guarantee the existence of maximum and minimum values for f: Of course,

f may still have such extreme values. In many applied situations we will want to find

extreme values of functions defined on infinite and/or open intervals. The following

theorem adapts Theorem 5 to cover some such situations.

T H E O R E M

8

Existence of extreme values on open intervals

If f is continuous on the open interval .a; b/, and if

lim
x!aC

f .x/ D L and lim
x!b�

f .x/ DM;

then the following conclusions hold:

(i) If f .u/ > L and f .u/ > M for some u in .a; b/, then f has an absolute maxi-

mum value on .a; b/.

(ii) If f .v/ < L and f .v/ < M for some v in .a; b/, then f has an absolute minimum

value on .a; b/.

In this theorem a may be �1, in which case limx!aC should be replaced with

limx!�1, and b may be1, in which case limx!b� should be replaced with limx!1.

Also, either or both of L and M may be either1 or �1.

PROOF We prove part (i); the proof of (ii) is similar. We are given that there is a

number u in .a; b/ such that f .u/ > L and f .u/ > M . Here, L and M may be finite

numbers or �1. Since limx!aC f .x/ D L, there must exist a number x1 in .a; u/

such that

f .x/ < f .u/ whenever a < x < x1:

Similarly, there must exist a number x2 in .u; b/ such that

f .x/ < f .u/ whenever x2 < x < b:

(See Figure 4.23.) Thus, f .x/ < f .u/ at all points of .a; b/ that are not in the closed,

finite subinterval Œx1; x2�. By Theorem 5, the function f; being continuous on Œx1; x2�,

must have an absolute maximum value on that interval, say at the point w. Since u

belongs to Œx1; x2�, we must have f .w/ � f .u/, so f .w/ is the maximum value of

f .x/ for all of .a; b/.
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Figure 4.23

y

x

L

M

f.u/

a x1 u x2 b

y D f .x/

Theorem 6 still tells us where to look for extreme values. There are no endpoints to

consider in an open interval, but we must still look at the values of the function at any

critical points or singular points in the interval.

E X A M P L E 5
Show that f .x/ D x C .4=x/ has an absolute minimum value on

the interval .0;1/, and find that minimum value.

Solution We have

lim
x!0C

f .x/ D1 and lim
x!1

f .x/ D1:

Since f .1/ D 5 < 1, Theorem 8 guarantees that f must have an absolute minimum

value at some point in .0;1/. To find the minimum value we must check the values of

f at any critical points or singular points in the interval. We have

y

x
.2; 4/

y D f .x/ D x C
4

x

Figure 4.24 f has minimum value 4 at

x D 2

f
0
.x/ D 1 �

4

x2
D

x
2
� 4

x2
D

.x � 2/.x C 2/

x2
;

which equals 0 only at x D 2 and x D �2. Since f has domain .0;1/, it has no

singular points and only one critical point, namely, x D 2, where f has the value

f .2/ D 4. This must be the minimum value of f on .0;1/. (See Figure 4.24.)

E X A M P L E 6
Let f .x/ D x e�x2

. Find and classify the critical points of f;

evaluate limx!˙1 f .x/, and use these results to help you sketch

the graph of f:

Solution f 0.x/ D e�x2
.1 � 2x2/ D 0 only if 1 � 2x2

D 0 since the exponential

is always positive. Thus, the critical points are ˙ 1p
2

. We have f
�

˙
1p
2

�

D ˙
1p
2e

.

f 0 is positive (or negative) when 1 � 2x2 is positive (or negative). We summarize the

intervals where f is increasing and decreasing in chart form:

CP CP

x �1=
p

2 1=
p

2
�������������������������������������������������!

f 0
� 0 C 0 �

f & min % max &
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Solution f 0.x/ D 1 �
2
3
x�1=3

D

�

x1=3
�

2
3

� ı

x1=3. There is a singular point,

x D 0, and a critical point, x D 8=27. The endpoints are x D �1 and x D 2. The

values of f at these points are f .�1/ D �2; f .0/ D 0; f .8=27/ D �4=27, and

f .2/ D 2 � 22=3
� 0:4126 (see Figure 4.22). Another interesting point on the graph

is the x-intercept at x D 1. Information from f 0 is summarized in the chart:

EP SP CP EP

x �1 0 8=27 2
���������������������������������������������������������������!

f 0
C undef � 0 C

f min % max & min % max

There are two local minima and two local maxima. The absolute maximum of f is

2 � 22=3 at x D 2; the absolute minimum is �2 at x D �1.

y

x�

8
27
;

�4
27

�

.�1;�2/

.2; 2 � 22=3/

y D x � x2=3

1

Figure 4.22 The graph for Example 4

Functions Not Defined on Closed, Finite Intervals
If the function f is not defined on a closed, finite interval, then Theorem 5 cannot be

used to guarantee the existence of maximum and minimum values for f: Of course,

f may still have such extreme values. In many applied situations we will want to find

extreme values of functions defined on infinite and/or open intervals. The following

theorem adapts Theorem 5 to cover some such situations.

T H E O R E M

8

Existence of extreme values on open intervals

If f is continuous on the open interval .a; b/, and if

lim
x!aC

f .x/ D L and lim
x!b�

f .x/ DM;

then the following conclusions hold:

(i) If f .u/ > L and f .u/ > M for some u in .a; b/, then f has an absolute maxi-

mum value on .a; b/.

(ii) If f .v/ < L and f .v/ < M for some v in .a; b/, then f has an absolute minimum

value on .a; b/.

In this theorem a may be �1, in which case limx!aC should be replaced with

limx!�1, and b may be1, in which case limx!b� should be replaced with limx!1.

Also, either or both of L and M may be either1 or �1.

PROOF We prove part (i); the proof of (ii) is similar. We are given that there is a

number u in .a; b/ such that f .u/ > L and f .u/ > M . Here, L and M may be finite

numbers or �1. Since limx!aC f .x/ D L, there must exist a number x1 in .a; u/

such that

f .x/ < f .u/ whenever a < x < x1:

Similarly, there must exist a number x2 in .u; b/ such that

f .x/ < f .u/ whenever x2 < x < b:

(See Figure 4.23.) Thus, f .x/ < f .u/ at all points of .a; b/ that are not in the closed,

finite subinterval Œx1; x2�. By Theorem 5, the function f; being continuous on Œx1; x2�,

must have an absolute maximum value on that interval, say at the point w. Since u

belongs to Œx1; x2�, we must have f .w/ � f .u/, so f .w/ is the maximum value of

f .x/ for all of .a; b/.
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Figure 4.23

y

x

L

M

f.u/

a x1 u x2 b

y D f .x/

Theorem 6 still tells us where to look for extreme values. There are no endpoints to

consider in an open interval, but we must still look at the values of the function at any

critical points or singular points in the interval.

E X A M P L E 5
Show that f .x/ D x C .4=x/ has an absolute minimum value on

the interval .0;1/, and find that minimum value.

Solution We have

lim
x!0C

f .x/ D1 and lim
x!1

f .x/ D1:

Since f .1/ D 5 < 1, Theorem 8 guarantees that f must have an absolute minimum

value at some point in .0;1/. To find the minimum value we must check the values of

f at any critical points or singular points in the interval. We have

y

x
.2; 4/

y D f .x/ D x C
4

x

Figure 4.24 f has minimum value 4 at

x D 2

f
0
.x/ D 1 �

4

x2
D

x
2
� 4

x2
D

.x � 2/.x C 2/

x2
;

which equals 0 only at x D 2 and x D �2. Since f has domain .0;1/, it has no

singular points and only one critical point, namely, x D 2, where f has the value

f .2/ D 4. This must be the minimum value of f on .0;1/. (See Figure 4.24.)

E X A M P L E 6
Let f .x/ D x e�x2

. Find and classify the critical points of f;

evaluate limx!˙1 f .x/, and use these results to help you sketch

the graph of f:

Solution f 0.x/ D e�x2
.1 � 2x2/ D 0 only if 1 � 2x2

D 0 since the exponential

is always positive. Thus, the critical points are ˙ 1p
2

. We have f
�

˙
1p
2

�

D ˙
1p
2e

.

f 0 is positive (or negative) when 1 � 2x2 is positive (or negative). We summarize the

intervals where f is increasing and decreasing in chart form:

CP CP

x �1=
p

2 1=
p

2
�������������������������������������������������!

f 0
� 0 C 0 �

f & min % max &
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Note that f .0/ D 0 and that f is an odd function (f .�x/ D �f .x/), so the graph is

symmetric about the origin. Also,

lim
x!˙1

x e
�x2

D

�

lim
x!˙1

1

x

� �

lim
x!˙1

x2

ex2

�

D 0 � 0 D 0

because limx!˙1 x2 e�x2
D limu!1 u e�u

D 0 by Theorem 5 of Section 3.4. Since

f .x/ is positive at x D 1=
p

2 and is negative at x D �1=
p

2, f must have absolute

maximum and minimum values by Theorem 8. These values can only be the values

˙1=
p

2e at the two critical points. The graph is shown in Figure 4.25. The x-axis is

an asymptote as x !˙1.

y

x

�

1p
2
;

1p
2e

�

�

�1p
2
;

�1p
2e

�

y D x e�x2

Figure 4.25 The graph for Example 6

E X E R C I S E S 4.4

In Exercises 1–17, determine whether the given function has any

local or absolute extreme values, and find those values if possible.

1. f .x/ D x C 2 on Œ�1; 1� 2. f .x/ D x C 2 on .�1; 0�

3. f .x/ D x C 2 on Œ�1; 1/ 4. f .x/ D x2
� 1

5. f .x/ D x2
� 1 on Œ�2; 3� 6. f .x/ D x2

� 1 on .2; 3/

7. f .x/ D x3
C x � 4 on Œa; b�

8. f .x/ D x3
C x � 4 on .a; b/

9. f .x/ D x5
C x

3
C 2x on .a; b�

10. f .x/ D
1

x � 1
11. f .x/ D

1

x � 1
on .0; 1/

12. f .x/ D
1

x � 1
on Œ2; 3� 13. f .x/ D jx � 1j on Œ�2; 2�

14. jx2
� x � 2j on Œ�3; 3� 15. f .x/ D

1

x2
C 1

16. f .x/ D .x C 2/2=3 17. f .x/ D .x � 2/1=3

In Exercises 18–40, locate and classify all local extreme values of

the given function. Determine whether any of these extreme values

are absolute. Sketch the graph of the function.

18. f .x/ D x2
C 2x 19. f .x/ D x3

� 3x � 2

20. f .x/ D .x2
� 4/

2 21. f .x/ D x3
.x � 1/

2

22. f .x/ D x2
.x � 1/

2 23. f .x/ D x.x2
� 1/

2

24. f .x/ D
x

x2
C 1

25. f .x/ D
x2

x2
C 1

26. f .x/ D
x

p

x4
C 1

27. f .x/ D x
p

2 � x2

28. f .x/ D x C sinx 29. f .x/ D x � 2 sinx

30. f .x/ D x � 2 tan�1
x 31. f .x/ D 2x � sin�1

x

32. f .x/ D e�x2=2 33. f .x/ D x 2�x

34. f .x/ D x2
e

�x2

35. f .x/ D
ln x

x

36. f .x/ D jx C 1j 37. f .x/ D jx2
� 1j

38. f .x/ D sin jxj 39. f .x/ D j sinxj

40.I f .x/ D .x � 1/
2=3
� .x C 1/

2=3

In Exercises 41–46, determine whether the given function has

absolute maximum or absolute minimum values. Justify your

answers. Find the extreme values if you can.

41.
x

p

x2
C 1

42.
x

p

x4
C 1

43. x
p

4 � x2 44.
x2

p

4 � x2

45.I
1

x sinx
on .0; �/ 46.I

sinx

x

47.A If a function has an absolute maximum value, must it have any

local maximum values? If a function has a local maximum

value, must it have an absolute maximum value? Give reasons

for your answers.

48.A If the function f has an absolute maximum value and

g.x/ D jf .x/j, must g have an absolute maximum value?

Justify your answer.

49.A (A function with no max or min at an endpoint) Let

f .x/ D

(

x sin
1

x
if x > 0

0 if x D 0.

Show that f is continuous on Œ0;1/ and differentiable on

.0;1/ but that it has neither a local maximum nor a local

minimum value at the endpoint x D 0.

4.5 Concavity and Inflections

Like the first derivative, the second derivative of a function also provides useful infor-

mation about the behaviour of the function and the shape of its graph: it determines

whether the graph is bending upward (i.e., has increasing slope) or bending downward

(i.e., has decreasing slope) as we move along the graph toward the right.
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D E F I N I T I O N

3

We say that the function f is concave up on an open interval I if it is differ-

entiable there and the derivative f 0 is an increasing function on I: Similarly,

f is concave down on I if f 0 exists and is decreasing on I:

The terms “concave up” and “concave down” are used to describe the graph of the

function as well as the function itself.

Note that concavity is defined only for differentiable functions, and even for those,

only on intervals on which their derivatives are not constant. According to the above

definition, a function is neither concave up nor concave down on an interval where

its graph is a straight line segment. We say the function has no concavity on such an

interval. We also say a function has opposite concavity on two intervals if it is concave

up on one interval and concave down on the other.

The function f whose graph is shown in Figure 4.26 is concave up on the interval

.a; b/ and concave down on the interval .b; c/.

Some geometric observations can be made about concavity:

(i) If f is concave up on an interval, then, on that interval, the graph of f lies above

its tangents, and chords joining points on the graph lie above the graph.

(ii) If f is concave down on an interval, then, on that interval, the graph of f lies

below its tangents, and chords to the graph lie below the graph.

(iii) If the graph of f has a tangent at a point, and if the concavity of f is opposite on

opposite sides of that point, then the graph crosses its tangent at that point. (This

occurs at the point
�

b; f .b/
�

in Figure 4.26. Such a point is called an inflection

point of the graph of f:)

Figure 4.26 f is concave up on .a; b/

and concave down on .b; c/

y

x

y D f .x/

a b c

D E F I N I T I O N

4

Inflection points

We say that the point
�

x0; f .x0/
�

is an inflection point of the curve y D

f .x/ (or that the function f has an inflection point at x0) if the following

two conditions are satisfied:

(a) the graph of y D f .x/ has a tangent line at x D x0, and

(b) the concavity of f is opposite on opposite sides of x0.

Note that (a) implies that either f is differentiable at x0 or its graph has a vertical

tangent line there, and (b) implies that the graph crosses its tangent line at x0. An

inflection point of a function f is a point on the graph of a function, rather than a

point in its domain like a critical point or a singular point. A function may or may

not have an inflection point at a critical point or singular point. In general, a point P
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Note that f .0/ D 0 and that f is an odd function (f .�x/ D �f .x/), so the graph is

symmetric about the origin. Also,

lim
x!˙1

x e
�x2

D

�

lim
x!˙1

1

x

� �

lim
x!˙1

x2

ex2

�

D 0 � 0 D 0

because limx!˙1 x2 e�x2
D limu!1 u e�u

D 0 by Theorem 5 of Section 3.4. Since

f .x/ is positive at x D 1=
p

2 and is negative at x D �1=
p

2, f must have absolute

maximum and minimum values by Theorem 8. These values can only be the values

˙1=
p

2e at the two critical points. The graph is shown in Figure 4.25. The x-axis is

an asymptote as x !˙1.

y

x

�

1p
2
;

1p
2e

�

�

�1p
2
;

�1p
2e

�

y D x e�x2

Figure 4.25 The graph for Example 6

E X E R C I S E S 4.4

In Exercises 1–17, determine whether the given function has any

local or absolute extreme values, and find those values if possible.

1. f .x/ D x C 2 on Œ�1; 1� 2. f .x/ D x C 2 on .�1; 0�

3. f .x/ D x C 2 on Œ�1; 1/ 4. f .x/ D x2
� 1

5. f .x/ D x2
� 1 on Œ�2; 3� 6. f .x/ D x2

� 1 on .2; 3/

7. f .x/ D x3
C x � 4 on Œa; b�

8. f .x/ D x3
C x � 4 on .a; b/

9. f .x/ D x5
C x

3
C 2x on .a; b�

10. f .x/ D
1

x � 1
11. f .x/ D

1

x � 1
on .0; 1/

12. f .x/ D
1

x � 1
on Œ2; 3� 13. f .x/ D jx � 1j on Œ�2; 2�

14. jx2
� x � 2j on Œ�3; 3� 15. f .x/ D

1

x2
C 1

16. f .x/ D .x C 2/2=3 17. f .x/ D .x � 2/1=3

In Exercises 18–40, locate and classify all local extreme values of

the given function. Determine whether any of these extreme values

are absolute. Sketch the graph of the function.

18. f .x/ D x2
C 2x 19. f .x/ D x3

� 3x � 2

20. f .x/ D .x2
� 4/

2 21. f .x/ D x3
.x � 1/

2

22. f .x/ D x2
.x � 1/

2 23. f .x/ D x.x2
� 1/

2

24. f .x/ D
x

x2
C 1

25. f .x/ D
x2

x2
C 1

26. f .x/ D
x

p

x4
C 1

27. f .x/ D x
p

2 � x2

28. f .x/ D x C sinx 29. f .x/ D x � 2 sinx

30. f .x/ D x � 2 tan�1
x 31. f .x/ D 2x � sin�1

x

32. f .x/ D e�x2=2 33. f .x/ D x 2�x

34. f .x/ D x2
e

�x2

35. f .x/ D
ln x

x

36. f .x/ D jx C 1j 37. f .x/ D jx2
� 1j

38. f .x/ D sin jxj 39. f .x/ D j sinxj

40.I f .x/ D .x � 1/
2=3
� .x C 1/

2=3

In Exercises 41–46, determine whether the given function has

absolute maximum or absolute minimum values. Justify your

answers. Find the extreme values if you can.

41.
x

p

x2
C 1

42.
x

p

x4
C 1

43. x
p

4 � x2 44.
x2

p

4 � x2

45.I
1

x sinx
on .0; �/ 46.I

sinx

x

47.A If a function has an absolute maximum value, must it have any

local maximum values? If a function has a local maximum

value, must it have an absolute maximum value? Give reasons

for your answers.

48.A If the function f has an absolute maximum value and

g.x/ D jf .x/j, must g have an absolute maximum value?

Justify your answer.

49.A (A function with no max or min at an endpoint) Let

f .x/ D

(

x sin
1

x
if x > 0

0 if x D 0.

Show that f is continuous on Œ0;1/ and differentiable on

.0;1/ but that it has neither a local maximum nor a local

minimum value at the endpoint x D 0.

4.5 Concavity and Inflections

Like the first derivative, the second derivative of a function also provides useful infor-

mation about the behaviour of the function and the shape of its graph: it determines

whether the graph is bending upward (i.e., has increasing slope) or bending downward

(i.e., has decreasing slope) as we move along the graph toward the right.
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D E F I N I T I O N

3

We say that the function f is concave up on an open interval I if it is differ-

entiable there and the derivative f 0 is an increasing function on I: Similarly,

f is concave down on I if f 0 exists and is decreasing on I:

The terms “concave up” and “concave down” are used to describe the graph of the

function as well as the function itself.

Note that concavity is defined only for differentiable functions, and even for those,

only on intervals on which their derivatives are not constant. According to the above

definition, a function is neither concave up nor concave down on an interval where

its graph is a straight line segment. We say the function has no concavity on such an

interval. We also say a function has opposite concavity on two intervals if it is concave

up on one interval and concave down on the other.

The function f whose graph is shown in Figure 4.26 is concave up on the interval

.a; b/ and concave down on the interval .b; c/.

Some geometric observations can be made about concavity:

(i) If f is concave up on an interval, then, on that interval, the graph of f lies above

its tangents, and chords joining points on the graph lie above the graph.

(ii) If f is concave down on an interval, then, on that interval, the graph of f lies

below its tangents, and chords to the graph lie below the graph.

(iii) If the graph of f has a tangent at a point, and if the concavity of f is opposite on

opposite sides of that point, then the graph crosses its tangent at that point. (This

occurs at the point
�

b; f .b/
�

in Figure 4.26. Such a point is called an inflection

point of the graph of f:)

Figure 4.26 f is concave up on .a; b/

and concave down on .b; c/

y

x

y D f .x/

a b c

D E F I N I T I O N

4

Inflection points

We say that the point
�

x0; f .x0/
�

is an inflection point of the curve y D

f .x/ (or that the function f has an inflection point at x0) if the following

two conditions are satisfied:

(a) the graph of y D f .x/ has a tangent line at x D x0, and

(b) the concavity of f is opposite on opposite sides of x0.

Note that (a) implies that either f is differentiable at x0 or its graph has a vertical

tangent line there, and (b) implies that the graph crosses its tangent line at x0. An

inflection point of a function f is a point on the graph of a function, rather than a

point in its domain like a critical point or a singular point. A function may or may

not have an inflection point at a critical point or singular point. In general, a point P
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is an inflection point (or simply an inflection) of a curve C (which is not necessarily

the graph of a function) if C has a tangent at P and arcs of C extending in opposite

directions from P are on opposite sides of that tangent line.

Figures 4.27–4.29 illustrate some situations involving critical and singular points

and inflections.

y

x

y D f .x/ D x3

Figure 4.27 x D 0 is a critical point

of f .x/ D x3, and f has an inflection

point there

y

x

y D g.x/

a

Figure 4.28 The concavity of g is

opposite on opposite sides of the

singular point a, but its graph has no

tangent and therefore no inflection point

there

y

x

y D h.x/ D x1=3

Figure 4.29 This graph of h has an

inflection point at the origin even

though x D 0 is a singular point of h

If a function f has a second derivative f 00, the sign of that second derivative tells

us whether the first derivative f 0 is increasing or decreasing and hence determines the

concavity of f:

T H E O R E M

9

Concavity and the second derivative

(a) If f 00
.x/ > 0 on interval I; then f is concave up on I:

(b) If f 00
.x/ < 0 on interval I; then f is concave down on I:

(c) If f has an inflection point at x0 and f 00.x0/ exists, then f 00.x0/ D 0.

PROOF Parts (a) and (b) follow from applying Theorem 12 of Section 2.8 to the

derivative f 0 of f: If f has an inflection point at x0 and f 00.x0/ exists, then f must

be differentiable in an open interval containing x0. Since f 0 is increasing on one side

of x0 and decreasing on the other side, it must have a local maximum or minimum

value at x0. By Theorem 6, f 00.x0/ D 0.

Theorem 9 tells us that to find (the x-coordinates of) inflection points of a twice dif-

ferentiable function f; we need only look at points where f 00.x/ D 0. However,

not every such point has to be an inflection point. For example, f .x/ D x4, whose

y

x

y D f .x/ D x4

Figure 4.30 f 00.0/ D 0, but f does not

have an inflection point at 0

graph is shown in Figure 4.30, does not have an inflection point at x D 0 even though

f
00
.0/ D 12x

2
jxD0 D 0. In fact, x4 is concave up on every interval.

E X A M P L E 1
Determine the intervals of concavity of f .x/ D x6

� 10x4 and

the inflection points of its graph.

Solution We have

f
0
.x/ D 6x

5
� 40x

3
;

f
00
.x/ D 30x

4
� 120x

2
D 30x

2
.x � 2/.x C 2/:

Having factored f 00.x/ in this manner, we can see that it vanishes only at x D �2,

x D 0, and x D 2. On the intervals .�1;�2/ and .2;1/, f 00.x/ > 0, so f is
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concave up. On .�2; 0/ and .0; 2/, f 00.x/ < 0, so f is concave down. f 00.x/ changes

sign as we pass through �2 and 2. Since f .˙2/ D �96, the graph of f has inflection

points at .˙2;�96/. However, f 00.x/ does not change sign at x D 0, since x2 > 0

for both positive and negative x. Thus, there is no inflection point at 0. As was the

case for the first derivative, information about the sign of f 00.x/ and the consequent

concavity of f can be conveniently conveyed in a chart:

y

x

�2 2

�96

y D f .x/

Figure 4.31 The graph of

f .x/ D x6
� 10x4

x �2 0 2
��������������������������������������������������������!

f
00

C 0 � 0 � 0 C

f ^ infl _ _ infl ^

The graph of f is sketched in Figure 4.31.

E X A M P L E 2
Determine the intervals of increase and decrease, the local extreme

values, and the concavity of f .x/ D x4
� 2x3

C 1. Use the

information to sketch the graph of f:

Solution

f
0
.x/ D 4x

3
� 6x

2
D 2x

2
.2x � 3/ D 0 at x D 0 and x D 3=2;

f
00
.x/ D 12x

2
� 12x D 12x.x � 1/ D 0 at x D 0 and x D 1:

The behaviour of f is summarized in the following chart:

CP CP

x 0 1 3=2
��������������������������������������������������������!

f 0
� 0 � � 0 C

f 00
C 0 � 0 C C

f & & & min %

^ infl _ infl ^ ^

Note that f has an inflection at the critical point x D 0. We calculate the values of f

at the “interesting values of x” in the charts:

y

x

1

1

�

3
2

;� 11
16

�

y D x4
� 2x3

C 1

Figure 4.32 The function of Example 2

f .0/ D 1; f .1/ D 0; f
�

3
2

�

D �
11
16
:

The graph of f is sketched in Figure 4.32.

The Second Derivative Test
A function f will have a local maximum (or minimum) value at a critical point if its

graph is concave down (or up) in an interval containing that point. In fact, we can

often use the value of the second derivative at the critical point to determine whether

the function has a local maximum or a local minimum value there.

T H E O R E M

10

The Second Derivative Test

(a) If f 0.x0/ D 0 and f 00.x0/ < 0, then f has a local maximum value at x0.

(b) If f 0.x0/ D 0 and f 00.x0/ > 0, then f has a local minimum value at x0.

(c) If f 0.x0/ D 0 and f 00.x0/ D 0, no conclusion can be drawn; f may have a local

maximum at x0 or a local minimum, or it may have an inflection point instead.
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is an inflection point (or simply an inflection) of a curve C (which is not necessarily

the graph of a function) if C has a tangent at P and arcs of C extending in opposite

directions from P are on opposite sides of that tangent line.

Figures 4.27–4.29 illustrate some situations involving critical and singular points

and inflections.

y

x

y D f .x/ D x3

Figure 4.27 x D 0 is a critical point

of f .x/ D x3, and f has an inflection

point there

y

x

y D g.x/

a

Figure 4.28 The concavity of g is

opposite on opposite sides of the

singular point a, but its graph has no

tangent and therefore no inflection point

there

y

x

y D h.x/ D x1=3

Figure 4.29 This graph of h has an

inflection point at the origin even

though x D 0 is a singular point of h

If a function f has a second derivative f 00, the sign of that second derivative tells

us whether the first derivative f 0 is increasing or decreasing and hence determines the

concavity of f:

T H E O R E M

9

Concavity and the second derivative

(a) If f 00
.x/ > 0 on interval I; then f is concave up on I:

(b) If f 00
.x/ < 0 on interval I; then f is concave down on I:

(c) If f has an inflection point at x0 and f 00.x0/ exists, then f 00.x0/ D 0.

PROOF Parts (a) and (b) follow from applying Theorem 12 of Section 2.8 to the

derivative f 0 of f: If f has an inflection point at x0 and f 00.x0/ exists, then f must

be differentiable in an open interval containing x0. Since f 0 is increasing on one side

of x0 and decreasing on the other side, it must have a local maximum or minimum

value at x0. By Theorem 6, f 00.x0/ D 0.

Theorem 9 tells us that to find (the x-coordinates of) inflection points of a twice dif-

ferentiable function f; we need only look at points where f 00.x/ D 0. However,

not every such point has to be an inflection point. For example, f .x/ D x4, whose

y

x

y D f .x/ D x4

Figure 4.30 f 00.0/ D 0, but f does not

have an inflection point at 0

graph is shown in Figure 4.30, does not have an inflection point at x D 0 even though

f
00
.0/ D 12x

2
jxD0 D 0. In fact, x4 is concave up on every interval.

E X A M P L E 1
Determine the intervals of concavity of f .x/ D x6

� 10x4 and

the inflection points of its graph.

Solution We have

f
0
.x/ D 6x

5
� 40x

3
;

f
00
.x/ D 30x

4
� 120x

2
D 30x

2
.x � 2/.x C 2/:

Having factored f 00.x/ in this manner, we can see that it vanishes only at x D �2,

x D 0, and x D 2. On the intervals .�1;�2/ and .2;1/, f 00.x/ > 0, so f is
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concave up. On .�2; 0/ and .0; 2/, f 00.x/ < 0, so f is concave down. f 00.x/ changes

sign as we pass through �2 and 2. Since f .˙2/ D �96, the graph of f has inflection

points at .˙2;�96/. However, f 00.x/ does not change sign at x D 0, since x2 > 0

for both positive and negative x. Thus, there is no inflection point at 0. As was the

case for the first derivative, information about the sign of f 00.x/ and the consequent

concavity of f can be conveniently conveyed in a chart:

y

x

�2 2

�96

y D f .x/

Figure 4.31 The graph of

f .x/ D x6
� 10x4

x �2 0 2
��������������������������������������������������������!

f
00

C 0 � 0 � 0 C

f ^ infl _ _ infl ^

The graph of f is sketched in Figure 4.31.

E X A M P L E 2
Determine the intervals of increase and decrease, the local extreme

values, and the concavity of f .x/ D x4
� 2x3

C 1. Use the

information to sketch the graph of f:

Solution

f
0
.x/ D 4x

3
� 6x

2
D 2x

2
.2x � 3/ D 0 at x D 0 and x D 3=2;

f
00
.x/ D 12x

2
� 12x D 12x.x � 1/ D 0 at x D 0 and x D 1:

The behaviour of f is summarized in the following chart:

CP CP

x 0 1 3=2
��������������������������������������������������������!

f 0
� 0 � � 0 C

f 00
C 0 � 0 C C

f & & & min %

^ infl _ infl ^ ^

Note that f has an inflection at the critical point x D 0. We calculate the values of f

at the “interesting values of x” in the charts:

y

x

1

1

�

3
2

;� 11
16

�

y D x4
� 2x3

C 1

Figure 4.32 The function of Example 2

f .0/ D 1; f .1/ D 0; f
�

3
2

�

D �
11
16
:

The graph of f is sketched in Figure 4.32.

The Second Derivative Test
A function f will have a local maximum (or minimum) value at a critical point if its

graph is concave down (or up) in an interval containing that point. In fact, we can

often use the value of the second derivative at the critical point to determine whether

the function has a local maximum or a local minimum value there.

T H E O R E M

10

The Second Derivative Test

(a) If f 0.x0/ D 0 and f 00.x0/ < 0, then f has a local maximum value at x0.

(b) If f 0.x0/ D 0 and f 00.x0/ > 0, then f has a local minimum value at x0.

(c) If f 0.x0/ D 0 and f 00.x0/ D 0, no conclusion can be drawn; f may have a local

maximum at x0 or a local minimum, or it may have an inflection point instead.
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PROOF Suppose that f 0.x0/ D 0 and f 00.x0/ < 0. Since

lim
h!0

f 0.x0 C h/

h
D lim

h!0

f 0.x0 C h/ � f
0.x0/

h
D f

00
.x0/ < 0;

it follows that f 0.x0Ch/ < 0 for all sufficiently small positive h, and f 0.x0Ch/ > 0

for all sufficiently small negative h. By the first derivative test (Theorem 7), f must

have a local maximum value at x0. The proof of the local minimum case is similar.

The functions f .x/ D x4 (Figure 4.30), f .x/ D �x4, and f .x/ D x3 (Figure 4.27)

all satisfy f 0
.0/ D 0 and f 00

.0/ D 0. But x4 has a minimum value at x D 0, �x4

has a maximum value at x D 0, and x3 has neither a maximum nor a minimum value

at x D 0 but has an inflection there. Therefore, we cannot make any conclusion about

the nature of a critical point based on knowing that f 00.x/ D 0 there.

E X A M P L E 3
Find and classify the critical points of f .x/ D x2e�x .

Solution We begin by calculating the first two derivatives of f :

f
0
.x/ D .2x � x

2
/e

�x
D x.2 � x/e

�x
D 0 at x D 0 and x D 2;

f
00
.x/ D .2 � 4x C x

2
/e

�x

f
00
.0/ D 2 > 0; f

00
.2/ D �2e

�2
< 0:

Thus, f has a local minimum value at x D 0 and a local maximum value at x D 2.

See Figure 4.33.

y

x

yDx2 e�x

.2;4e�2/

Figure 4.33 The critical points of

f .x/ D x
2
e

�x

For many functions the second derivative is more complicated to calculate than the

first derivative, so the First Derivative Test is likely to be of more use in classifying

critical points than is the Second Derivative Test. Also note that the First Derivative

Test can classify local extreme values that occur at endpoints and singular points as

well as at critical points.

It is possible to generalize the Second Derivative Test to obtain a higher derivative

test to deal with some situations where the second derivative is zero at a critical point.

(See Exercise 40 at the end of this section.)

E X E R C I S E S 4.5

In Exercises 1–22, determine the intervals of constant concavity of

the given function, and locate any inflection points.

1. f .x/ D
p

x 2. f .x/ D 2x � x2

3. f .x/ D x2
C 2x C 3 4. f .x/ D x � x3

5. f .x/ D 10x3
� 3x

5 6. f .x/ D 10x3
C 3x

5

7. f .x/ D .3 � x2
/
2 8. f .x/ D .2C 2x � x2

/
2

9. f .x/ D .x2
� 4/

3 10. f .x/ D
x

x2
C 3

11. f .x/ D sinx 12. f .x/ D cos 3x

13. f .x/ D x C sin 2x 14. f .x/ D x � 2 sinx

15. f .x/ D tan�1
x 16. f .x/ D x ex

17. f .x/ D e�x2

18. f .x/ D
ln.x2/

x

19. f .x/ D ln.1C x2
/ 20. f .x/ D .lnx/2

21. f .x/ D
x3

3
� 4x

2
C 12x �

25

3

22. f .x/ D .x � 1/1=3
C .x C 1/

1=3

23. Discuss the concavity of the linear function

f .x/ D ax C b. Does it have any inflections?

Classify the critical points of the functions in Exercises 24–35

using the Second Derivative Test whenever possible.

24. f .x/ D 3x3
� 36x � 3 25. f .x/ D x.x � 2/2 C 1

26. f .x/ D x C
4

x
27. f .x/ D x3

C

1

x

28. f .x/ D
x

2x
29. f .x/ D

x

1C x2

30. f .x/ D xex 31. f .x/ D x lnx

32. f .x/ D .x2
� 4/

2 33. f .x/ D .x2
� 4/

3
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34. f .x/ D .x2
� 3/e

x 35. f .x/ D x2
e

�2x2

36. Let f .x/ D x2 if x � 0 and f .x/ D �x2 if x < 0. Is 0 a

critical point of f ? Does f have an inflection point there? Is

f 00.0/ D 0? If a function has a nonvertical tangent line at an

inflection point, does the second derivative of the function

necessarily vanish at that point?

37.I Verify that if f is concave up on an interval, then its graph

lies above its tangent lines on that interval. Hint: Suppose f is

concave up on an open interval containing x0. Let h.x/ D

f .x/ � f .x0/ � f
0.x0/.x � x0/. Show that h has a local

minimum value at x0 and hence that h.x/ � 0 on the interval.

Show that h.x/ > 0 if x ¤ x0.

38.I Verify that the graph y D f .x/ crosses its tangent line at an

inflection point. Hint: Consider separately the cases where the

tangent line is vertical and nonvertical.

39. Let fn.x/ D x
n and gn.x/ D �x

n; .n D 2; 3; 4; : : :/.

Determine whether each function has a local maximum, a

local minimum, or an inflection point at x D 0.

40.I (Higher Derivative Test) Use your conclusions from Exercise

39 to suggest a generalization of the Second Derivative Test

that applies when

f
0
.x0/ D f

00
.x0/ D : : : D f

.k�1/
.x0/ D 0; f

.k/
.x0/ ¤ 0;

for some k � 2.

41.I This problem shows that no test based solely on the signs of

derivatives at x0 can determine whether every function with a

critical point at x0 has a local maximum or minimum or an

inflection point there. Let

f .x/ D

�

e�1=x2
if x ¤ 0

0 if x D 0.

Prove the following:

(a) limx!0 x
�n
f .x/ D 0 for n D 0; 1; 2; 3; : : : .

(b) limx!0 P.1=x/f .x/ D 0 for every polynomial P .

(c) For x ¤ 0; f .k/
.x/ D Pk.1=x/f .x/.k D 1; 2; 3; : : :/,

where Pk is a polynomial.

(d) f .k/.0/ exists and equals 0 for k D 1; 2; 3; : : : .

(e) f has a local minimum at x D 0I �f has a local

maximum at x D 0.

(f) If g.x/ D xf .x/, then g.k/.0/ D 0 for every positive

integer k and g has an inflection point at x D 0.

42.I A function may have neither a local maximum nor a local

minimum nor an inflection at a critical point. Show this by

considering the following function:

f .x/ D

(

x2 sin
1

x
if x ¤ 0

0 if x D 0.

Show that f 0.0/ D f .0/ D 0, so the x-axis is tangent to the

graph of f at x D 0; but f 0.x/ is not continuous at x D 0, so

f 00.0/ does not exist. Show that the concavity of f is not

constant on any interval with endpoint 0.

4.6 Sketching the Graph of a Function

When sketching the graph y D f .x/ of a function f , we have three sources of useful

information:

(i) the function f itself, from which we determine the coordinates of some points

on the graph, the symmetry of the graph, and any asymptotes;

(ii) the first derivative, f
0, from which we determine the intervals of increase and

decrease and the location of any local extreme values; and

(iii) the second derivative, f
00, from which we determine the concavity and inflection

points, and sometimes extreme values.

Items (ii) and (iii) were explored in the previous two sections. In this section we

consider what we can learn from the function itself about the shape of its graph, and

then we illustrate the entire sketching procedure with several examples using all three

sources of information.

We could sketch a graph by plotting the coordinates of many points on it and join-

ing them by a suitably smooth curve. This is what computer software and graphics

calculators do. When carried out by hand (without a computer or calculator), this sim-

plistic approach is at best tedious and at worst can fail to reveal the most interesting

aspects of the graph (singular points, extreme values, and so on). We could also com-

pute the slope at each of the plotted points and, by drawing short line segments through

these points with the appropriate slopes, ensure that the sketched graph passes through

each plotted point with the correct slope. A more efficient procedure is to obtain the

coordinates of only a few points and use qualitative information from the function

and its first and second derivatives to determine the shape of the graph between these

points.
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PROOF Suppose that f 0.x0/ D 0 and f 00.x0/ < 0. Since

lim
h!0

f 0.x0 C h/

h
D lim

h!0

f 0.x0 C h/ � f
0.x0/

h
D f

00
.x0/ < 0;

it follows that f 0.x0Ch/ < 0 for all sufficiently small positive h, and f 0.x0Ch/ > 0

for all sufficiently small negative h. By the first derivative test (Theorem 7), f must

have a local maximum value at x0. The proof of the local minimum case is similar.

The functions f .x/ D x4 (Figure 4.30), f .x/ D �x4, and f .x/ D x3 (Figure 4.27)

all satisfy f 0
.0/ D 0 and f 00

.0/ D 0. But x4 has a minimum value at x D 0, �x4

has a maximum value at x D 0, and x3 has neither a maximum nor a minimum value

at x D 0 but has an inflection there. Therefore, we cannot make any conclusion about

the nature of a critical point based on knowing that f 00.x/ D 0 there.

E X A M P L E 3
Find and classify the critical points of f .x/ D x2e�x .

Solution We begin by calculating the first two derivatives of f :

f
0
.x/ D .2x � x

2
/e

�x
D x.2 � x/e

�x
D 0 at x D 0 and x D 2;

f
00
.x/ D .2 � 4x C x

2
/e

�x

f
00
.0/ D 2 > 0; f

00
.2/ D �2e

�2
< 0:

Thus, f has a local minimum value at x D 0 and a local maximum value at x D 2.

See Figure 4.33.

y

x

yDx2 e�x

.2;4e�2/

Figure 4.33 The critical points of

f .x/ D x
2
e

�x

For many functions the second derivative is more complicated to calculate than the

first derivative, so the First Derivative Test is likely to be of more use in classifying

critical points than is the Second Derivative Test. Also note that the First Derivative

Test can classify local extreme values that occur at endpoints and singular points as

well as at critical points.

It is possible to generalize the Second Derivative Test to obtain a higher derivative

test to deal with some situations where the second derivative is zero at a critical point.

(See Exercise 40 at the end of this section.)

E X E R C I S E S 4.5

In Exercises 1–22, determine the intervals of constant concavity of

the given function, and locate any inflection points.

1. f .x/ D
p

x 2. f .x/ D 2x � x2

3. f .x/ D x2
C 2x C 3 4. f .x/ D x � x3

5. f .x/ D 10x3
� 3x

5 6. f .x/ D 10x3
C 3x

5

7. f .x/ D .3 � x2
/
2 8. f .x/ D .2C 2x � x2

/
2

9. f .x/ D .x2
� 4/

3 10. f .x/ D
x

x2
C 3

11. f .x/ D sinx 12. f .x/ D cos 3x

13. f .x/ D x C sin 2x 14. f .x/ D x � 2 sinx

15. f .x/ D tan�1
x 16. f .x/ D x ex

17. f .x/ D e�x2

18. f .x/ D
ln.x2/

x

19. f .x/ D ln.1C x2
/ 20. f .x/ D .lnx/2

21. f .x/ D
x3

3
� 4x

2
C 12x �

25

3

22. f .x/ D .x � 1/1=3
C .x C 1/

1=3

23. Discuss the concavity of the linear function

f .x/ D ax C b. Does it have any inflections?

Classify the critical points of the functions in Exercises 24–35

using the Second Derivative Test whenever possible.

24. f .x/ D 3x3
� 36x � 3 25. f .x/ D x.x � 2/2 C 1

26. f .x/ D x C
4

x
27. f .x/ D x3

C

1

x

28. f .x/ D
x

2x
29. f .x/ D

x

1C x2

30. f .x/ D xex 31. f .x/ D x lnx

32. f .x/ D .x2
� 4/

2 33. f .x/ D .x2
� 4/

3
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34. f .x/ D .x2
� 3/e

x 35. f .x/ D x2
e

�2x2

36. Let f .x/ D x2 if x � 0 and f .x/ D �x2 if x < 0. Is 0 a

critical point of f ? Does f have an inflection point there? Is

f 00.0/ D 0? If a function has a nonvertical tangent line at an

inflection point, does the second derivative of the function

necessarily vanish at that point?

37.I Verify that if f is concave up on an interval, then its graph

lies above its tangent lines on that interval. Hint: Suppose f is

concave up on an open interval containing x0. Let h.x/ D

f .x/ � f .x0/ � f
0.x0/.x � x0/. Show that h has a local

minimum value at x0 and hence that h.x/ � 0 on the interval.

Show that h.x/ > 0 if x ¤ x0.

38.I Verify that the graph y D f .x/ crosses its tangent line at an

inflection point. Hint: Consider separately the cases where the

tangent line is vertical and nonvertical.

39. Let fn.x/ D x
n and gn.x/ D �x

n; .n D 2; 3; 4; : : :/.

Determine whether each function has a local maximum, a

local minimum, or an inflection point at x D 0.

40.I (Higher Derivative Test) Use your conclusions from Exercise

39 to suggest a generalization of the Second Derivative Test

that applies when

f
0
.x0/ D f

00
.x0/ D : : : D f

.k�1/
.x0/ D 0; f

.k/
.x0/ ¤ 0;

for some k � 2.

41.I This problem shows that no test based solely on the signs of

derivatives at x0 can determine whether every function with a

critical point at x0 has a local maximum or minimum or an

inflection point there. Let

f .x/ D

�

e�1=x2
if x ¤ 0

0 if x D 0.

Prove the following:

(a) limx!0 x
�n
f .x/ D 0 for n D 0; 1; 2; 3; : : : .

(b) limx!0 P.1=x/f .x/ D 0 for every polynomial P .

(c) For x ¤ 0; f .k/
.x/ D Pk.1=x/f .x/.k D 1; 2; 3; : : :/,

where Pk is a polynomial.

(d) f .k/.0/ exists and equals 0 for k D 1; 2; 3; : : : .

(e) f has a local minimum at x D 0I �f has a local

maximum at x D 0.

(f) If g.x/ D xf .x/, then g.k/.0/ D 0 for every positive

integer k and g has an inflection point at x D 0.

42.I A function may have neither a local maximum nor a local

minimum nor an inflection at a critical point. Show this by

considering the following function:

f .x/ D

(

x2 sin
1

x
if x ¤ 0

0 if x D 0.

Show that f 0.0/ D f .0/ D 0, so the x-axis is tangent to the

graph of f at x D 0; but f 0.x/ is not continuous at x D 0, so

f 00.0/ does not exist. Show that the concavity of f is not

constant on any interval with endpoint 0.

4.6 Sketching the Graph of a Function

When sketching the graph y D f .x/ of a function f , we have three sources of useful

information:

(i) the function f itself, from which we determine the coordinates of some points

on the graph, the symmetry of the graph, and any asymptotes;

(ii) the first derivative, f
0, from which we determine the intervals of increase and

decrease and the location of any local extreme values; and

(iii) the second derivative, f
00, from which we determine the concavity and inflection

points, and sometimes extreme values.

Items (ii) and (iii) were explored in the previous two sections. In this section we

consider what we can learn from the function itself about the shape of its graph, and

then we illustrate the entire sketching procedure with several examples using all three

sources of information.

We could sketch a graph by plotting the coordinates of many points on it and join-

ing them by a suitably smooth curve. This is what computer software and graphics

calculators do. When carried out by hand (without a computer or calculator), this sim-

plistic approach is at best tedious and at worst can fail to reveal the most interesting

aspects of the graph (singular points, extreme values, and so on). We could also com-

pute the slope at each of the plotted points and, by drawing short line segments through

these points with the appropriate slopes, ensure that the sketched graph passes through

each plotted point with the correct slope. A more efficient procedure is to obtain the

coordinates of only a few points and use qualitative information from the function

and its first and second derivatives to determine the shape of the graph between these

points.
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Besides critical and singular points and inflections, a graph may have other “in-

teresting” points. The intercepts (points at which the graph intersects the coordinate

axes) are usually among these. When sketching any graph it is wise to try to find

all such intercepts, that is, all points with coordinates .x; 0/ and .0; y/ that lie on the

graph. Of course, not every graph will have such points, and even when they do exist

it may not always be possible to compute them exactly. Whenever a graph is made

up of several disconnected pieces (called components), the coordinates of at least one

point on each component must be obtained. It can sometimes be useful to determine

the slopes at those points too. Vertical asymptotes (discussed below) usually break the

graph of a function into components.

Realizing that a given function possesses some symmetry can aid greatly in ob-

taining a good sketch of its graph. In Section P.4 we discussed odd and even func-

tions and observed that odd functions have graphs that are symmetric about the origin,

while even functions have graphs that are symmetric about the y-axis, as shown in

Figure 4.34. These are the symmetries you are most likely to notice, but functions can

have other symmetries. For example, the graph of 2C .x � 1/2 will certainly be sym-

metric about the line x D 1, and the graph of 2 C .x � 3/3 is symmetric about the

point .3; 2/.

Figure 4.34

(a) The graph of an even function is

symmetric about the y-axis

(b) The graph of an odd function is

symmetric about the origin

y

x�x x

y D f .x/
y

x

�x

x

y D f .x/

(a) (b)

Asymptotes
Some of the curves we have sketched in previous sections have had asymptotes, that is,

straight lines to which the curve draws arbitrarily close as it recedes to infinite distance

from the origin. Asymptotes are of three types: vertical, horizontal, and oblique.

D E F I N I T I O N

5

The graph of y D f .x/ has a vertical asymptote at x D a if

either lim
x!a�

f .x/ D ˙1 or lim
x!aC

f .x/ D ˙1; or both.

This situation tends to arise when f .x/ is a quotient of two expressions and the de-

nominator is zero at x D a.y

x

y D
1

x2
� x

x D 1

Figure 4.35

E X A M P L E 1 Find the vertical asymptotes of f .x/ D
1

x2
� x

. How does the

graph approach these asymptotes?

Solution The denominator x2
� x D x.x � 1/ approaches 0 as x approaches 0 or

1, so f has vertical asymptotes at x D 0 and x D 1 (Figure 4.35). Since x.x � 1/ is

positive on .�1; 0/ and on .1;1/ and is negative on .0; 1/, we have

lim
x!0�

1

x2
� x
D1;

lim
x!0C

1

x2
� x
D �1;

lim
x!1�

1

x2
� x
D �1;

lim
x!1C

1

x2
� x
D1:
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D E F I N I T I O N

6

The graph of y D f .x/ has a horizontal asymptote y D L if

either lim
x!1

f .x/ D L or lim
x!�1

f .x/ D L; or both:

E X A M P L E 2
Find the horizontal asymptotes of

(a) f .x/ D
1

x2
� x

and (b) g.x/ D
x4
C x2

x4
C 1

.

Solution

(a) The function f has horizontal asymptote y D 0 (Figure 4.35) since

lim
x!˙1

1

x2
� x
D lim

x!˙1

1=x
2

1 � .1=x/
D

0

1
D 0:

(b) The function g has horizontal asymptote y D 1 (Figure 4.36) since

lim
x!˙1

x4
C x2

x4
C 1

D lim
x!˙1

1C .1=x2/

1C .1=x4/
D

1

1
D 1:

Observe that the graph of g crosses its asymptote twice. (There is a popular mis-

conception among students that curves cannot cross their asymptotes. Exercise 41

below gives an example of a curve that crosses its asymptote infinitely often.)

y

x

y D
x4
C x2

x4
C 1

y D 1

Figure 4.36

The horizontal asymptotes of both functions f and g in Example 2 are two-sided,

which means that the graphs approach the asymptotes as x approaches both infinity

and negative infinity. The function tan�1 x has two one-sided asymptotes, y D �=2

(as x !1) and y D �.�=2/ (as x ! �1). See Figure 4.37.

Figure 4.37 One-sided horizontal

asymptotes

y

x

y D tan�1x

�

�

2

�

2

It can also happen that the graph of a function f approaches a nonhorizontal

straight line as x approaches 1 or �1 (or both). Such a line is called an oblique

asymptote of the graph.

D E F I N I T I O N

7

The straight line y D ax C b (where a ¤ 0) is an oblique asymptote of the

graph of y D f .x/ if

either lim
x!�1

�

f .x/�.axCb/
�

D 0 or lim
x!1

�

f .x/�.axCb/
�

D 0;

or both.

E X A M P L E 3 Consider the function f .x/ D
x2
C 1

x
D x C

1

x
; whose graph is

shown in Figure 4.38(a). The straight line y D x is a two-sided

oblique asymptote of the graph of f because

lim
x!˙1

�

f .x/� x
�

D lim
x!˙1

1

x
D 0:
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Besides critical and singular points and inflections, a graph may have other “in-

teresting” points. The intercepts (points at which the graph intersects the coordinate

axes) are usually among these. When sketching any graph it is wise to try to find

all such intercepts, that is, all points with coordinates .x; 0/ and .0; y/ that lie on the

graph. Of course, not every graph will have such points, and even when they do exist

it may not always be possible to compute them exactly. Whenever a graph is made

up of several disconnected pieces (called components), the coordinates of at least one

point on each component must be obtained. It can sometimes be useful to determine

the slopes at those points too. Vertical asymptotes (discussed below) usually break the

graph of a function into components.

Realizing that a given function possesses some symmetry can aid greatly in ob-

taining a good sketch of its graph. In Section P.4 we discussed odd and even func-

tions and observed that odd functions have graphs that are symmetric about the origin,

while even functions have graphs that are symmetric about the y-axis, as shown in

Figure 4.34. These are the symmetries you are most likely to notice, but functions can

have other symmetries. For example, the graph of 2C .x � 1/2 will certainly be sym-

metric about the line x D 1, and the graph of 2 C .x � 3/3 is symmetric about the

point .3; 2/.

Figure 4.34

(a) The graph of an even function is

symmetric about the y-axis

(b) The graph of an odd function is

symmetric about the origin

y

x�x x

y D f .x/
y

x

�x

x

y D f .x/

(a) (b)

Asymptotes
Some of the curves we have sketched in previous sections have had asymptotes, that is,

straight lines to which the curve draws arbitrarily close as it recedes to infinite distance

from the origin. Asymptotes are of three types: vertical, horizontal, and oblique.

D E F I N I T I O N

5

The graph of y D f .x/ has a vertical asymptote at x D a if

either lim
x!a�

f .x/ D ˙1 or lim
x!aC

f .x/ D ˙1; or both.

This situation tends to arise when f .x/ is a quotient of two expressions and the de-

nominator is zero at x D a.y

x

y D
1

x2
� x

x D 1

Figure 4.35

E X A M P L E 1 Find the vertical asymptotes of f .x/ D
1

x2
� x

. How does the

graph approach these asymptotes?

Solution The denominator x2
� x D x.x � 1/ approaches 0 as x approaches 0 or

1, so f has vertical asymptotes at x D 0 and x D 1 (Figure 4.35). Since x.x � 1/ is

positive on .�1; 0/ and on .1;1/ and is negative on .0; 1/, we have

lim
x!0�

1

x2
� x
D1;

lim
x!0C

1

x2
� x
D �1;

lim
x!1�

1

x2
� x
D �1;

lim
x!1C

1

x2
� x
D1:
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D E F I N I T I O N

6

The graph of y D f .x/ has a horizontal asymptote y D L if

either lim
x!1

f .x/ D L or lim
x!�1

f .x/ D L; or both:

E X A M P L E 2
Find the horizontal asymptotes of

(a) f .x/ D
1

x2
� x

and (b) g.x/ D
x4
C x2

x4
C 1

.

Solution

(a) The function f has horizontal asymptote y D 0 (Figure 4.35) since

lim
x!˙1

1

x2
� x
D lim

x!˙1

1=x
2

1 � .1=x/
D

0

1
D 0:

(b) The function g has horizontal asymptote y D 1 (Figure 4.36) since

lim
x!˙1

x4
C x2

x4
C 1

D lim
x!˙1

1C .1=x2/

1C .1=x4/
D

1

1
D 1:

Observe that the graph of g crosses its asymptote twice. (There is a popular mis-

conception among students that curves cannot cross their asymptotes. Exercise 41

below gives an example of a curve that crosses its asymptote infinitely often.)

y

x

y D
x4
C x2

x4
C 1

y D 1

Figure 4.36

The horizontal asymptotes of both functions f and g in Example 2 are two-sided,

which means that the graphs approach the asymptotes as x approaches both infinity

and negative infinity. The function tan�1 x has two one-sided asymptotes, y D �=2

(as x !1) and y D �.�=2/ (as x ! �1). See Figure 4.37.

Figure 4.37 One-sided horizontal

asymptotes

y

x

y D tan�1x

�

�

2

�

2

It can also happen that the graph of a function f approaches a nonhorizontal

straight line as x approaches 1 or �1 (or both). Such a line is called an oblique

asymptote of the graph.

D E F I N I T I O N

7

The straight line y D ax C b (where a ¤ 0) is an oblique asymptote of the

graph of y D f .x/ if

either lim
x!�1

�

f .x/�.axCb/
�

D 0 or lim
x!1

�

f .x/�.axCb/
�

D 0;

or both.

E X A M P L E 3 Consider the function f .x/ D
x2
C 1

x
D x C

1

x
; whose graph is

shown in Figure 4.38(a). The straight line y D x is a two-sided

oblique asymptote of the graph of f because

lim
x!˙1

�

f .x/� x
�

D lim
x!˙1

1

x
D 0:
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Figure 4.38

(a) The graph of y D f .x/ has a

two-sided oblique asymptote, y D x

(b) This graph has a horizontal asymptote

at the left and an oblique asymptote at

the right

y

x

y D x C
1

x

.�1;�2/

.1;2/

y D x

y

x

y D
x ex

1C ex

y D x

(a) (b)

E X A M P L E 4 The graph of y D
x ex

1C ex
, shown in Figure 4.38(b), has a horizon-

tal asymptote y D 0 at the left and an oblique asymptote y D x at

the right:

lim
x!�1

x e
x

1C ex
D

0

1
D 0 and

lim
x!1

�

x ex

1C ex
� x

�

D lim
x!1

x.ex
� 1 � ex/

1C ex
D lim

x!1

�x

1C ex
D 0:

Recall that a rational function is a function of the form f .x/ D P.x/=Q.x/, where

P and Q are polynomials. Following observations made in Sections P.6, 1.2, and 1.3,

we can be quite specific about the asymptotes of a rational function.

Asymptotes of a rational function

Suppose that f .x/ D
Pm.x/

Qn.x/
, where Pm and Qn are polynomials of degree

m and n, respectively. Suppose also that Pm and Qn have no common linear

factors. Then

(a) The graph of f has a vertical asymptote at every position x such that

Qn.x/ D 0.

(b) The graph of f has a two-sided horizontal asymptote y D 0 if m < n.

(c) The graph of f has a two-sided horizontal asymptote y D L, .L ¤ 0/ if

m D n. L is the quotient of the coefficients of the highest degree terms

in Pm and Qn.

(d) The graph of f has a two-sided oblique asymptote if m D n C 1. This

asymptote can be found by dividing Qn into Pm to obtain a linear quo-

tient, ax C b, and remainder, R, a polynomial of degree at most n � 1.

That is,

f .x/ D ax C b C
R.x/

Qn.x/
:

The oblique asymptote is y D ax C b.

(e) The graph of f has no horizontal or oblique asymptotes if m > nC 1.

E X A M P L E 5 Find the oblique asymptote of y D
x

3

x2
C x C 1

.

Solution We can either obtain the quotient by long division:
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x � 1

x2
C x C 1 x

3

x
3
C x

2
C x

� x
2
� x

� x2
� x � 1

1

x3

x2
C x C 1

D x � 1 C
1

x2
C x C 1

or we can obtain the same result by short division:

x3

x2
C x C 1

D

x3
C x2

C x � x2
� x � 1C 1

x2
C x C 1

D x � 1C
1

x2
C x C 1

:

In any event, we see that the oblique asymptote has equation y D x � 1.

Examples of Formal Curve Sketching
Here is a checklist of things to consider when you are asked to make a careful sketch

of the graph of y D f .x/. It will, of course, not always be possible to obtain every

item of information mentioned in the list.

Checklist for curve sketching

1. Calculate f 0.x/ and f 00.x/, and express the results in factored form.

2. Examine f .x/ to determine its domain and the following items:

(a) Any vertical asymptotes. (Look for zeros of denominators.)

(b) Any horizontal or oblique asymptotes. (Consider limx!˙1 f .x/.)

(c) Any obvious symmetry. (Is f even or odd?)

(d) Any easily calculated intercepts (points with coordinates .x; 0/ or

.0; y/) or endpoints or other “obvious” points. You will add to this

list when you know any critical points, singular points, and inflection

points. Eventually you should make sure you know the coordinates

of at least one point on every component of the graph.

3. Examine f 0.x/ for the following:

(a) Any critical points.

(b) Any points where f 0 is not defined. (These will include singular

points, endpoints of the domain of f; and vertical asymptotes.)

(c) Intervals on which f 0 is positive or negative. It’s a good idea to con-

vey this information in the form of a chart such as those used in the

examples. Conclusions about where f is increasing and decreas-

ing and classification of some critical and singular points as local

maxima and minima can also be indicated on the chart.

4. Examine f 00.x/ for the following:

(a) Points where f 00.x/ D 0.

(b) Points where f 00.x/ is undefined. (These will include singular points,

endpoints, vertical asymptotes, and possibly other points as well,

where f 0 is defined but f 00 isn’t.)

(c) Intervals where f 00 is positive or negative and where f is therefore

concave up or down. Use a chart.

(d) Any inflection points.

When you have obtained as much of this information as possible, make a careful sketch

that reflects everything you have learned about the function. Consider where best to

place the axes and what scale to use on each so the “interesting features” of the graph

show up most clearly. Be alert for seeming inconsistencies in the information—that is
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Figure 4.38

(a) The graph of y D f .x/ has a

two-sided oblique asymptote, y D x

(b) This graph has a horizontal asymptote

at the left and an oblique asymptote at

the right

y

x

y D x C
1

x

.�1;�2/

.1;2/

y D x

y

x

y D
x ex

1C ex

y D x

(a) (b)

E X A M P L E 4 The graph of y D
x ex

1C ex
, shown in Figure 4.38(b), has a horizon-

tal asymptote y D 0 at the left and an oblique asymptote y D x at

the right:

lim
x!�1

x e
x

1C ex
D

0

1
D 0 and

lim
x!1

�

x ex

1C ex
� x

�

D lim
x!1

x.ex
� 1 � ex/

1C ex
D lim

x!1

�x

1C ex
D 0:

Recall that a rational function is a function of the form f .x/ D P.x/=Q.x/, where

P and Q are polynomials. Following observations made in Sections P.6, 1.2, and 1.3,

we can be quite specific about the asymptotes of a rational function.

Asymptotes of a rational function

Suppose that f .x/ D
Pm.x/

Qn.x/
, where Pm and Qn are polynomials of degree

m and n, respectively. Suppose also that Pm and Qn have no common linear

factors. Then

(a) The graph of f has a vertical asymptote at every position x such that

Qn.x/ D 0.

(b) The graph of f has a two-sided horizontal asymptote y D 0 if m < n.

(c) The graph of f has a two-sided horizontal asymptote y D L, .L ¤ 0/ if

m D n. L is the quotient of the coefficients of the highest degree terms

in Pm and Qn.

(d) The graph of f has a two-sided oblique asymptote if m D n C 1. This

asymptote can be found by dividing Qn into Pm to obtain a linear quo-

tient, ax C b, and remainder, R, a polynomial of degree at most n � 1.

That is,

f .x/ D ax C b C
R.x/

Qn.x/
:

The oblique asymptote is y D ax C b.

(e) The graph of f has no horizontal or oblique asymptotes if m > nC 1.

E X A M P L E 5 Find the oblique asymptote of y D
x

3

x2
C x C 1

.

Solution We can either obtain the quotient by long division:
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x � 1

x2
C x C 1 x

3

x
3
C x

2
C x

� x
2
� x

� x2
� x � 1

1

x3

x2
C x C 1

D x � 1 C
1

x2
C x C 1

or we can obtain the same result by short division:

x3

x2
C x C 1

D

x3
C x2

C x � x2
� x � 1C 1

x2
C x C 1

D x � 1C
1

x2
C x C 1

:

In any event, we see that the oblique asymptote has equation y D x � 1.

Examples of Formal Curve Sketching
Here is a checklist of things to consider when you are asked to make a careful sketch

of the graph of y D f .x/. It will, of course, not always be possible to obtain every

item of information mentioned in the list.

Checklist for curve sketching

1. Calculate f 0.x/ and f 00.x/, and express the results in factored form.

2. Examine f .x/ to determine its domain and the following items:

(a) Any vertical asymptotes. (Look for zeros of denominators.)

(b) Any horizontal or oblique asymptotes. (Consider limx!˙1 f .x/.)

(c) Any obvious symmetry. (Is f even or odd?)

(d) Any easily calculated intercepts (points with coordinates .x; 0/ or

.0; y/) or endpoints or other “obvious” points. You will add to this

list when you know any critical points, singular points, and inflection

points. Eventually you should make sure you know the coordinates

of at least one point on every component of the graph.

3. Examine f 0.x/ for the following:

(a) Any critical points.

(b) Any points where f 0 is not defined. (These will include singular

points, endpoints of the domain of f; and vertical asymptotes.)

(c) Intervals on which f 0 is positive or negative. It’s a good idea to con-

vey this information in the form of a chart such as those used in the

examples. Conclusions about where f is increasing and decreas-

ing and classification of some critical and singular points as local

maxima and minima can also be indicated on the chart.

4. Examine f 00.x/ for the following:

(a) Points where f 00.x/ D 0.

(b) Points where f 00.x/ is undefined. (These will include singular points,

endpoints, vertical asymptotes, and possibly other points as well,

where f 0 is defined but f 00 isn’t.)

(c) Intervals where f 00 is positive or negative and where f is therefore

concave up or down. Use a chart.

(d) Any inflection points.

When you have obtained as much of this information as possible, make a careful sketch

that reflects everything you have learned about the function. Consider where best to

place the axes and what scale to use on each so the “interesting features” of the graph

show up most clearly. Be alert for seeming inconsistencies in the information—that is
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a strong suggestion you may have made an error somewhere. For example, if you have

determined that f .x/ ! 1 as x approaches the vertical asymptote x D a from the

right, and also that f is decreasing and concave down on the interval .a; b/, then you

have very likely made an error. (Try to sketch such a situation to see why.)

E X A M P L E 6 Sketch the graph of y D
x2
C 2x C 4

2x
.

Solution It is useful to rewrite the function y in the form

y D
x

2
C 1C

2

x
;

since this form not only shows clearly that y D .x=2/C 1 is an oblique asymptote, but

also makes it easier to calculate the derivatives

y
0
D

1

2
�

2

x2
D

x2
� 4

2x2
; y

00
D

4

x3
:

From y: Domain: all x except 0. Vertical asymptote: x D 0,

Oblique asymptote: y D
x

2
C 1, y�

�

x

2
C 1

�

D

2

x
! 0 as x !˙1.

Symmetry: none obvious (y is neither odd nor even).

Intercepts: none. x2
C 2x C 4 D .x C 1/2 C 3 � 3 for all x, and y is not

defined at x D 0.

From y 0: Critical points: x D ˙2; points .�2;�1/ and .2; 3/.

y
0 not defined at x D 0 (vertical asymptote).

From y 00: y 00
D 0 nowhere; y 00 undefined at x D 0.

CP ASY CP

x �2 0 2
�������������������������������������������������!

y 0
C 0 � undef � 0 C

y 00
� � undef C C

y % max & undef & min %

_ _ ^ ^

The graph is shown in Figure 4.39.

E X A M P L E 7 Sketch the graph of f .x/ D
x

2
� 1

x2
� 4

.

Solution We have

f
0
.x/ D

�6x

.x2
� 4/2

; f
00
.x/ D

6.3x
2
C 4/

.x2
� 4/3

:

From f : Domain: all x except ˙2. Vertical asymptotes: x D �2 and x D 2.

Horizontal asymptote: y D 1 (as x !˙1).

Symmetry: about the y-axis (y is even).

Intercepts: .0; 1=4/, .�1; 0/, and .1; 0/.

Other points: .�3; 8=5/, .3; 8=5/. (The two vertical asymptotes divide the

graph into three components; we need points on each. The outer compo-

nents require points with jxj > 2.)
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y

x
.�2;�1/

.2;3/

y D
x

2
C 1

y D
x2
C 2x C 4

2x

Figure 4.39

y

x

y D
x2
� 1

x2
� 4

.3;8=5/

x D �2

.�3;8=5/

x D 2

�1 1
1=4 y D 1

Figure 4.40

From f 0: Critical point: x D 0; f 0 not defined at x D 2 or x D �2.

From f 00: f 00.x/ D 0 nowhere; f 00 not defined at x D 2 or x D �2.

ASY CP ASY

x �2 0 2
�������������������������������������������������!

f 0
C undef C 0 � undef �

f 00
C undef � � undef C

f % undef % max & undef &

^ _ _ ^

The graph is shown in Figure 4.40.

E X A M P L E 8
Sketch the graph of y D xe�x2=2.

Solution We have y 0
D .1 � x2/e�x2=2, y 00

D x.x2
� 3/e�x2=2.

From y: Domain: all x.

Horizontal asymptote: y D 0. Note that if t D x2=2, then

jxe�x2=2
j D

p

2t e�t
! 0 as t !1 (hence as x !˙1).

Symmetry: about the origin (y is odd). Intercepts: .0; 0/.

From y 0: Critical points: x D ˙1; points .˙1;˙1=
p

e/ � .˙1;˙0:61/.

From y 00: y 00
D 0 at x D 0 and x D ˙

p

3;

points .0; 0/, .˙
p

3;˙
p

3e�3=2/ � .˙1:73;˙0:39/.
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a strong suggestion you may have made an error somewhere. For example, if you have

determined that f .x/ ! 1 as x approaches the vertical asymptote x D a from the

right, and also that f is decreasing and concave down on the interval .a; b/, then you

have very likely made an error. (Try to sketch such a situation to see why.)

E X A M P L E 6 Sketch the graph of y D
x2
C 2x C 4

2x
.

Solution It is useful to rewrite the function y in the form

y D
x

2
C 1C

2

x
;

since this form not only shows clearly that y D .x=2/C 1 is an oblique asymptote, but

also makes it easier to calculate the derivatives

y
0
D

1

2
�

2

x2
D

x2
� 4

2x2
; y

00
D

4

x3
:

From y: Domain: all x except 0. Vertical asymptote: x D 0,

Oblique asymptote: y D
x

2
C 1, y�

�

x

2
C 1

�

D

2

x
! 0 as x !˙1.

Symmetry: none obvious (y is neither odd nor even).

Intercepts: none. x2
C 2x C 4 D .x C 1/2 C 3 � 3 for all x, and y is not

defined at x D 0.

From y 0: Critical points: x D ˙2; points .�2;�1/ and .2; 3/.

y
0 not defined at x D 0 (vertical asymptote).

From y 00: y 00
D 0 nowhere; y 00 undefined at x D 0.

CP ASY CP

x �2 0 2
�������������������������������������������������!

y 0
C 0 � undef � 0 C

y 00
� � undef C C

y % max & undef & min %

_ _ ^ ^

The graph is shown in Figure 4.39.

E X A M P L E 7 Sketch the graph of f .x/ D
x

2
� 1

x2
� 4

.

Solution We have

f
0
.x/ D

�6x

.x2
� 4/2

; f
00
.x/ D

6.3x
2
C 4/

.x2
� 4/3

:

From f : Domain: all x except ˙2. Vertical asymptotes: x D �2 and x D 2.

Horizontal asymptote: y D 1 (as x !˙1).

Symmetry: about the y-axis (y is even).

Intercepts: .0; 1=4/, .�1; 0/, and .1; 0/.

Other points: .�3; 8=5/, .3; 8=5/. (The two vertical asymptotes divide the

graph into three components; we need points on each. The outer compo-

nents require points with jxj > 2.)
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y

x
.�2;�1/

.2;3/

y D
x

2
C 1

y D
x2
C 2x C 4

2x

Figure 4.39

y

x

y D
x2
� 1

x2
� 4

.3;8=5/

x D �2

.�3;8=5/

x D 2

�1 1
1=4 y D 1

Figure 4.40

From f 0: Critical point: x D 0; f 0 not defined at x D 2 or x D �2.

From f 00: f 00.x/ D 0 nowhere; f 00 not defined at x D 2 or x D �2.

ASY CP ASY

x �2 0 2
�������������������������������������������������!

f 0
C undef C 0 � undef �

f 00
C undef � � undef C

f % undef % max & undef &

^ _ _ ^

The graph is shown in Figure 4.40.

E X A M P L E 8
Sketch the graph of y D xe�x2=2.

Solution We have y 0
D .1 � x2/e�x2=2, y 00

D x.x2
� 3/e�x2=2.

From y: Domain: all x.

Horizontal asymptote: y D 0. Note that if t D x2=2, then

jxe�x2=2
j D

p

2t e�t
! 0 as t !1 (hence as x !˙1).

Symmetry: about the origin (y is odd). Intercepts: .0; 0/.

From y 0: Critical points: x D ˙1; points .˙1;˙1=
p

e/ � .˙1;˙0:61/.

From y 00: y 00
D 0 at x D 0 and x D ˙

p

3;

points .0; 0/, .˙
p

3;˙
p

3e�3=2/ � .˙1:73;˙0:39/.

9780134154367_Calculus   273 05/12/16   3:16 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 254 October 15, 2016

254 CHAPTER 4 More Applications of Differentiation

CP CP

x �

p

3 �1 0 1
p

3
���������������������������������������������������������������!

y 0
� � 0 C C 0 � �

y 00
� 0 C C 0 � � 0 C

y & & min % % max & &

_ infl ^ ^ infl _ _ infl ^

The graph is shown in Figure 4.41.

y

x

.1;e�1=2/

.�1;�e�1=2/

.�
p

3;�
p

3e�3=2/

.
p

3;
p

3e�3=2/

y D x e�x2=2

Figure 4.41

y

x

y D .x2
� 1/2=3

1

�1 1

.�
p

3;22=3/ .
p

3;22=3/

Figure 4.42

E X A M P L E 9
Sketch the graph of f .x/ D .x2

� 1/2=3. (See Figure 4.42.)

Solution f
0
.x/ D

4

3

x

.x2
� 1/1=3

; f
00
.x/ D

4

9

x2
� 3

.x2
� 1/4=3

.

From f : Domain: all x.

Asymptotes: none. (f .x/ grows like x4=3 as x !˙1.)

Symmetry: about the y-axis (f is an even function).

Intercepts: .˙1; 0/, .0; 1/.

From f 0: Critical points: x D 0; singular points: x D ˙1.

From f 00: f 00.x/ D 0 at x D ˙
p

3; points .˙
p

3; 22=3/ � .˙1:73; 1:59/I

f 00.x/ not defined at x D ˙1.

SP CP SP

x �

p

3 �1 0 1
p

3
���������������������������������������������������������������!

f 0
� � undef C 0 � undef C C

f 00
C 0 � undef � � undef � 0 C

f & & min % max & min % %

^ infl _ _ _ _ infl ^

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 255 October 15, 2016

SECTION 4.6: Sketching the Graph of a Function 255

E X E R C I S E S 4.6

1. Figure 4.43 shows the graphs of a function f, its two

derivatives f 0 and f 00, and another function g. Which graph

corresponds to each function?

2. List, for each function graphed in Figure 4.43, such

information that you can determine (approximately) by

inspecting the graph (e.g., symmetry, asymptotes, intercepts,

intervals of increase and decrease, critical and singular points,

local maxima and minima, intervals of constant concavity,

inflection points).

y

�5

�4

�3
�2

�1

1

2

3

4

x�5 �4 �3 �2 �1 1 2 3 4

y

�5

�4

�3

�2

�1

1

2

3

4

x�5 �4 �3 �2 �1 1 2 3 4

y

�5

�4

�3

�2

�1

1

2

3

4

x�5 �4 �3 �2 �1 1 2 3 4

y

�5

�4

�3
�2

�1

1

2

3

4

x�5 �4 �3 �2 �1 1 2 3 4

(a)

(c) (d)

(b)

Figure 4.43

3. Figure 4.44 shows the graphs of four functions:

f .x/ D
x

1 � x2
;

h.x/ D
x3
� x

q

x6
C 1

;

g.x/ D
x

3

1 � x4
;

k.x/ D
x3

q

jx4
� 1j

:

Which graph corresponds to each function?

4. Repeat Exercise 2 for the graphs in Figure 4.44.

y

�4

�3

�2

�1

1

2

3

x�5 �4 �3 �2 �1 1 2 3 4

y

�4

�3

�2

�1

1

2

3

x�5 �4 �3 �2 �1 1 2 3 4

y

�4

�3

�2

�1

1

2

3

x�5 �4 �3 �2 �1 1 2 3 4

y

�4

�3

�2

�1

1

2

3

x�5 �4 �3 �2 �1 1 2 3 4

(a)

(c) (d)

(b)

Figure 4.44

In Exercises 5–6, sketch the graph of a function that has the given

properties. Identify any critical points, singular points, local

maxima and minima, and inflection points. Assume that f is

continuous and its derivatives exist everywhere unless the contrary

is implied or explicitly stated.

5. f .0/ D 1, f .˙1/ D 0, f .2/ D 1, limx!1 f .x/ D 2,

limx!�1 f .x/ D �1, f 0.x/ > 0 on .�1; 0/ and on .1;1/,

f 0.x/ < 0 on .0; 1/, f 00.x/ > 0 on .�1; 0/ and on .0; 2/,

and f 00.x/ < 0 on .2;1/.

6. f .�1/ D 0, f .0/ D 2, f .1/ D 1, f .2/ D 0, f .3/ D 1,

limx!˙1.f .x/C 1 � x/ D 0, f 0.x/ > 0 on .�1;�1/,

.�1; 0/ and .2;1/, f 0.x/ < 0 on .0; 2/,

limx!�1 f
0.x/ D1, f 00.x/ > 0 on .�1;�1/ and on .1; 3/,

and f 00.x/ < 0 on .�1; 1/ and on .3;1/.

In Exercises 7–39, sketch the graphs of the given functions,

making use of any suitable information you can obtain from the

function and its first and second derivatives.

7. y D .x2
� 1/

3 8. y D x.x2
� 1/

2

9. y D
2� x

x
10. y D

x � 1

x C 1

11. y D
x3

1C x
12. y D

1

4C x2

13. y D
1

2� x2
14. y D

x

x2
� 1

15. y D
x2

x2
� 1

16. y D
x3

x2
� 1

17. y D
x3

x2
C 1

18. y D
x2

x2
C 1

19. y D
x2
� 4

x C 1
20. y D

x2
� 2

x2
� 1

21. y D
x3
� 4x

x2
� 1

22. y D
x2
� 1

x2

23. y D
x

5

.x2
� 1/2

24. y D
.2 � x/

2

x3

25. y D
1

x3
� 4x

26. y D
x

x2
C x � 2

27. y D
x3
� 3x2

C 1

x3
28. y D x C sinx

29. y D x C 2 sinx 30. y D e�x2

31. y D xex 32. y D e�x sinx; .x � 0/

33. y D x2
e

�x2

34. y D x2
e

x

35. y D
lnx

x
; .x > 0/ 36. y D

lnx

x2
; .x > 0/

37. y D
1

p

4 � x2
38. y D

x
p

x2
C 1

39. y D .x2
� 1/

1=3

40.I What is limx!0C x ln x? limx!0 x ln jxj? If f .x/ D x ln jxj

for x ¤ 0, is it possible to define f .0/ in such a way that f is

continuous on the whole real line? Sketch the graph of f.

41. What straight line is an asymptote of the curve y D
sinx

1C x2
?

At what points does the curve cross this asymptote?
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CP CP

x �

p

3 �1 0 1
p

3
���������������������������������������������������������������!

y 0
� � 0 C C 0 � �

y 00
� 0 C C 0 � � 0 C

y & & min % % max & &

_ infl ^ ^ infl _ _ infl ^

The graph is shown in Figure 4.41.

y

x

.1;e�1=2/

.�1;�e�1=2/

.�
p

3;�
p

3e�3=2/

.
p

3;
p

3e�3=2/

y D x e�x2=2

Figure 4.41

y

x

y D .x2
� 1/2=3

1

�1 1

.�
p

3;22=3/ .
p

3;22=3/

Figure 4.42

E X A M P L E 9
Sketch the graph of f .x/ D .x2

� 1/2=3. (See Figure 4.42.)

Solution f
0
.x/ D

4

3

x

.x2
� 1/1=3

; f
00
.x/ D

4

9

x2
� 3

.x2
� 1/4=3

.

From f : Domain: all x.

Asymptotes: none. (f .x/ grows like x4=3 as x !˙1.)

Symmetry: about the y-axis (f is an even function).

Intercepts: .˙1; 0/, .0; 1/.

From f 0: Critical points: x D 0; singular points: x D ˙1.

From f 00: f 00.x/ D 0 at x D ˙
p

3; points .˙
p

3; 22=3/ � .˙1:73; 1:59/I

f 00.x/ not defined at x D ˙1.

SP CP SP

x �

p

3 �1 0 1
p

3
���������������������������������������������������������������!

f 0
� � undef C 0 � undef C C

f 00
C 0 � undef � � undef � 0 C

f & & min % max & min % %

^ infl _ _ _ _ infl ^
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E X E R C I S E S 4.6

1. Figure 4.43 shows the graphs of a function f, its two

derivatives f 0 and f 00, and another function g. Which graph

corresponds to each function?

2. List, for each function graphed in Figure 4.43, such

information that you can determine (approximately) by

inspecting the graph (e.g., symmetry, asymptotes, intercepts,

intervals of increase and decrease, critical and singular points,

local maxima and minima, intervals of constant concavity,

inflection points).

y

�5

�4

�3
�2

�1

1

2

3

4

x�5 �4 �3 �2 �1 1 2 3 4

y
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3

4

x�5 �4 �3 �2 �1 1 2 3 4

y
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3

4

x�5 �4 �3 �2 �1 1 2 3 4

y

�5

�4

�3
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�1

1
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3

4

x�5 �4 �3 �2 �1 1 2 3 4

(a)

(c) (d)

(b)

Figure 4.43

3. Figure 4.44 shows the graphs of four functions:

f .x/ D
x

1 � x2
;

h.x/ D
x3
� x

q

x6
C 1

;

g.x/ D
x

3

1 � x4
;

k.x/ D
x3

q

jx4
� 1j

:

Which graph corresponds to each function?

4. Repeat Exercise 2 for the graphs in Figure 4.44.

y

�4
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�1
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2

3

x�5 �4 �3 �2 �1 1 2 3 4

y
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y
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2

3

x�5 �4 �3 �2 �1 1 2 3 4

y

�4
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1

2

3

x�5 �4 �3 �2 �1 1 2 3 4

(a)

(c) (d)

(b)

Figure 4.44

In Exercises 5–6, sketch the graph of a function that has the given

properties. Identify any critical points, singular points, local

maxima and minima, and inflection points. Assume that f is

continuous and its derivatives exist everywhere unless the contrary

is implied or explicitly stated.

5. f .0/ D 1, f .˙1/ D 0, f .2/ D 1, limx!1 f .x/ D 2,

limx!�1 f .x/ D �1, f 0.x/ > 0 on .�1; 0/ and on .1;1/,

f 0.x/ < 0 on .0; 1/, f 00.x/ > 0 on .�1; 0/ and on .0; 2/,

and f 00.x/ < 0 on .2;1/.

6. f .�1/ D 0, f .0/ D 2, f .1/ D 1, f .2/ D 0, f .3/ D 1,

limx!˙1.f .x/C 1 � x/ D 0, f 0.x/ > 0 on .�1;�1/,

.�1; 0/ and .2;1/, f 0.x/ < 0 on .0; 2/,

limx!�1 f
0.x/ D1, f 00.x/ > 0 on .�1;�1/ and on .1; 3/,

and f 00.x/ < 0 on .�1; 1/ and on .3;1/.

In Exercises 7–39, sketch the graphs of the given functions,

making use of any suitable information you can obtain from the

function and its first and second derivatives.

7. y D .x2
� 1/

3 8. y D x.x2
� 1/

2

9. y D
2� x

x
10. y D

x � 1

x C 1

11. y D
x3

1C x
12. y D

1

4C x2

13. y D
1

2� x2
14. y D

x

x2
� 1

15. y D
x2

x2
� 1

16. y D
x3

x2
� 1

17. y D
x3

x2
C 1

18. y D
x2

x2
C 1

19. y D
x2
� 4

x C 1
20. y D

x2
� 2

x2
� 1

21. y D
x3
� 4x

x2
� 1

22. y D
x2
� 1

x2

23. y D
x

5

.x2
� 1/2

24. y D
.2 � x/

2

x3

25. y D
1

x3
� 4x

26. y D
x

x2
C x � 2

27. y D
x3
� 3x2

C 1

x3
28. y D x C sinx

29. y D x C 2 sinx 30. y D e�x2

31. y D xex 32. y D e�x sinx; .x � 0/

33. y D x2
e

�x2

34. y D x2
e

x

35. y D
lnx

x
; .x > 0/ 36. y D

lnx

x2
; .x > 0/

37. y D
1

p

4 � x2
38. y D

x
p

x2
C 1

39. y D .x2
� 1/

1=3

40.I What is limx!0C x ln x? limx!0 x ln jxj? If f .x/ D x ln jxj

for x ¤ 0, is it possible to define f .0/ in such a way that f is

continuous on the whole real line? Sketch the graph of f.

41. What straight line is an asymptote of the curve y D
sinx

1C x2
?

At what points does the curve cross this asymptote?
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4.7 Graphing with Computers

The techniques for sketching, developed in the previous section, are useful for graphs of

functions that are simple enough to allow you to calculate and analyze their derivatives.

They are also essential for testing the validity of graphs produced by computers or

calculators, which can be inaccurate or misleading for a variety of reasons, including

the case of numerical monsters introduced in previous chapters. In practice, it is often

easiest to first produce a graph using a computer or graphing calculator, but many

times this will not turn out to be the last step. (We will use the term “computer” for

both computers and calculators.) For many simple functions this can be a quick and

painless activity, but sometimes functions have properties that complicate the process.

Knowledge of the function, from techniques like those above, is important to guide you

on what the next steps must be.

The Maple command1 for viewing the graph of the function from Example 6

of Section 4.6, together with its oblique asymptote, is a straightforward example of

plotting; we ask Maple to plot both .x2
C 2x C 4/=.2x/ and 1C .x=2/:

> plot(f(x^2+2*x+4)/(2*x), 1+(x/2)g, x=-6..6, y=-7..7);

This command sets the window �6 � x � 6 and �7 � y � 7. Why that window? To

get a plot that characterizes the function, knowledge of its vertical asymptote at x D 0

is essential. (If x � 10 were substituted for x in the expression, the given window

would no longer produce a reasonable graph of the key features of the function. The

new function would be better viewed on the interval 4 � x � 16.) If the range Œ�7; 7�

were not specified, the computer would plot all of the points where it evaluates the

function, including those very close to the vertical asymptote where the function is

very large. The resulting plot would compress all of the features of the graph onto the

x-axis. Even the asymptote would look like a horizontal line in that scaling. You might

even miss the vertical asymptote, which is squeezed into the y-axis.

Getting Maple to plot the curve in Example 9 of Section 4.6 is a bit trickier. Be-

cause Maple doesn’t deal well with fractional powers of negative numbers, even when

they have positive real values, we must actually plot jx2
� 1j2=3 or ..x2

� 1/2/1=3.

Otherwise, the part of the graph between �1 and 1 will be missing. Either of the plot

commands

> plot((abs(x^2-1))^(2/3), x=-4..4, y=-1..5);

> plot(((x^2-1)^2)^(1/3), x=-4..4, y=-1..5);

will produce the desired graph. In order to ensure a complete plot with all of the

features of the function present, the graph of the simple expression should be viewed

critically, and not taken at face value.

Numerical Monsters and Computer Graphing

K The next obvious problem is that of false features and false behaviours. Functions that

are mathematically well-behaved can still be computationally poorly behaved, leading

to false features on graphs, as we have already seen.

E X A M P L E 1
Consider the function f .x/ D ex ln.1C e�x/, which has suitably

simplified derivative

f
0
.x/ D e

x
g.x/; where g.x/ D ln.1C e�x

/ �
1

ex
C 1

:

In turn, the derivative of g.x/ simplifies to

g
0
.x/ D �

1

.ex
C 1/2

;

1 Although we focus on Maple to illustrate the issues of graphing with computers, the issues

presented are general ones, pertaining to all software and computers.
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which is negative for all x, so g is decreasing. Since g.0/ D ln 2 � 1=2 > 0 and

limx!1 g.x/ D 0, it follows that g.x/ > 0 and decreasing for all x. Thus, f 0
.x/ is

positive, and f .x/ is an increasing function for all x. Furthermore, l’Hôpital’s Rules

show that

lim
x!1

f .x/ D 1 and lim
x!�1

f .x/ D 0:

This gives us a pretty full picture of how the function f behaves. It grows with increas-

ing x from 0 at �1, crosses the y-axis at ln 2, and finally approaches 1 asymptotically

from below as x increases toward1.

Now let’s plot the graph of f using the Maple command

> plot(exp(x)*ln(1+(1/exp(x))), x=-20..45, style=point,

symbol=point, numpoints=1500);

Figure 4.45 A faulty computer plot of

y D ex ln.1C e�x/

0
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1

1.5

2

–20 –10 10 20 30 40x

The result is shown in Figure 4.45. Clearly something is wrong. From x D �20

to about x D 30, the graph behaves in accordance with the mathematical analysis.

However, for larger values of x, peculiarities emerge that sharply disagree with the

analysis. The calculus of this chapter tells us that the function is increasing with no

horizontal tangents, but the computer suggests that it decreases in some places. The

calculus tells us that the function rises asymptotically to 1, but the computer suggests

that the function starts to oscillate and ultimately becomes 0 at about x D 36.

This is another numerical monster. What a computer does can simply be wrong.

In this case, it is significantly so. In practical applications an erroneous value of 0

instead of 1 could, for example, be a factor in a product, and that would change every-

thing dramatically. If the mathematics were not known in this case, how could we

even know that the computer is wrong? Another computer cannot be used to check

it, as the problem is one that all computers share. Another program cannot be used

because all software must use the special floating-point arithmetic that is subject to the

roundoff errors responsible for the problem. Figure 4.45 is not particular to Maple.

This monster, or one much like it, can be created in nearly any software package.

Floating-Point Representation of Numbers in Computers
It is necessary that you know mathematics in order to use computers correctly and

effectively. It is equally necessary to understand why all computers fail to fully capture

the mathematics. As indicated previously, the reason is that no computer can represent

all numbers. Computer designers artfully attempt to minimize the effects of this by

making the number of representable numbers as large as possible. But, speaking in

terms of physics, a finite-sized machine can only represent a finite number of numbers.

Having only a finite number of numbers leads to numbers sufficiently small, compared

to 1, that the computer simply discards them in a sum. When digits are lost in this

manner, the resulting error is known as roundoff error.

In many cases the finiteness shows up in the use of floating-point numbers and

a set of corresponding arithmetic rules that approximate correct arithmetic. These

approximate rules and approximate representations are not unique by any means. For

example, the software package Derive uses so-called slash arithmetic, which works

9780134154367_Calculus   276 05/12/16   3:16 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 256 October 15, 2016

256 CHAPTER 4 More Applications of Differentiation

4.7 Graphing with Computers

The techniques for sketching, developed in the previous section, are useful for graphs of

functions that are simple enough to allow you to calculate and analyze their derivatives.

They are also essential for testing the validity of graphs produced by computers or

calculators, which can be inaccurate or misleading for a variety of reasons, including

the case of numerical monsters introduced in previous chapters. In practice, it is often

easiest to first produce a graph using a computer or graphing calculator, but many

times this will not turn out to be the last step. (We will use the term “computer” for

both computers and calculators.) For many simple functions this can be a quick and

painless activity, but sometimes functions have properties that complicate the process.

Knowledge of the function, from techniques like those above, is important to guide you

on what the next steps must be.

The Maple command1 for viewing the graph of the function from Example 6

of Section 4.6, together with its oblique asymptote, is a straightforward example of

plotting; we ask Maple to plot both .x2
C 2x C 4/=.2x/ and 1C .x=2/:

> plot(f(x^2+2*x+4)/(2*x), 1+(x/2)g, x=-6..6, y=-7..7);

This command sets the window �6 � x � 6 and �7 � y � 7. Why that window? To

get a plot that characterizes the function, knowledge of its vertical asymptote at x D 0

is essential. (If x � 10 were substituted for x in the expression, the given window

would no longer produce a reasonable graph of the key features of the function. The

new function would be better viewed on the interval 4 � x � 16.) If the range Œ�7; 7�

were not specified, the computer would plot all of the points where it evaluates the

function, including those very close to the vertical asymptote where the function is

very large. The resulting plot would compress all of the features of the graph onto the

x-axis. Even the asymptote would look like a horizontal line in that scaling. You might

even miss the vertical asymptote, which is squeezed into the y-axis.

Getting Maple to plot the curve in Example 9 of Section 4.6 is a bit trickier. Be-

cause Maple doesn’t deal well with fractional powers of negative numbers, even when

they have positive real values, we must actually plot jx2
� 1j2=3 or ..x2

� 1/2/1=3.

Otherwise, the part of the graph between �1 and 1 will be missing. Either of the plot

commands

> plot((abs(x^2-1))^(2/3), x=-4..4, y=-1..5);

> plot(((x^2-1)^2)^(1/3), x=-4..4, y=-1..5);

will produce the desired graph. In order to ensure a complete plot with all of the

features of the function present, the graph of the simple expression should be viewed

critically, and not taken at face value.

Numerical Monsters and Computer Graphing

K The next obvious problem is that of false features and false behaviours. Functions that

are mathematically well-behaved can still be computationally poorly behaved, leading

to false features on graphs, as we have already seen.

E X A M P L E 1
Consider the function f .x/ D ex ln.1C e�x/, which has suitably

simplified derivative

f
0
.x/ D e

x
g.x/; where g.x/ D ln.1C e�x

/ �
1

ex
C 1

:

In turn, the derivative of g.x/ simplifies to

g
0
.x/ D �

1

.ex
C 1/2

;

1 Although we focus on Maple to illustrate the issues of graphing with computers, the issues

presented are general ones, pertaining to all software and computers.
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which is negative for all x, so g is decreasing. Since g.0/ D ln 2 � 1=2 > 0 and

limx!1 g.x/ D 0, it follows that g.x/ > 0 and decreasing for all x. Thus, f 0
.x/ is

positive, and f .x/ is an increasing function for all x. Furthermore, l’Hôpital’s Rules

show that

lim
x!1

f .x/ D 1 and lim
x!�1

f .x/ D 0:

This gives us a pretty full picture of how the function f behaves. It grows with increas-

ing x from 0 at �1, crosses the y-axis at ln 2, and finally approaches 1 asymptotically

from below as x increases toward1.

Now let’s plot the graph of f using the Maple command

> plot(exp(x)*ln(1+(1/exp(x))), x=-20..45, style=point,

symbol=point, numpoints=1500);

Figure 4.45 A faulty computer plot of

y D ex ln.1C e�x/
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The result is shown in Figure 4.45. Clearly something is wrong. From x D �20

to about x D 30, the graph behaves in accordance with the mathematical analysis.

However, for larger values of x, peculiarities emerge that sharply disagree with the

analysis. The calculus of this chapter tells us that the function is increasing with no

horizontal tangents, but the computer suggests that it decreases in some places. The

calculus tells us that the function rises asymptotically to 1, but the computer suggests

that the function starts to oscillate and ultimately becomes 0 at about x D 36.

This is another numerical monster. What a computer does can simply be wrong.

In this case, it is significantly so. In practical applications an erroneous value of 0

instead of 1 could, for example, be a factor in a product, and that would change every-

thing dramatically. If the mathematics were not known in this case, how could we

even know that the computer is wrong? Another computer cannot be used to check

it, as the problem is one that all computers share. Another program cannot be used

because all software must use the special floating-point arithmetic that is subject to the

roundoff errors responsible for the problem. Figure 4.45 is not particular to Maple.

This monster, or one much like it, can be created in nearly any software package.

Floating-Point Representation of Numbers in Computers
It is necessary that you know mathematics in order to use computers correctly and

effectively. It is equally necessary to understand why all computers fail to fully capture

the mathematics. As indicated previously, the reason is that no computer can represent

all numbers. Computer designers artfully attempt to minimize the effects of this by

making the number of representable numbers as large as possible. But, speaking in

terms of physics, a finite-sized machine can only represent a finite number of numbers.

Having only a finite number of numbers leads to numbers sufficiently small, compared

to 1, that the computer simply discards them in a sum. When digits are lost in this

manner, the resulting error is known as roundoff error.

In many cases the finiteness shows up in the use of floating-point numbers and

a set of corresponding arithmetic rules that approximate correct arithmetic. These

approximate rules and approximate representations are not unique by any means. For

example, the software package Derive uses so-called slash arithmetic, which works
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with a representation of numbers as continued fractions instead of decimals. This has

certain advantages and disadvantages, but, in the end, finiteness forces truncation just

the same.

The term “roundoff” implies that there is some kind of mitigation procedure or

rounding done to reduce error once the smallest digits have been discarded. There are

a number of different kinds of rounding practices. The various options can be quite in-

tricate, but they all begin with the aim to slightly reduce error as a result of truncation.

The truncation is the source of error, not the rounding, despite the terminology that

seems to suggest otherwise. The entire process of truncation and rounding have come

to be termed “roundoff,” although the details of the error mitigation are immaterial for

the purposes of this discussion. Rounding is beyond the scope of this section and will

not be considered further.

Historically, the term “decimal” implies base ten, but the idea works the same

in any base. In particular, in any base, multiplying by the base to an integral power

simply shifts the position of the “decimal point.” Thus, multiplying or dividing by the

base is known as a shift operation. The term “floating-point” signifies this shifting

of the point to the left or right. The general technical term for the decimal point is

radix point. Specifically for base two, the point is sometimes called the binary point.

However, we will use the term decimal point or just decimal for all bases, as the

etymological purity is not worth having several names for one small symbol.

While computers, for the most part, work in base two, they can be and have been

built in other bases. For example, there have been base-three computers, and many

computers group numbers so that they work as if they were built in base eight (octal)

or base sixteen (hexadecimal). (If you are feeling old, quote your age in hexadecimal.

For example, 48 D 3 � 16 or 30 in hexadecimal. If you are feeling too young, use

octal.)

In a normal binary computer, floating-point numbers approximate the mathemati-

cal real numbers. Several bytes of memory (frequently 8 bytes) are allocated for each

floating-point number. Each byte consists of eight bits, each of which has two (phys-

ical) states and can thus store one of the two base-two digits “0” or “1,” as it is the

equivalent of a switch being either off or on.

Thus, an eight-byte allocation for a floating-point number can store 64 bits of

data. The computer uses something similar to scientific notation, which is often used

to express numbers in base ten. However, the convention is to place the decimal im-

mediately to the left of all significant figures. For example, the computer convention

would call for the base-ten number 284,070,000 to be represented as 0:28407 � 109.

Here 0.28407 is called the mantissa, and it has 5 significant base-ten digits follow-

ing the decimal point, the 2 being the most significant and the 7 the least significant

digit. The 9 in the factor 109 is called the exponent, which defines the number of

shift operations needed to locate the correct position of the decimal point of the actual

number.

The computer only needs to represent the mantissa and the exponent, each with its

appropriate sign. The base is set by the architecture and so is not stored. Neither is the

decimal point nor the leading zero in the mantissa stored. These are all just implied.

If the floating-point number has 64 bits, two are used for the two signs, leaving 62 bits

for significant digits in the mantissa and the exponent.

As an example of base two (i.e., binary) representation, the number

101:011 D 1 � 2
2
C 0 � 2

1
C 1 � 2

0
C 0 � 2

�1
C 1 � 2

�2
C 1 � 2

�3

stands for the base-ten number 4 + 1 + (1/4) + (1/8) = 43/8. On a computer the stored

bits would be +101011 for the mantissa and +11 for the exponent. Thus, the base-two

floating-point form is 0:101011�23 , with mantissa 0.101011 and exponent 3. Note that

we are representing the exponent in base ten (3), and not base two (11), because that is

more convenient for counting shift operations.
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While the base-two representation of two is 10, we will continue, for convenience,

to write two as 2 when using it as the base for base-two representations. After all, any

base b is represented by 10 with respect to itself as base. So, if we chose to write the

number above as 0:101011 � 1011, the numeral could as well denote a number in any

base. However, for us people normally thinking in base ten, 0:101011 � 23 clearly

indicates that the base is two and the decimal point is shifted 3 digits to the right of the

most significant digit in the mantissa.

Now consider x D 0:101 � 2�10
D 0:0000000000101, the base-two floating-

point number whose value as a base-ten fraction is x D 5=8192. The only significant

base-two digits are the 101 in the mantissa. Now add x to 1; the result is

1C x D 0:10000000000101 � 2
1
;

which has mantissa 0.10000000000101 and exponent 1. The mantissa now has 14 sig-

nificant base-two digits; all the zeros between the first and last 1s are significant. If

your computer or calculator software only allocates, say, 12 bits for mantissas, then

it would be unable to represent 1 C x. It would have to throw away the two least

significant base-two digits and save the number as

1C x D 0:100000000001 � 2
1
D

2;049

2;048
;

thus creating a roundoff error of 1/8,192. Even worse, if only ten base-two digits were

used to store mantissas, the computer would store 1C x D 0:1000000000 � 21 (i.e., it

would not be able to distinguish 1 C x from 1). Of course, calculators and computer

software use many more than ten or twelve base-two digits to represent mantissas of

floating-point numbers, but the number of digits used is certainly finite, and so the

problem of roundoff will always occur for sufficiently small floating-point numbers x.

Machine Epsilon and Its Effect on Figure 4.45
The smallest number x for which the computer recognizes that 1C x is greater than 1

is called machine epsilon (denoted �) for that computer. The computer does not return

1 when evaluating 1C �, but for all positive numbers x smaller than �, the computer

simply returns 1 when asked to evaluate 1 C x, because the computer only keeps a

finite number of (normally base two) digits.

When using computer algebra packages like Maple, the number of digits can be

increased in the software. Thus, the number of numbers that the computer can repre-

sent can be extended beyond what is native to the processor’s hardware, by stringing

together bits to make available larger numbers of digits for a single number. The Maple

command for this is “Digits,” which defaults to 10 (decimal digits). However, the

computer remains finite in size, so there will always be an effective value for �, no

matter how the software is set. A hardware value for � is not uniform for all devices

either. Thus, for any device you may be using (calculator or computer), the value of

machine epsilon may not be immediately obvious. To anticipate where a computer may

be wrong, you need the value of machine epsilon, and you need to understand where

the function may run afoul of it. We will outline a simple way to determine this below.

In the case of the function f in Example 1, it is clear where the computer discards

digits in a sum. The factor ln.1 C e�x/ decreases as x increases, but for sufficiently

large x a computer must discard the exponential in the sum because it is too small to

show up in the digits allotted for 1. When the exponential term decreases below the

value of �, the computer will return 1 for the argument of the natural logarithm, and

the factor will be determined by the computer to be 0. Thus, f will be represented as

0 instead of nearly 1.

Of course, pathological behaviour begins to happen before the exponential e�x

decreases to below �. When the exponential is small enough, all change with x happens

in the smaller digits. The sum forces them to be discarded by the computer, so the
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with a representation of numbers as continued fractions instead of decimals. This has

certain advantages and disadvantages, but, in the end, finiteness forces truncation just

the same.

The term “roundoff” implies that there is some kind of mitigation procedure or

rounding done to reduce error once the smallest digits have been discarded. There are

a number of different kinds of rounding practices. The various options can be quite in-

tricate, but they all begin with the aim to slightly reduce error as a result of truncation.

The truncation is the source of error, not the rounding, despite the terminology that

seems to suggest otherwise. The entire process of truncation and rounding have come

to be termed “roundoff,” although the details of the error mitigation are immaterial for

the purposes of this discussion. Rounding is beyond the scope of this section and will

not be considered further.

Historically, the term “decimal” implies base ten, but the idea works the same

in any base. In particular, in any base, multiplying by the base to an integral power

simply shifts the position of the “decimal point.” Thus, multiplying or dividing by the

base is known as a shift operation. The term “floating-point” signifies this shifting

of the point to the left or right. The general technical term for the decimal point is

radix point. Specifically for base two, the point is sometimes called the binary point.

However, we will use the term decimal point or just decimal for all bases, as the

etymological purity is not worth having several names for one small symbol.

While computers, for the most part, work in base two, they can be and have been

built in other bases. For example, there have been base-three computers, and many

computers group numbers so that they work as if they were built in base eight (octal)

or base sixteen (hexadecimal). (If you are feeling old, quote your age in hexadecimal.

For example, 48 D 3 � 16 or 30 in hexadecimal. If you are feeling too young, use

octal.)

In a normal binary computer, floating-point numbers approximate the mathemati-

cal real numbers. Several bytes of memory (frequently 8 bytes) are allocated for each

floating-point number. Each byte consists of eight bits, each of which has two (phys-

ical) states and can thus store one of the two base-two digits “0” or “1,” as it is the

equivalent of a switch being either off or on.

Thus, an eight-byte allocation for a floating-point number can store 64 bits of

data. The computer uses something similar to scientific notation, which is often used

to express numbers in base ten. However, the convention is to place the decimal im-

mediately to the left of all significant figures. For example, the computer convention

would call for the base-ten number 284,070,000 to be represented as 0:28407 � 109.

Here 0.28407 is called the mantissa, and it has 5 significant base-ten digits follow-

ing the decimal point, the 2 being the most significant and the 7 the least significant

digit. The 9 in the factor 109 is called the exponent, which defines the number of

shift operations needed to locate the correct position of the decimal point of the actual

number.

The computer only needs to represent the mantissa and the exponent, each with its

appropriate sign. The base is set by the architecture and so is not stored. Neither is the

decimal point nor the leading zero in the mantissa stored. These are all just implied.

If the floating-point number has 64 bits, two are used for the two signs, leaving 62 bits

for significant digits in the mantissa and the exponent.

As an example of base two (i.e., binary) representation, the number

101:011 D 1 � 2
2
C 0 � 2

1
C 1 � 2

0
C 0 � 2

�1
C 1 � 2

�2
C 1 � 2

�3

stands for the base-ten number 4 + 1 + (1/4) + (1/8) = 43/8. On a computer the stored

bits would be +101011 for the mantissa and +11 for the exponent. Thus, the base-two

floating-point form is 0:101011�23 , with mantissa 0.101011 and exponent 3. Note that

we are representing the exponent in base ten (3), and not base two (11), because that is

more convenient for counting shift operations.
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While the base-two representation of two is 10, we will continue, for convenience,

to write two as 2 when using it as the base for base-two representations. After all, any

base b is represented by 10 with respect to itself as base. So, if we chose to write the

number above as 0:101011 � 1011, the numeral could as well denote a number in any

base. However, for us people normally thinking in base ten, 0:101011 � 23 clearly

indicates that the base is two and the decimal point is shifted 3 digits to the right of the

most significant digit in the mantissa.

Now consider x D 0:101 � 2�10
D 0:0000000000101, the base-two floating-

point number whose value as a base-ten fraction is x D 5=8192. The only significant

base-two digits are the 101 in the mantissa. Now add x to 1; the result is

1C x D 0:10000000000101 � 2
1
;

which has mantissa 0.10000000000101 and exponent 1. The mantissa now has 14 sig-

nificant base-two digits; all the zeros between the first and last 1s are significant. If

your computer or calculator software only allocates, say, 12 bits for mantissas, then

it would be unable to represent 1 C x. It would have to throw away the two least

significant base-two digits and save the number as

1C x D 0:100000000001 � 2
1
D

2;049

2;048
;

thus creating a roundoff error of 1/8,192. Even worse, if only ten base-two digits were

used to store mantissas, the computer would store 1C x D 0:1000000000 � 21 (i.e., it

would not be able to distinguish 1 C x from 1). Of course, calculators and computer

software use many more than ten or twelve base-two digits to represent mantissas of

floating-point numbers, but the number of digits used is certainly finite, and so the

problem of roundoff will always occur for sufficiently small floating-point numbers x.

Machine Epsilon and Its Effect on Figure 4.45
The smallest number x for which the computer recognizes that 1C x is greater than 1

is called machine epsilon (denoted �) for that computer. The computer does not return

1 when evaluating 1C �, but for all positive numbers x smaller than �, the computer

simply returns 1 when asked to evaluate 1 C x, because the computer only keeps a

finite number of (normally base two) digits.

When using computer algebra packages like Maple, the number of digits can be

increased in the software. Thus, the number of numbers that the computer can repre-

sent can be extended beyond what is native to the processor’s hardware, by stringing

together bits to make available larger numbers of digits for a single number. The Maple

command for this is “Digits,” which defaults to 10 (decimal digits). However, the

computer remains finite in size, so there will always be an effective value for �, no

matter how the software is set. A hardware value for � is not uniform for all devices

either. Thus, for any device you may be using (calculator or computer), the value of

machine epsilon may not be immediately obvious. To anticipate where a computer may

be wrong, you need the value of machine epsilon, and you need to understand where

the function may run afoul of it. We will outline a simple way to determine this below.

In the case of the function f in Example 1, it is clear where the computer discards

digits in a sum. The factor ln.1 C e�x/ decreases as x increases, but for sufficiently

large x a computer must discard the exponential in the sum because it is too small to

show up in the digits allotted for 1. When the exponential term decreases below the

value of �, the computer will return 1 for the argument of the natural logarithm, and

the factor will be determined by the computer to be 0. Thus, f will be represented as

0 instead of nearly 1.

Of course, pathological behaviour begins to happen before the exponential e�x

decreases to below �. When the exponential is small enough, all change with x happens

in the smaller digits. The sum forces them to be discarded by the computer, so the
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change is discarded with it. That means for finite intervals the larger digits from the

decreasing exponential term do not change until the smaller changes accrue. In the

case of f; this means it behaves like an increasing exponential times a constant between

corrections of the larger digits. This is confirmed in Figure 4.46, which is a close-up

of the pathological region given by adjusting the interval of the plot command.

Figure 4.46 Part of the graph of f from

Example 1 over the interval Œ33; 38�
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Determining Machine Epsilon
A small alteration in the function f of Example 1 provides an easy way to determine

the value of machine epsilon. As computers store and process data in base-two form,

it is useful to use instead of f the function h.x/ D 2x ln.1 C 2�x/. The Maple plot

command

> plot(2^x*ln(1+1/2^x), x=50..55, style=line,

thickness=5, xtickmarks=[50,51,52,53,54]);

produces the graph in Figure 4.47. The graph drops to 0 at x D 53. Thus, 2�53 is

the next number below � that the computer can represent. Because the first nonzero

digit in a base-two number is 1, the next largest number must be up to twice as large.

But because all higher digits are discarded, the effect is to have simply a change in the

exponent of the number, a shift operation. A single shift operation larger than 2�53 is

2�52, so � D 2�52 in the settings for this plot.
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Figure 4.47 This indicates that machine

epsilon is � D 2�52

From this we can predict when f will drop to zero in Figure 4.45 and Figure 4.46.

It will be when �=2 D 2�53
D e�x , or approximately x D 36:74. While this seems

to give us a complete command of the effect for most computers, there is much more

going on with computer error that depends on specific algorithms. While significant

error erupts when � is reached in a sum with 1, other sources of error are in play well

before that for smaller values of x.

It is interesting to look at some of the complex and structured patterns of error in

a close-up of what should be a single curve well before the catastrophic drop to zero.

Figure 4.48 is produced by the plot instruction

> plot(exp(x)*ln(1+1/exp(x)), x = 29.5 .. 30,

style = point, symbol = point, numpoints = 3000);

Figure 4.48 Illusions of computation
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In this figure there are many fascinating and beautiful patterns created, which are com-

pletely spurious. In this region the exponential curves are collapsed together, forming

what seems like a single region contained within an expanding envelope. The beautiful

patterns make it easy to forget that the mathematically correct curve would appear as a

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 261 October 15, 2016

SECTION 4.8: Extreme-Value Problems 261

single horizontal line at height 1. The patterns here are created by Maple’s selection of

points at which to evaluate the function and their placement in the plot. If you change

the plot window, try to zoom in on them, or change the numbers of points or the in-

terval; they will change too, or disappear. They are completely illusive and spurious

features. Computers can’t be trusted blindly. You can trust mathematics.

E X E R C I S E S 4.7

1. Use Maple to get a plot instruction that plots an exponential

function through one of the stripes in Figure 4.46. You can

use the cursor position in the Maple display to read off the

approximate coordinates of the lower left endpoint on one of

the stripes.

2. Why should the expression h.x/ �
p

h.x/2 not be expected to

be exactly zero, especially for large h.x/, when evaluated on a

computer?

3. Consider Figure 4.49. It is the result of the plot instruction

> plot([ln(2^x-sqrt(2^(2*x)-1)),

-ln(2^x+sqrt(2^(2*x)-1))], x=0..50,

y=-30..10, style=line, symbol=point,

thickness=[1,4],

color=[magenta, grey], numpoints=8000);

The grey line is a plot of f .x/ D � ln.2x
C

p

22x
� 1/. The

coloured line is a plot of g.x/ D ln.2x
�

p

22x
� 1/.

(a) Show that g.x/ D f .x/.

(b) Why do the graphs of f and g behave differently?

(c) Estimate a value of x beyond which the plots of f and g

will behave differently. Assume machine epsilon is

� D 2�52.
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Figure 4.49

4. If you use a graphing calculator or other mathematical

graphing software, try to determine machine epsilon for it.

In Exercises 5–6 assume that a computer uses 64 bits (binary

digits) of memory to store a floating-point number, and that of

these 64 bits 52 are used for the mantissa and one each for the

signs of the mantissa and the exponent.

5. To the nearest power of 10, what is the smallest positive

number that can be represented in floating-point form by the

computer?

6. To the nearest power of 10, what is the largest positive number

that can be represented in floating-point form by the

computer?

4.8 Extreme-Value Problems
In this section we solve various word problems that, when translated into mathemati-

cal terms, require the finding of a maximum or minimum value of a function of one

variable. Such problems can range from simple to very complex and difficult; they can

be phrased in terminology appropriate to some other discipline, or they can be already

partially translated into a more mathematical context. We have already encountered a

few such problems in earlier chapters.

Let us consider a couple of examples before attempting to formulate any general

principles for dealing with such problems.

E X A M P L E 1
A rectangular animal enclosure is to be constructed having one

side along an existing long wall and the other three sides fenced.

If 100 m of fence are available, what is the largest possible area for the enclosure?

Solution This problem, like many others, is essentially a geometric one. A sketch

should be made at the outset, as we have done in Figure 4.50. Let the length and width

of the enclosure be x and y m, respectively, and let its area be A m2. Thus A D xy.

x

A D xy yy

Figure 4.50

Since the total length of the fence is 100 m, we must have xC 2y D 100. A appears to
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change is discarded with it. That means for finite intervals the larger digits from the

decreasing exponential term do not change until the smaller changes accrue. In the

case of f; this means it behaves like an increasing exponential times a constant between

corrections of the larger digits. This is confirmed in Figure 4.46, which is a close-up

of the pathological region given by adjusting the interval of the plot command.

Figure 4.46 Part of the graph of f from

Example 1 over the interval Œ33; 38�
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A small alteration in the function f of Example 1 provides an easy way to determine

the value of machine epsilon. As computers store and process data in base-two form,

it is useful to use instead of f the function h.x/ D 2x ln.1 C 2�x/. The Maple plot

command

> plot(2^x*ln(1+1/2^x), x=50..55, style=line,

thickness=5, xtickmarks=[50,51,52,53,54]);

produces the graph in Figure 4.47. The graph drops to 0 at x D 53. Thus, 2�53 is

the next number below � that the computer can represent. Because the first nonzero

digit in a base-two number is 1, the next largest number must be up to twice as large.

But because all higher digits are discarded, the effect is to have simply a change in the

exponent of the number, a shift operation. A single shift operation larger than 2�53 is

2�52, so � D 2�52 in the settings for this plot.

0

0.5

1

1.5

2

50 51 52 53 54 55x

Figure 4.47 This indicates that machine

epsilon is � D 2�52

From this we can predict when f will drop to zero in Figure 4.45 and Figure 4.46.

It will be when �=2 D 2�53
D e�x , or approximately x D 36:74. While this seems

to give us a complete command of the effect for most computers, there is much more

going on with computer error that depends on specific algorithms. While significant

error erupts when � is reached in a sum with 1, other sources of error are in play well

before that for smaller values of x.

It is interesting to look at some of the complex and structured patterns of error in

a close-up of what should be a single curve well before the catastrophic drop to zero.

Figure 4.48 is produced by the plot instruction

> plot(exp(x)*ln(1+1/exp(x)), x = 29.5 .. 30,

style = point, symbol = point, numpoints = 3000);

Figure 4.48 Illusions of computation
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In this figure there are many fascinating and beautiful patterns created, which are com-

pletely spurious. In this region the exponential curves are collapsed together, forming

what seems like a single region contained within an expanding envelope. The beautiful

patterns make it easy to forget that the mathematically correct curve would appear as a
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single horizontal line at height 1. The patterns here are created by Maple’s selection of

points at which to evaluate the function and their placement in the plot. If you change

the plot window, try to zoom in on them, or change the numbers of points or the in-

terval; they will change too, or disappear. They are completely illusive and spurious

features. Computers can’t be trusted blindly. You can trust mathematics.

E X E R C I S E S 4.7

1. Use Maple to get a plot instruction that plots an exponential

function through one of the stripes in Figure 4.46. You can

use the cursor position in the Maple display to read off the

approximate coordinates of the lower left endpoint on one of

the stripes.

2. Why should the expression h.x/ �
p

h.x/2 not be expected to

be exactly zero, especially for large h.x/, when evaluated on a

computer?

3. Consider Figure 4.49. It is the result of the plot instruction

> plot([ln(2^x-sqrt(2^(2*x)-1)),

-ln(2^x+sqrt(2^(2*x)-1))], x=0..50,

y=-30..10, style=line, symbol=point,

thickness=[1,4],

color=[magenta, grey], numpoints=8000);

The grey line is a plot of f .x/ D � ln.2x
C

p

22x
� 1/. The

coloured line is a plot of g.x/ D ln.2x
�

p

22x
� 1/.

(a) Show that g.x/ D f .x/.

(b) Why do the graphs of f and g behave differently?

(c) Estimate a value of x beyond which the plots of f and g

will behave differently. Assume machine epsilon is

� D 2�52.
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4. If you use a graphing calculator or other mathematical

graphing software, try to determine machine epsilon for it.

In Exercises 5–6 assume that a computer uses 64 bits (binary

digits) of memory to store a floating-point number, and that of

these 64 bits 52 are used for the mantissa and one each for the

signs of the mantissa and the exponent.

5. To the nearest power of 10, what is the smallest positive

number that can be represented in floating-point form by the

computer?

6. To the nearest power of 10, what is the largest positive number

that can be represented in floating-point form by the

computer?

4.8 Extreme-Value Problems
In this section we solve various word problems that, when translated into mathemati-

cal terms, require the finding of a maximum or minimum value of a function of one

variable. Such problems can range from simple to very complex and difficult; they can

be phrased in terminology appropriate to some other discipline, or they can be already

partially translated into a more mathematical context. We have already encountered a

few such problems in earlier chapters.

Let us consider a couple of examples before attempting to formulate any general

principles for dealing with such problems.

E X A M P L E 1
A rectangular animal enclosure is to be constructed having one

side along an existing long wall and the other three sides fenced.

If 100 m of fence are available, what is the largest possible area for the enclosure?

Solution This problem, like many others, is essentially a geometric one. A sketch

should be made at the outset, as we have done in Figure 4.50. Let the length and width

of the enclosure be x and y m, respectively, and let its area be A m2. Thus A D xy.

x

A D xy yy

Figure 4.50

Since the total length of the fence is 100 m, we must have xC 2y D 100. A appears to
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be a function of two variables, x and y, but these variables are not independent; they

are related by the constraint xC 2y D 100. This constraint equation can be solved for

one variable in terms of the other, and A can therefore be written as a function of only

one variable:

x D 100 � 2y;

A D A.y/ D .100 � 2y/y D 100y � 2y
2
:

Evidently, we require y � 0 and y � 50 (i.e., x � 0) in order that the area make

sense. (It would otherwise be negative.) Thus, we must maximize the function A.y/

on the interval Œ0; 50�. Being continuous on this closed, finite interval, A must have

a maximum value, by Theorem 5. Clearly, A.0/ D A.50/ D 0 and A.y/ > 0 for

0 < y < 50. Hence, the maximum cannot occur at an endpoint. Since A has no

singular points, the maximum must occur at a critical point. To find any critical points,

we set

0 D A
0
.y/ D 100 � 4y:

Therefore, y D 25. SinceAmust have a maximum value and there is only one possible

point where it can be, the maximum must occur at y D 25. The greatest possible area

for the enclosure is therefore A.25/ D 1;250 m2.

E X A M P L E 2
A lighthouse L is located on a small island 5 km north of a point

A on a straight east-west shoreline. A cable is to be laid from L to

point B on the shoreline 10 km east of A. The cable will be laid through the water in a

straight line from L to a point C on the shoreline between A and B , and from there to

B along the shoreline. (See Figure 4.51.) The part of the cable lying in the water costs

$5,000/km, and the part along the shoreline costs $3,000/km.

(a) Where should C be chosen to minimize the total cost of the cable?

(b) Where should C be chosen if B is only 3 km from A?

Solution

(a) Let C be x km from A toward B . Thus 0 � x � 10. The length of LC is

5 km

L

C

A x 10 � x B

p

25C x2

Figure 4.51

p

25C x2 km, and the length of CB is 10 � x km, as illustrated in Figure 4.51.

Hence, the total cost of the cable is $T , where

T D T .x/ D 5;000

p

25C x2
C 3;000.10 � x/; .0 � x � 10/:

T is continuous on the closed, finite interval Œ0; 10�, so it has a minimum value

that may occur at one of the endpoints x D 0 or x D 10 or at a critical point in

the interval .0; 10/. (T has no singular points.) To find any critical points, we set

0 D
dT

dx
D

5;000x
p

25C x2
� 3;000:

Thus, 5;000x D 3;000

p

25C x2

25x
2
D 9.25C x

2
/

16x
2
D 225

x
2
D

225

16
D

152

42
:

This equation has two solutions, but only one, x D 15=4 D 3:75, lies in the inter-

val .0; 10/. Since T .0/ D 55;000, T .15=4/ D 50;000, and T .10/ � 55;902, the

critical point 3.75 evidently provides the minimum value for T .x/. For minimal

cost, C should be 3.75 km from A.
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(b) If B is 3 km from A, the corresponding total cost function is

T .x/ D 5;000

p

25C x2
C 3;000.3 � x/; .0 � x � 3/;

which differs from the total cost function T .x/ of part (a) only in the added con-

stant (9,000 rather than 30,000). It therefore has the same critical point, x D

15=4 D 3:75, which does not lie in the interval .0; 3/. Since T .0/ D 34;000 and

T .3/ � 29;155, in this case we should choose x D 3. To minimize the total cost,

the cable should go straight from L to B .

Procedure for Solving Extreme-Value Problems
Based on our experience with the examples above, we can formulate a checklist of

steps involved in solving optimization problems.

Solving extreme-value problems

1. Read the problem very carefully, perhaps more than once. You must

understand clearly what is given and what must be found.

2. Make a diagram if appropriate. Many problems have a geometric com-

ponent, and a good diagram can often be an essential part of the solution

process.

3. Define any symbols you wish to use that are not already specified in the

statement of the problem.

4. Express the quantity Q to be maximized or minimized as a function of

one or more variables.

5. If Q depends on n variables, where n > 1, find n � 1 equations (con-

straints) linking these variables. (If this cannot be done, the problem

cannot be solved by single-variable techniques.)

6. Use the constraints to eliminate variables and hence expressQ as a func-

tion of only one variable. Determine the interval(s) in which this vari-

able must lie for the problem to make sense. Alternatively, regard the

constraints as implicitly defining n � 1 of the variables, and hence Q, as

functions of the remaining variable.

7. Find the required extreme value of the functionQ using the techniques of

Section 4.4. Remember to consider any critical points, singular points,

and endpoints. Make sure to give a convincing argument that your ex-

treme value is the one being sought; for example, if you are looking for a

maximum, the value you have found should not be a minimum.

8. Make a concluding statement answering the question asked. Is your an-

swer for the question reasonable? If not, check back through the solution

to see what went wrong.

E X A M P L E 3
Find the length of the shortest ladder that can extend from a verti-

1 m

2 m

�

L

Figure 4.52

cal wall, over a fence 2 m high located 1 m away from the wall, to

a point on the ground outside the fence.

Solution Let � be the angle of inclination of the ladder, as shown in Figure 4.52.

Using the two right-angled triangles in the figure, we obtain the length L of the ladder

as a function of � :

L D L.�/ D
1

cos �
C

2

sin �
;

where 0 < � < �=2. Since

lim
�!.�=2/�

L.�/ D 1 and lim
�!0C

L.�/ D 1;
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be a function of two variables, x and y, but these variables are not independent; they

are related by the constraint xC 2y D 100. This constraint equation can be solved for

one variable in terms of the other, and A can therefore be written as a function of only

one variable:

x D 100 � 2y;

A D A.y/ D .100 � 2y/y D 100y � 2y
2
:

Evidently, we require y � 0 and y � 50 (i.e., x � 0) in order that the area make

sense. (It would otherwise be negative.) Thus, we must maximize the function A.y/

on the interval Œ0; 50�. Being continuous on this closed, finite interval, A must have

a maximum value, by Theorem 5. Clearly, A.0/ D A.50/ D 0 and A.y/ > 0 for

0 < y < 50. Hence, the maximum cannot occur at an endpoint. Since A has no

singular points, the maximum must occur at a critical point. To find any critical points,

we set

0 D A
0
.y/ D 100 � 4y:

Therefore, y D 25. SinceAmust have a maximum value and there is only one possible

point where it can be, the maximum must occur at y D 25. The greatest possible area

for the enclosure is therefore A.25/ D 1;250 m2.

E X A M P L E 2
A lighthouse L is located on a small island 5 km north of a point

A on a straight east-west shoreline. A cable is to be laid from L to

point B on the shoreline 10 km east of A. The cable will be laid through the water in a

straight line from L to a point C on the shoreline between A and B , and from there to

B along the shoreline. (See Figure 4.51.) The part of the cable lying in the water costs

$5,000/km, and the part along the shoreline costs $3,000/km.

(a) Where should C be chosen to minimize the total cost of the cable?

(b) Where should C be chosen if B is only 3 km from A?

Solution

(a) Let C be x km from A toward B . Thus 0 � x � 10. The length of LC is

5 km

L

C

A x 10 � x B

p

25C x2

Figure 4.51

p

25C x2 km, and the length of CB is 10 � x km, as illustrated in Figure 4.51.

Hence, the total cost of the cable is $T , where

T D T .x/ D 5;000

p

25C x2
C 3;000.10 � x/; .0 � x � 10/:

T is continuous on the closed, finite interval Œ0; 10�, so it has a minimum value

that may occur at one of the endpoints x D 0 or x D 10 or at a critical point in

the interval .0; 10/. (T has no singular points.) To find any critical points, we set

0 D
dT

dx
D

5;000x
p

25C x2
� 3;000:

Thus, 5;000x D 3;000

p

25C x2

25x
2
D 9.25C x

2
/

16x
2
D 225

x
2
D

225

16
D

152

42
:

This equation has two solutions, but only one, x D 15=4 D 3:75, lies in the inter-

val .0; 10/. Since T .0/ D 55;000, T .15=4/ D 50;000, and T .10/ � 55;902, the

critical point 3.75 evidently provides the minimum value for T .x/. For minimal

cost, C should be 3.75 km from A.
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(b) If B is 3 km from A, the corresponding total cost function is

T .x/ D 5;000

p

25C x2
C 3;000.3 � x/; .0 � x � 3/;

which differs from the total cost function T .x/ of part (a) only in the added con-

stant (9,000 rather than 30,000). It therefore has the same critical point, x D

15=4 D 3:75, which does not lie in the interval .0; 3/. Since T .0/ D 34;000 and

T .3/ � 29;155, in this case we should choose x D 3. To minimize the total cost,

the cable should go straight from L to B .

Procedure for Solving Extreme-Value Problems
Based on our experience with the examples above, we can formulate a checklist of

steps involved in solving optimization problems.

Solving extreme-value problems

1. Read the problem very carefully, perhaps more than once. You must

understand clearly what is given and what must be found.

2. Make a diagram if appropriate. Many problems have a geometric com-

ponent, and a good diagram can often be an essential part of the solution

process.

3. Define any symbols you wish to use that are not already specified in the

statement of the problem.

4. Express the quantity Q to be maximized or minimized as a function of

one or more variables.

5. If Q depends on n variables, where n > 1, find n � 1 equations (con-

straints) linking these variables. (If this cannot be done, the problem

cannot be solved by single-variable techniques.)

6. Use the constraints to eliminate variables and hence expressQ as a func-

tion of only one variable. Determine the interval(s) in which this vari-

able must lie for the problem to make sense. Alternatively, regard the

constraints as implicitly defining n � 1 of the variables, and hence Q, as

functions of the remaining variable.

7. Find the required extreme value of the functionQ using the techniques of

Section 4.4. Remember to consider any critical points, singular points,

and endpoints. Make sure to give a convincing argument that your ex-

treme value is the one being sought; for example, if you are looking for a

maximum, the value you have found should not be a minimum.

8. Make a concluding statement answering the question asked. Is your an-

swer for the question reasonable? If not, check back through the solution

to see what went wrong.

E X A M P L E 3
Find the length of the shortest ladder that can extend from a verti-

1 m

2 m

�

L

Figure 4.52

cal wall, over a fence 2 m high located 1 m away from the wall, to

a point on the ground outside the fence.

Solution Let � be the angle of inclination of the ladder, as shown in Figure 4.52.

Using the two right-angled triangles in the figure, we obtain the length L of the ladder

as a function of � :

L D L.�/ D
1

cos �
C

2

sin �
;

where 0 < � < �=2. Since

lim
�!.�=2/�

L.�/ D 1 and lim
�!0C

L.�/ D 1;
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L.�/ must have a minimum value on .0; �=2/, occurring at a critical point. (L has no

singular points in .0; �=2/.) To find any critical points, we set

0 D L
0
.�/ D

sin �

cos2 �
�

2 cos �

sin2
�
D

sin3
� � 2 cos3 �

cos2 � sin2
�

:

Any critical point satisfies sin3
� D 2 cos3 � , or, equivalently, tan3 � D 2. We don’t

need to solve this equation for � D tan�1
.2

1=3
/ since it is really the corresponding

value of L.�/ that we want. Observe that

sec2
� D 1C tan2

� D 1C 2
2=3
:

It follows that

cos � D
1

.1C 22=3/1=2
and sin � D tan � cos � D

21=3

.1C 22=3/1=2
:

Therefore, the minimal value of L.�/ is

1

cos �
C

2

sin �
D .1C 2

2=3
/
1=2
C 2

.1C 22=3/1=2

21=3
D

�

1C 2
2=3
�3=2

� 4:16:

The shortest ladder that can extend from the wall over the fence to the ground outside

is about 4.16 m long.

E X A M P L E 4
Find the most economical shape of a cylindrical tin can.

Solution This problem is stated in a rather vague way. We must consider what is

meant by “most economical” and even “shape.” Without further information, we can

take one of two points of view:

(i) the volume of the tin can is to be regarded as given, and we must choose the

dimensions to minimize the total surface area, or

(ii) the total surface area is given (we can use just so much metal), and we must choose

the dimensions to maximize the volume.

We will discuss other possible interpretations later. Since a cylinder is determined by

its radius and height (Figure 4.53), its shape is determined by the ratio radius/height.

Let r , h, S , and V denote, respectively, the radius, height, total surface area, and

volume of the can. The volume of a cylinder is the base area times the height:

r

h

Figure 4.53

V D �r
2
h:

The surface of the can is made up of the cylindrical wall and circular disks for the top

and bottom. The disks each have area �r2, and the cylindrical wall is really just a

rolled-up rectangle with base 2�r (the circumference of the can) and height h. There-

fore, the total surface area of the can is

S D 2�rhC 2�r
2
:

Let us use interpretation (i): V is a given constant, and S is to be minimized. We

can use the equation for V to eliminate one of the two variables r and h on which

S depends. Say we solve for h D V=.�r2/ and substitute into the equation for S to

obtain S as a function of r alone:

S D S.r/ D 2�r
V

�r2
C 2�r

2
D

2V

r
C 2�r

2
.0 < r <1/:
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Evidently, limr!0C S.r/ D 1 and limr!1 S.r/ D 1. Being differentiable and

therefore continuous on .0;1/, S.r/ must have a minimum value, and it must occur

at a critical point. To find any critical points,

0 D S
0
.r/ D �

2V

r2
C 4�r;

r
3
D

2V

4�
D

1

2�
�r

2
h D

1

2
r

2
h:

Thus, h D 2r at the critical point of S . Under interpretation (i), the most economical

can is shaped so that its height equals the diameter of its base. You are encouraged to

show that interpretation (ii) leads to the same conclusion.

Remark A different approach to the problem in Example 4 shows directly that in-

terpretations (i) and (ii) must give the same solution. Again, we start from the two

equations

V D �r
2
h and S D 2�rhC 2�r

2
:

If we regard h as a function of r and differentiate implicitly, we obtain

dV

dr
D 2�rhC �r

2 dh

dr
;

dS

dr
D 2�hC 2�r

dh

dr
C 4�r:

Under interpretation (i), V is constant and we want a critical point of S ; under interpre-

tation (ii), S is constant and we want a critical point of V . In either case, dV=dr D 0

and dS=dr D 0. Hence, both interpretations yield

2�rhC �r
2 dh

dr
D 0 and 2�hC 4�r C 2�r

dh

dr
D 0:

If we divide the first equation by �r2 and the second equation by 2�r and subtract to

eliminate dh=dr , we again get h D 2r .

Remark Modifying Example 4 Given the sparse information provided in the state-

ment of the problem in Example 4, interpretations (i) and (ii) are the best we can do.

The problem could be made more meaningful economically (from the point of view,

say, of a tin can manufacturer) if more elements were brought into it. For example:

(a) Most cans use thicker material for the cylindrical wall than for the top and bottom

disks. If the cylindrical wall material costs $A per unit area and the material for

the top and bottom costs $B per unit area, we might prefer to minimize the total

cost of materials for a can of given volume. What is the optimal shape ifA D 2B?

(b) Large numbers of cans are to be manufactured. The material is probably being

cut out of sheets of metal. The cylindrical walls are made by bending up rect-

angles, and rectangles can be cut from the sheet with little or no waste. There

will, however, always be a proportion of material wasted when the disks are cut

out. The exact proportion will depend on how the disks are arranged; two possible

arrangements are shown in Figure 4.54. What is the optimal shape of the can if a

square packing of disks is used? A hexagonal packing? Any such modification of

the original problem will alter the optimal shape to some extent. In “real-world”

problems, many factors may have to be taken into account to come up with a “best”

Square Packing:
each disk uses up a square

Hexagonal Packing:
each disk uses up a hexagon

Figure 4.54 Square and hexagonal

packing of disks in a plane

strategy.

(c) The problem makes no provision for costs of manufacturing the can other than

the cost of sheet metal. There may also be costs for joining the opposite edges of

the rectangle to make the cylinder and for joining the top and bottom disks to the

cylinder. These costs may be proportional to the lengths of the joins.

In most of the examples above, the maximum or minimum value being sought occurred

at a critical point. Our final example is one where this is not the case.
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L.�/ must have a minimum value on .0; �=2/, occurring at a critical point. (L has no

singular points in .0; �=2/.) To find any critical points, we set

0 D L
0
.�/ D

sin �

cos2 �
�

2 cos �

sin2
�
D

sin3
� � 2 cos3 �

cos2 � sin2
�

:

Any critical point satisfies sin3
� D 2 cos3 � , or, equivalently, tan3 � D 2. We don’t

need to solve this equation for � D tan�1
.2

1=3
/ since it is really the corresponding

value of L.�/ that we want. Observe that

sec2
� D 1C tan2

� D 1C 2
2=3
:

It follows that

cos � D
1

.1C 22=3/1=2
and sin � D tan � cos � D

21=3

.1C 22=3/1=2
:

Therefore, the minimal value of L.�/ is

1

cos �
C

2

sin �
D .1C 2

2=3
/
1=2
C 2

.1C 22=3/1=2

21=3
D

�

1C 2
2=3
�3=2

� 4:16:

The shortest ladder that can extend from the wall over the fence to the ground outside

is about 4.16 m long.

E X A M P L E 4
Find the most economical shape of a cylindrical tin can.

Solution This problem is stated in a rather vague way. We must consider what is

meant by “most economical” and even “shape.” Without further information, we can

take one of two points of view:

(i) the volume of the tin can is to be regarded as given, and we must choose the

dimensions to minimize the total surface area, or

(ii) the total surface area is given (we can use just so much metal), and we must choose

the dimensions to maximize the volume.

We will discuss other possible interpretations later. Since a cylinder is determined by

its radius and height (Figure 4.53), its shape is determined by the ratio radius/height.

Let r , h, S , and V denote, respectively, the radius, height, total surface area, and

volume of the can. The volume of a cylinder is the base area times the height:

r

h

Figure 4.53

V D �r
2
h:

The surface of the can is made up of the cylindrical wall and circular disks for the top

and bottom. The disks each have area �r2, and the cylindrical wall is really just a

rolled-up rectangle with base 2�r (the circumference of the can) and height h. There-

fore, the total surface area of the can is

S D 2�rhC 2�r
2
:

Let us use interpretation (i): V is a given constant, and S is to be minimized. We

can use the equation for V to eliminate one of the two variables r and h on which

S depends. Say we solve for h D V=.�r2/ and substitute into the equation for S to

obtain S as a function of r alone:

S D S.r/ D 2�r
V

�r2
C 2�r

2
D

2V

r
C 2�r

2
.0 < r <1/:
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Evidently, limr!0C S.r/ D 1 and limr!1 S.r/ D 1. Being differentiable and

therefore continuous on .0;1/, S.r/ must have a minimum value, and it must occur

at a critical point. To find any critical points,

0 D S
0
.r/ D �

2V

r2
C 4�r;

r
3
D

2V

4�
D

1

2�
�r

2
h D

1

2
r

2
h:

Thus, h D 2r at the critical point of S . Under interpretation (i), the most economical

can is shaped so that its height equals the diameter of its base. You are encouraged to

show that interpretation (ii) leads to the same conclusion.

Remark A different approach to the problem in Example 4 shows directly that in-

terpretations (i) and (ii) must give the same solution. Again, we start from the two

equations

V D �r
2
h and S D 2�rhC 2�r

2
:

If we regard h as a function of r and differentiate implicitly, we obtain

dV

dr
D 2�rhC �r

2 dh

dr
;

dS

dr
D 2�hC 2�r

dh

dr
C 4�r:

Under interpretation (i), V is constant and we want a critical point of S ; under interpre-

tation (ii), S is constant and we want a critical point of V . In either case, dV=dr D 0

and dS=dr D 0. Hence, both interpretations yield

2�rhC �r
2 dh

dr
D 0 and 2�hC 4�r C 2�r

dh

dr
D 0:

If we divide the first equation by �r2 and the second equation by 2�r and subtract to

eliminate dh=dr , we again get h D 2r .

Remark Modifying Example 4 Given the sparse information provided in the state-

ment of the problem in Example 4, interpretations (i) and (ii) are the best we can do.

The problem could be made more meaningful economically (from the point of view,

say, of a tin can manufacturer) if more elements were brought into it. For example:

(a) Most cans use thicker material for the cylindrical wall than for the top and bottom

disks. If the cylindrical wall material costs $A per unit area and the material for

the top and bottom costs $B per unit area, we might prefer to minimize the total

cost of materials for a can of given volume. What is the optimal shape ifA D 2B?

(b) Large numbers of cans are to be manufactured. The material is probably being

cut out of sheets of metal. The cylindrical walls are made by bending up rect-

angles, and rectangles can be cut from the sheet with little or no waste. There

will, however, always be a proportion of material wasted when the disks are cut

out. The exact proportion will depend on how the disks are arranged; two possible

arrangements are shown in Figure 4.54. What is the optimal shape of the can if a

square packing of disks is used? A hexagonal packing? Any such modification of

the original problem will alter the optimal shape to some extent. In “real-world”

problems, many factors may have to be taken into account to come up with a “best”

Square Packing:
each disk uses up a square

Hexagonal Packing:
each disk uses up a hexagon

Figure 4.54 Square and hexagonal

packing of disks in a plane

strategy.

(c) The problem makes no provision for costs of manufacturing the can other than

the cost of sheet metal. There may also be costs for joining the opposite edges of

the rectangle to make the cylinder and for joining the top and bottom disks to the

cylinder. These costs may be proportional to the lengths of the joins.

In most of the examples above, the maximum or minimum value being sought occurred

at a critical point. Our final example is one where this is not the case.
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E X A M P L E 5
A man can run twice as fast as he can swim. He is standing at

point A on the edge of a circular swimming pool 40 m in diameter,

and he wishes to get to the diametrically opposite point B as quickly as possible. He

can run around the edge to point C , then swim directly from C to B . Where should C

be chosen to minimize the total time taken to get from A to B?

Figure 4.55 Running and swimming to

get from A to B

A

C

�

L

B

O 20 m

���
2

Solution It is convenient to describe the position of C in terms of the angle AOC ,

where O is the centre of the pool. (See Figure 4.55.) Let � denote this angle. Clearly,

0 � � � � . (If � D 0, the man swims the whole way; if � D � , he runs the whole

way.) The radius of the pool is 20 m, so arc AC D 20� . Since angle BOC D � � � ,

we have angle BOL D .� � �/=2 and chord BC D 2BL D 40 sin
�

.� � �/=2
�

.

Suppose the man swims at a rate k m/s and therefore runs at a rate 2k m/s. If t is

the total time he takes to get from A to B , then

t D t.�/ D time runningC time swimming

D

20�

2k
C

40

k
sin

� � �

2
:

(We are assuming that no time is wasted in jumping into the water at C .) The domain

of t is Œ0; �� and t has no singular points. Since t is continuous on a closed, finite

interval, it must have a minimum value, and that value must occur at a critical point or

an endpoint. For critical points,

0 D t
0
.�/ D

10

k
�

20

k
cos

� � �

2
:

Thus,

cos
� � �

2
D

1

2
;

� � �

2
D

�

3
; � D

�

3
:

This is the only critical value of � lying in the interval Œ0; ��. We have

t

�

�

3

�

D

10�

3k
C

40

k
sin

�

3
D

10

k

 

�

3
C

4
p

3

2

!

�

45:11

k
:

We must also look at the endpoints � D 0 and � D � :

t.0/ D
40

k
; t.�/ D

10�

k
�

31:4

k
:

Evidently, t.�/ is the least of these three times. To get from A to B as quickly as

possible, the man should run the entire distance.
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Remark This problem shows how important it is to check every candidate point to

see whether it gives a maximum or minimum. Here, the critical point � D �=3 yielded

the worst possible strategy: running one-third of the way around and then swimming

the remainder would take the greatest time, not the least.

E X E R C I S E S 4.8

1. Two positive numbers have sum 7. What is the largest possible

value for their product?

2. Two positive numbers have product 8. What is the smallest

possible value for their sum?

3. Two nonnegative numbers have sum 60. What are the

numbers if the product of one of them and the square of the

other is maximal?

4. Two numbers have sum 16. What are the numbers if the

product of the cube of one and the fifth power of the other is

as large as possible?

C 5. The sum of two nonnegative numbers is 10. What is the

smallest value of the sum of the cube of one number and the

square of the other?

6. Two nonnegative numbers have sum n. What is the smallest

possible value for the sum of their squares?

7. Among all rectangles of given area, show that the square has

the least perimeter.

8. Among all rectangles of given perimeter, show that the square

has the greatest area.

9. Among all isosceles triangles of given perimeter, show that

the equilateral triangle has the greatest area.

10. Find the largest possible area for an isosceles triangle if the

length of each of its two equal sides is 10 m.

11. Find the area of the largest rectangle that can be inscribed in a

semicircle of radius R if one side of the rectangle lies along

the diameter of the semicircle.

12. Find the largest possible perimeter of a rectangle inscribed in

a semicircle of radius R if one side of the rectangle lies along

the diameter of the semicircle. (It is interesting that the

rectangle with the largest perimeter has a different shape than

the one with the largest area, obtained in Exercise 11.)

13. A rectangle with sides parallel to the coordinate axes is

inscribed in the ellipse

x
2

a2
C

y
2

b2
D 1:

Find the largest possible area for this rectangle.

14. Let ABC be a triangle right-angled at C and having area S .

Find the maximum area of a rectangle inscribed in the triangle

if (a) one corner of the rectangle lies at C , or (b) one side of

the rectangle lies along the hypotenuse, AB .

15. Find the maximum area of an isosceles triangle whose equal

sides are 10 cm in length. Use half the length of the third side

of the triangle as the variable in terms of which to express the

area of the triangle.

16. Repeat Exercise 15, but use instead the angle between the

equal sides of the triangle as the variable in terms of which to

express the area of the triangle. Which solution is easier?

17. (Designing a billboard) A billboard is to be made with

100 m2 of printed area and with margins of 2 m at the top and

bottom and 4 m on each side. Find the outside dimensions of

the billboard if its total area is to be a minimum.

18. (Designing a box) A box is to be made from a rectangular

sheet of cardboard 70 cm by 150 cm by cutting equal squares

out of the four corners and bending up the resulting four flaps

to make the sides of the box. (The box has no top.) What is

the largest possible volume of the box?

19. (Using rebates to maximize profit) An automobile

manufacturer sells 2,000 cars per month, at an average profit

of $1,000 per car. Market research indicates that for each $50

of factory rebate the manufacturer offers to buyers it can

expect to sell 200 more cars each month. How much of a

rebate should it offer to maximize its monthly profit?

20. (Maximizing rental profit) All 80 rooms in a motel will be

rented each night if the manager charges $40 or less per room.

If he charges $.40C x/ per room, then 2x rooms will remain

vacant. If each rented room costs the manager $10 per day and

each unrented room $2 per day in overhead, how much should

the manager charge per room to maximize his daily profit?

21. (Minimizing travel time) You are in a dune buggy in the

desert 12 km due south of the nearest point A on a straight

east-west road. You wish to get to point B on the road 10 km

east of A. If your dune buggy can average 15 km/h travelling

over the desert and 39 km/h travelling on the road, toward

what point on the road should you head in order to minimize

your travel time to B?

22. Repeat Exercise 21, but assume that B is only 4 km from A.

23. (Flying with least energy) At the altitude of airliners, winds

can typically blow at a speed of about 100 knots (nautical

miles per hour) from the west toward the east. A westward-

flying passenger jet from London, England, on its way to

Toronto, flies directly against this wind for 3,000 nautical

miles. The energy per unit time expended by the airliner is

proportional to v3, where v is the speed of the airliner relative

to the air. This reflects the power required to push aside the air

exerting ram pressure proportional to v2. What speed uses the

least energy on this trip? Estimate the time it would take to fly

this route at the resulting optimal speed. Is this a typical speed

at which airliners travel? Explain.

24. (Energy for a round trip) In the preceding problem we found

that an airliner flying against the wind at speed v with respect

to the air consumes the least energy over a flight if it travels at

v D 3u=2, where u is the speed of the headwind with respect

to the ground. Assume the power (energy per unit time)

required to push aside the air is kv3.

(a) Write the general expression for energy consumed over a

trip of distance ` flying with an airspeed v into a

headwind of speed u. Also write the general expression
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E X A M P L E 5
A man can run twice as fast as he can swim. He is standing at

point A on the edge of a circular swimming pool 40 m in diameter,

and he wishes to get to the diametrically opposite point B as quickly as possible. He

can run around the edge to point C , then swim directly from C to B . Where should C

be chosen to minimize the total time taken to get from A to B?

Figure 4.55 Running and swimming to

get from A to B

A

C

�

L

B

O 20 m

���
2

Solution It is convenient to describe the position of C in terms of the angle AOC ,

where O is the centre of the pool. (See Figure 4.55.) Let � denote this angle. Clearly,

0 � � � � . (If � D 0, the man swims the whole way; if � D � , he runs the whole

way.) The radius of the pool is 20 m, so arc AC D 20� . Since angle BOC D � � � ,

we have angle BOL D .� � �/=2 and chord BC D 2BL D 40 sin
�

.� � �/=2
�

.

Suppose the man swims at a rate k m/s and therefore runs at a rate 2k m/s. If t is

the total time he takes to get from A to B , then

t D t.�/ D time runningC time swimming

D

20�

2k
C

40

k
sin

� � �

2
:

(We are assuming that no time is wasted in jumping into the water at C .) The domain

of t is Œ0; �� and t has no singular points. Since t is continuous on a closed, finite

interval, it must have a minimum value, and that value must occur at a critical point or

an endpoint. For critical points,

0 D t
0
.�/ D

10

k
�

20

k
cos

� � �

2
:

Thus,

cos
� � �

2
D

1

2
;

� � �

2
D

�

3
; � D

�

3
:

This is the only critical value of � lying in the interval Œ0; ��. We have

t

�

�

3

�

D

10�

3k
C

40

k
sin

�

3
D

10

k

 

�

3
C

4
p

3

2

!

�

45:11

k
:

We must also look at the endpoints � D 0 and � D � :

t.0/ D
40

k
; t.�/ D

10�

k
�

31:4

k
:

Evidently, t.�/ is the least of these three times. To get from A to B as quickly as

possible, the man should run the entire distance.
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Remark This problem shows how important it is to check every candidate point to

see whether it gives a maximum or minimum. Here, the critical point � D �=3 yielded

the worst possible strategy: running one-third of the way around and then swimming

the remainder would take the greatest time, not the least.

E X E R C I S E S 4.8

1. Two positive numbers have sum 7. What is the largest possible

value for their product?

2. Two positive numbers have product 8. What is the smallest

possible value for their sum?

3. Two nonnegative numbers have sum 60. What are the

numbers if the product of one of them and the square of the

other is maximal?

4. Two numbers have sum 16. What are the numbers if the

product of the cube of one and the fifth power of the other is

as large as possible?

C 5. The sum of two nonnegative numbers is 10. What is the

smallest value of the sum of the cube of one number and the

square of the other?

6. Two nonnegative numbers have sum n. What is the smallest

possible value for the sum of their squares?

7. Among all rectangles of given area, show that the square has

the least perimeter.

8. Among all rectangles of given perimeter, show that the square

has the greatest area.

9. Among all isosceles triangles of given perimeter, show that

the equilateral triangle has the greatest area.

10. Find the largest possible area for an isosceles triangle if the

length of each of its two equal sides is 10 m.

11. Find the area of the largest rectangle that can be inscribed in a

semicircle of radius R if one side of the rectangle lies along

the diameter of the semicircle.

12. Find the largest possible perimeter of a rectangle inscribed in

a semicircle of radius R if one side of the rectangle lies along

the diameter of the semicircle. (It is interesting that the

rectangle with the largest perimeter has a different shape than

the one with the largest area, obtained in Exercise 11.)

13. A rectangle with sides parallel to the coordinate axes is

inscribed in the ellipse

x
2

a2
C

y
2

b2
D 1:

Find the largest possible area for this rectangle.

14. Let ABC be a triangle right-angled at C and having area S .

Find the maximum area of a rectangle inscribed in the triangle

if (a) one corner of the rectangle lies at C , or (b) one side of

the rectangle lies along the hypotenuse, AB .

15. Find the maximum area of an isosceles triangle whose equal

sides are 10 cm in length. Use half the length of the third side

of the triangle as the variable in terms of which to express the

area of the triangle.

16. Repeat Exercise 15, but use instead the angle between the

equal sides of the triangle as the variable in terms of which to

express the area of the triangle. Which solution is easier?

17. (Designing a billboard) A billboard is to be made with

100 m2 of printed area and with margins of 2 m at the top and

bottom and 4 m on each side. Find the outside dimensions of

the billboard if its total area is to be a minimum.

18. (Designing a box) A box is to be made from a rectangular

sheet of cardboard 70 cm by 150 cm by cutting equal squares

out of the four corners and bending up the resulting four flaps

to make the sides of the box. (The box has no top.) What is

the largest possible volume of the box?

19. (Using rebates to maximize profit) An automobile

manufacturer sells 2,000 cars per month, at an average profit

of $1,000 per car. Market research indicates that for each $50

of factory rebate the manufacturer offers to buyers it can

expect to sell 200 more cars each month. How much of a

rebate should it offer to maximize its monthly profit?

20. (Maximizing rental profit) All 80 rooms in a motel will be

rented each night if the manager charges $40 or less per room.

If he charges $.40C x/ per room, then 2x rooms will remain

vacant. If each rented room costs the manager $10 per day and

each unrented room $2 per day in overhead, how much should

the manager charge per room to maximize his daily profit?

21. (Minimizing travel time) You are in a dune buggy in the

desert 12 km due south of the nearest point A on a straight

east-west road. You wish to get to point B on the road 10 km

east of A. If your dune buggy can average 15 km/h travelling

over the desert and 39 km/h travelling on the road, toward

what point on the road should you head in order to minimize

your travel time to B?

22. Repeat Exercise 21, but assume that B is only 4 km from A.

23. (Flying with least energy) At the altitude of airliners, winds

can typically blow at a speed of about 100 knots (nautical

miles per hour) from the west toward the east. A westward-

flying passenger jet from London, England, on its way to

Toronto, flies directly against this wind for 3,000 nautical

miles. The energy per unit time expended by the airliner is

proportional to v3, where v is the speed of the airliner relative

to the air. This reflects the power required to push aside the air

exerting ram pressure proportional to v2. What speed uses the

least energy on this trip? Estimate the time it would take to fly

this route at the resulting optimal speed. Is this a typical speed

at which airliners travel? Explain.

24. (Energy for a round trip) In the preceding problem we found

that an airliner flying against the wind at speed v with respect

to the air consumes the least energy over a flight if it travels at

v D 3u=2, where u is the speed of the headwind with respect

to the ground. Assume the power (energy per unit time)

required to push aside the air is kv3.

(a) Write the general expression for energy consumed over a

trip of distance ` flying with an airspeed v into a

headwind of speed u. Also write the general expression
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for energy used on the return journey along the same path

with airspeed w aided by a tailwind of speed u.

(b) Show that the energy consumed in the return journey is a

strictly increasing function of w. What is the least energy

consumed in the return journey if the airliner must have a

minimum airspeed of s (known as “stall speed”) to stay

aloft?

(c) What is the least energy consumed in the round trip if

u > 2s=3? What is the energy consumed when

u < 2s=3?

25. A one-metre length of stiff wire is cut into two pieces. One

piece is bent into a circle, the other piece into a square. Find

the length of the part used for the square if the sum of the

areas of the circle and the square is (a) maximum and

(b) minimum.

26. Find the area of the largest rectangle that can be drawn so that

each of its sides passes through a different vertex of a

rectangle having sides a and b.

27. What is the length of the shortest line segment having one end

on the x-axis, the other end on the y-axis, and passing

through the point .9;
p

3/?

28. (Getting around a corner) Find the length of the longest

beam that can be carried horizontally around the corner from

a hallway of width a m to a hallway of width b m. (See

Figure 4.56; assume the beam has no width.)

a m

b m

Figure 4.56

29. If the height of both hallways in Exercise 28 is c m, and if the

beam need not be carried horizontally, how long can it be and

still get around the corner? Hint: You can use the result of the

previous exercise to do this one easily.

30. The fence in Example 3 is demolished and a new fence is built

2 m away from the wall. How high can the fence be if a 6 m

ladder must be able to extend from the wall, over the fence, to

the ground outside?

31. Find the shortest distance from the origin to the curve

x2y4
D 1.

32. Find the shortest distance from the point .8; 1/ to the curve

y D 1C x3=2.

33. Find the dimensions of the largest right-circular cylinder that

can be inscribed in a sphere of radius R.

34. Find the dimensions of the circular cylinder of greatest volume

that can be inscribed in a cone of base radius R and height H

if the base of the cylinder lies in the base of the cone.

35. A box with square base and no top has a volume of 4 m3. Find

the dimensions of the most economical box.

36. (Folding a pyramid) A pyramid with a square base and four

faces, each in the shape of an isosceles triangle, is made by

cutting away four triangles from a 2 ft square piece of

cardboard (as shown in Figure 4.57) and bending up the

resulting triangles to form the walls of the pyramid. What is

the largest volume the pyramid can have? Hint: The volume of

a pyramid having base area A and height h measured

perpendicular to the base is V D 1
3
Ah.

2 ft

2 ft

Figure 4.57

37. (Getting the most light) A window has perimeter 10 m and is

in the shape of a rectangle with the top edge replaced by a

semicircle. Find the dimensions of the rectangle if the window

admits the greatest amount of light.

38. (Fuel tank design) A fuel tank is made of a cylindrical part

capped by hemispheres at each end. If the hemispheres are

twice as expensive per unit area as the cylindrical wall, and if

the volume of the tank is V , find the radius and height of the

cylindrical part to minimize the total cost. The surface area of

a sphere of radius r is 4�r2; its volume is 4
3
�r3.

39. (Reflection of light) Light travels in such a way that it

requires the minimum possible time to get from one point to

another. A ray of light from C reflects off a plane mirror AB

at X and then passes through D. (See Figure 4.58.) Show that

the rays CX and XD make equal angles with the normal to

AB at X . (Remark: You may wish to give a proof based on

elementary geometry without using any calculus, or you can

minimize the travel time on CXD.)

�

D

C

�

A BX

Figure 4.58

40.I (Snell’s Law) If light travels with speed v1 in one medium

and speed v2 in a second medium, and if the two media are

separated by a plane interface, show that a ray of light passing

from point A in one medium to point B in the other is bent at

the interface in such a way that

sin i

sin r
D

v1

v2

;

where i and r are the angles of incidence and refraction, as is

shown in Figure 4.59. This is known as Snell’s Law. Deduce it

from the least-time principle stated in Exercise 39.
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A

i

r

B

speed v1

speed v2

Figure 4.59

41. (Cutting the stiffest beam) The stiffness of a wooden beam

of rectangular cross section is proportional to the product of

the width and the cube of the depth of the cross section. Find

the width and depth of the stiffest beam that can be cut out of

a circular log of radius R.

42. Find the equation of the straight line of maximum slope

tangent to the curve y D 1C 2x � x3.

43. A quantityQ grows according to the differential equation

dQ

dt
D kQ

3
.L �Q/

5
;

where k and L are positive constants. How large is Q when it

is growing most rapidly?

44.I Find the smallest possible volume of a right-circular cone that

can contain a sphere of radius R. (The volume of a cone of

base radius r and height h is 1
3
�r2h.)

45.I (Ferry loading) A ferry runs between the mainland and the

island of Dedlos. The ferry has a maximum capacity of 1,000

cars, but loading near capacity is very time consuming. It is

found that the number of cars that can be loaded in t hours is

f .t/ D 1;000
t

e�t
C t

:

(Note that limt!1 f .t/ D 1;000, as expected.) Further, it is

found that it takes x=1;000 hours to unload x cars. The sailing

time to or from the island is 1 hour. Assume there are always

more cars waiting for each sailing than can be loaded. How

many cars should be loaded on the ferry for each sailing to

maximize the average movement of cars back and forth to the

island? (You will need to use a graphing calculator or

computer software like Maple’s fsolve routine to find the

appropriate critical point.)

46.I (The best view of a mural) How far back from a mural

should one stand to view it best if the mural is 10 ft high and

the bottom of it is 2 ft above eye level? (See Figure 4.60.)

10 ft

2 ft
�

x

Figure 4.60

47.I (Improving the enclosure of Example 1) An enclosure is to

be constructed having part of its boundary along an existing

straight wall. The other part of the boundary is to be fenced in

the shape of an arc of a circle. If 100 m of fencing is available,

what is the area of the largest possible enclosure? Into what

fraction of a circle is the fence bent?

48.I (Designing a Dixie cup) A sector is cut out of a circular disk

of radius R, and the remaining part of the disk is bent up so

that the two edges join and a cone is formed (see Figure 4.61).

What is the largest possible volume for the cone?

A D B

A

B

O

O

R

R

Figure 4.61

49.I (Minimize the fold) One corner of a strip of paper a cm wide

is folded up so that it lies along the opposite edge. (See

Figure 4.62.) Find the least possible length for the fold line.

fold

a

Figure 4.62

4.9 Linear Approximations

Many problems in applied mathematics are too difficult to be solved exactly—that is

why we resort to using computers, even though in many cases they may only give

approximate answers. However, not all approximation is done with machines. Linear

approximation can be a very effective way to estimate values or test the plausibility of
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for energy used on the return journey along the same path

with airspeed w aided by a tailwind of speed u.

(b) Show that the energy consumed in the return journey is a

strictly increasing function of w. What is the least energy

consumed in the return journey if the airliner must have a

minimum airspeed of s (known as “stall speed”) to stay

aloft?

(c) What is the least energy consumed in the round trip if

u > 2s=3? What is the energy consumed when

u < 2s=3?

25. A one-metre length of stiff wire is cut into two pieces. One

piece is bent into a circle, the other piece into a square. Find

the length of the part used for the square if the sum of the

areas of the circle and the square is (a) maximum and

(b) minimum.

26. Find the area of the largest rectangle that can be drawn so that

each of its sides passes through a different vertex of a

rectangle having sides a and b.

27. What is the length of the shortest line segment having one end

on the x-axis, the other end on the y-axis, and passing

through the point .9;
p

3/?

28. (Getting around a corner) Find the length of the longest

beam that can be carried horizontally around the corner from

a hallway of width a m to a hallway of width b m. (See

Figure 4.56; assume the beam has no width.)

a m

b m

Figure 4.56

29. If the height of both hallways in Exercise 28 is c m, and if the

beam need not be carried horizontally, how long can it be and

still get around the corner? Hint: You can use the result of the

previous exercise to do this one easily.

30. The fence in Example 3 is demolished and a new fence is built

2 m away from the wall. How high can the fence be if a 6 m

ladder must be able to extend from the wall, over the fence, to

the ground outside?

31. Find the shortest distance from the origin to the curve

x2y4
D 1.

32. Find the shortest distance from the point .8; 1/ to the curve

y D 1C x3=2.

33. Find the dimensions of the largest right-circular cylinder that

can be inscribed in a sphere of radius R.

34. Find the dimensions of the circular cylinder of greatest volume

that can be inscribed in a cone of base radius R and height H

if the base of the cylinder lies in the base of the cone.

35. A box with square base and no top has a volume of 4 m3. Find

the dimensions of the most economical box.

36. (Folding a pyramid) A pyramid with a square base and four

faces, each in the shape of an isosceles triangle, is made by

cutting away four triangles from a 2 ft square piece of

cardboard (as shown in Figure 4.57) and bending up the

resulting triangles to form the walls of the pyramid. What is

the largest volume the pyramid can have? Hint: The volume of

a pyramid having base area A and height h measured

perpendicular to the base is V D 1
3
Ah.

2 ft

2 ft

Figure 4.57

37. (Getting the most light) A window has perimeter 10 m and is

in the shape of a rectangle with the top edge replaced by a

semicircle. Find the dimensions of the rectangle if the window

admits the greatest amount of light.

38. (Fuel tank design) A fuel tank is made of a cylindrical part

capped by hemispheres at each end. If the hemispheres are

twice as expensive per unit area as the cylindrical wall, and if

the volume of the tank is V , find the radius and height of the

cylindrical part to minimize the total cost. The surface area of

a sphere of radius r is 4�r2; its volume is 4
3
�r3.

39. (Reflection of light) Light travels in such a way that it

requires the minimum possible time to get from one point to

another. A ray of light from C reflects off a plane mirror AB

at X and then passes through D. (See Figure 4.58.) Show that

the rays CX and XD make equal angles with the normal to

AB at X . (Remark: You may wish to give a proof based on

elementary geometry without using any calculus, or you can

minimize the travel time on CXD.)

�

D

C

�

A BX

Figure 4.58

40.I (Snell’s Law) If light travels with speed v1 in one medium

and speed v2 in a second medium, and if the two media are

separated by a plane interface, show that a ray of light passing

from point A in one medium to point B in the other is bent at

the interface in such a way that

sin i

sin r
D

v1

v2

;

where i and r are the angles of incidence and refraction, as is

shown in Figure 4.59. This is known as Snell’s Law. Deduce it

from the least-time principle stated in Exercise 39.
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A

i

r

B

speed v1

speed v2

Figure 4.59

41. (Cutting the stiffest beam) The stiffness of a wooden beam

of rectangular cross section is proportional to the product of

the width and the cube of the depth of the cross section. Find

the width and depth of the stiffest beam that can be cut out of

a circular log of radius R.

42. Find the equation of the straight line of maximum slope

tangent to the curve y D 1C 2x � x3.

43. A quantityQ grows according to the differential equation

dQ

dt
D kQ

3
.L �Q/

5
;

where k and L are positive constants. How large is Q when it

is growing most rapidly?

44.I Find the smallest possible volume of a right-circular cone that

can contain a sphere of radius R. (The volume of a cone of

base radius r and height h is 1
3
�r2h.)

45.I (Ferry loading) A ferry runs between the mainland and the

island of Dedlos. The ferry has a maximum capacity of 1,000

cars, but loading near capacity is very time consuming. It is

found that the number of cars that can be loaded in t hours is

f .t/ D 1;000
t

e�t
C t

:

(Note that limt!1 f .t/ D 1;000, as expected.) Further, it is

found that it takes x=1;000 hours to unload x cars. The sailing

time to or from the island is 1 hour. Assume there are always

more cars waiting for each sailing than can be loaded. How

many cars should be loaded on the ferry for each sailing to

maximize the average movement of cars back and forth to the

island? (You will need to use a graphing calculator or

computer software like Maple’s fsolve routine to find the

appropriate critical point.)

46.I (The best view of a mural) How far back from a mural

should one stand to view it best if the mural is 10 ft high and

the bottom of it is 2 ft above eye level? (See Figure 4.60.)

10 ft

2 ft
�

x

Figure 4.60

47.I (Improving the enclosure of Example 1) An enclosure is to

be constructed having part of its boundary along an existing

straight wall. The other part of the boundary is to be fenced in

the shape of an arc of a circle. If 100 m of fencing is available,

what is the area of the largest possible enclosure? Into what

fraction of a circle is the fence bent?

48.I (Designing a Dixie cup) A sector is cut out of a circular disk

of radius R, and the remaining part of the disk is bent up so

that the two edges join and a cone is formed (see Figure 4.61).

What is the largest possible volume for the cone?

A D B

A

B

O

O

R

R

Figure 4.61

49.I (Minimize the fold) One corner of a strip of paper a cm wide

is folded up so that it lies along the opposite edge. (See

Figure 4.62.) Find the least possible length for the fold line.

fold

a

Figure 4.62

4.9 Linear Approximations

Many problems in applied mathematics are too difficult to be solved exactly—that is

why we resort to using computers, even though in many cases they may only give

approximate answers. However, not all approximation is done with machines. Linear

approximation can be a very effective way to estimate values or test the plausibility of
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numbers given by a computer. In Section 2.7 we observed how differentials could be
y

xxa

P D .a; f .a//

y D f .x/

L.x/
f .x/

Figure 4.63 The linearization of function

f about a

used to approximate (changes in) the values of functions between nearby points. In this

section we reconsider such approximations in a more formal way and obtain estimates

for the size of the errors encountered when such “linear” approximations are made.

The tangent to the graph y D f .x/ at x D a describes the behaviour of that

graph near the point P D .a; f .a// better than any other straight line through P ,

because it goes through P in the same direction as the curve y D f .x/. (See

Figure 4.63.) We exploit this fact by using the height to the tangent line to calcu-

late approximate values of f .x/ for values of x near a. The tangent line has equation

y D f .a/C f 0.a/.x � a/. We call the right side of this equation the linearization of

f about a (or the linearization of f .x/ about x D a).

D E F I N I T I O N

8

The linearization of the function f about a is the function L defined by

L.x/ D f .a/C f
0
.a/.x � a/:

We say that f .x/ � L.x/ D f .a/C f 0
.a/.x � a/ provides linear approxi-

mations for values of f near a.

E X A M P L E 1
Find linearizations of (a) f .x/ D

p

1C x about x D 0 and

(b) g.t/ D 1=t about t D 1=2.

Solution

(a) We have f .0/ D 1 and, since f 0.x/ D 1=.2
p

1C x/, f 0.0/ D 1=2. The lin-

earization of f about 0 is

L.x/ D 1C
1

2
.x � 0/ D 1C

x

2
:

(b) We have g.1=2/ D 2 and, since g0.t/ D �1=t2, g0.1=2/ D �4. The linearization

of g.t/ about t D 1=2 is

L.t/ D 2� 4

�

t �
1

2

�

D 4 � 4t:

Approximating Values of Functions
We have already made use of linearization in Section 2.7, where it was disguised as the

formula

�y �
dy

dx
�x

and used to approximate a small change �y D f .a C �x/ � f .a/ in the values of

function f corresponding to the small change in the argument of the function from a

to aC�x. This is just the linear approximation

f .aC�x/ � L.aC�x/ D f .a/C f
0
.a/�x:

E X A M P L E 2
A ball of ice melts so that its radius decreases from 5 cm to 4.92 cm.

By approximately how much does the volume of the ball decrease?

Solution The volume V of a ball of radius r is V D
4

3
�r

3, so that dV=dr D 4�r2

and L.r C�r/ D V.r/C 4�r2
�r . Thus,

�V � L.r C�r/ D 4�r
2
�r:

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 271 October 15, 2016

SECTION 4.9: Linear Approximations 271

For r D 5 and �r D �0:08, we have

�V � 4�.5
2
/.�0:08/ D �8� � �25:13:

The volume of the ball decreases by about 25 cm3.

The following example illustrates the use of linearization to find an approximate value

of a function near a point where the values of the function and its derivative are known.

E X A M P L E 3
Use the linearization for

p

x about x D 25 to find an approximate

value for
p

26.

Solution If f .x/ D
p

x, then f 0.x/ D 1=.2
p

x/. Since we know that f .25/ D 5

and f 0.25/ D 1=10, the linearization of f .x/ about x D 25 is

L.x/ D 5C
1

10
.x � 25/:

Putting x D 26, we get

p

26 D f .26/ � L.26/ D 5C
1

10
.26 � 25/ D 5:1:

If we use the square root function on a calculator we can obtain the “true value” of
p

26 (actually, just another approximation, although presumably a better one):
p

26 D

5:099 019 5 : : : ; but if we have such a calculator we don’t need the approximation in

the first place. Approximations are useful when there is no easy way to obtain the

true value. However, if we don’t know the true value, we would at least like to have

some way of determining how good the approximation must be; that is, we want an

estimate for the error. After all, any number is an approximation to
p

26, but the error

may be unacceptably large; for instance, the size of the error in the approximation
p

26 � 1;000;000 is greater than 999,994.

Error Analysis
In any approximation, the error is defined by

error D true value � approximate value:

If the linearization of f about a is used to approximate f .x/ near x D a, that is,

f .x/ � L.x/ D f .a/C f
0
.a/.x � a/;

then the error E.x/ in this approximation is

E.x/ D f .x/� L.x/ D f .x/� f .a/ � f
0
.a/.x � a/:

It is the vertical distance at x between the graph of f and the tangent line to that graph

at x D a, as shown in Figure 4.64. Observe that if x is “near” a, then E.x/ is small

compared to the horizontal distance between x and a.
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numbers given by a computer. In Section 2.7 we observed how differentials could be
y

xxa

P D .a; f .a//

y D f .x/

L.x/
f .x/

Figure 4.63 The linearization of function

f about a

used to approximate (changes in) the values of functions between nearby points. In this

section we reconsider such approximations in a more formal way and obtain estimates

for the size of the errors encountered when such “linear” approximations are made.

The tangent to the graph y D f .x/ at x D a describes the behaviour of that

graph near the point P D .a; f .a// better than any other straight line through P ,

because it goes through P in the same direction as the curve y D f .x/. (See

Figure 4.63.) We exploit this fact by using the height to the tangent line to calcu-

late approximate values of f .x/ for values of x near a. The tangent line has equation

y D f .a/C f 0.a/.x � a/. We call the right side of this equation the linearization of

f about a (or the linearization of f .x/ about x D a).

D E F I N I T I O N

8

The linearization of the function f about a is the function L defined by

L.x/ D f .a/C f
0
.a/.x � a/:

We say that f .x/ � L.x/ D f .a/C f 0
.a/.x � a/ provides linear approxi-

mations for values of f near a.

E X A M P L E 1
Find linearizations of (a) f .x/ D

p

1C x about x D 0 and

(b) g.t/ D 1=t about t D 1=2.

Solution

(a) We have f .0/ D 1 and, since f 0.x/ D 1=.2
p

1C x/, f 0.0/ D 1=2. The lin-

earization of f about 0 is

L.x/ D 1C
1

2
.x � 0/ D 1C

x

2
:

(b) We have g.1=2/ D 2 and, since g0.t/ D �1=t2, g0.1=2/ D �4. The linearization

of g.t/ about t D 1=2 is

L.t/ D 2� 4

�

t �
1

2

�

D 4 � 4t:

Approximating Values of Functions
We have already made use of linearization in Section 2.7, where it was disguised as the

formula

�y �
dy

dx
�x

and used to approximate a small change �y D f .a C �x/ � f .a/ in the values of

function f corresponding to the small change in the argument of the function from a

to aC�x. This is just the linear approximation

f .aC�x/ � L.aC�x/ D f .a/C f
0
.a/�x:

E X A M P L E 2
A ball of ice melts so that its radius decreases from 5 cm to 4.92 cm.

By approximately how much does the volume of the ball decrease?

Solution The volume V of a ball of radius r is V D
4

3
�r

3, so that dV=dr D 4�r2

and L.r C�r/ D V.r/C 4�r2
�r . Thus,

�V � L.r C�r/ D 4�r
2
�r:
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For r D 5 and �r D �0:08, we have

�V � 4�.5
2
/.�0:08/ D �8� � �25:13:

The volume of the ball decreases by about 25 cm3.

The following example illustrates the use of linearization to find an approximate value

of a function near a point where the values of the function and its derivative are known.

E X A M P L E 3
Use the linearization for

p

x about x D 25 to find an approximate

value for
p

26.

Solution If f .x/ D
p

x, then f 0.x/ D 1=.2
p

x/. Since we know that f .25/ D 5

and f 0.25/ D 1=10, the linearization of f .x/ about x D 25 is

L.x/ D 5C
1

10
.x � 25/:

Putting x D 26, we get

p

26 D f .26/ � L.26/ D 5C
1

10
.26 � 25/ D 5:1:

If we use the square root function on a calculator we can obtain the “true value” of
p

26 (actually, just another approximation, although presumably a better one):
p

26 D

5:099 019 5 : : : ; but if we have such a calculator we don’t need the approximation in

the first place. Approximations are useful when there is no easy way to obtain the

true value. However, if we don’t know the true value, we would at least like to have

some way of determining how good the approximation must be; that is, we want an

estimate for the error. After all, any number is an approximation to
p

26, but the error

may be unacceptably large; for instance, the size of the error in the approximation
p

26 � 1;000;000 is greater than 999,994.

Error Analysis
In any approximation, the error is defined by

error D true value � approximate value:

If the linearization of f about a is used to approximate f .x/ near x D a, that is,

f .x/ � L.x/ D f .a/C f
0
.a/.x � a/;

then the error E.x/ in this approximation is

E.x/ D f .x/� L.x/ D f .x/� f .a/ � f
0
.a/.x � a/:

It is the vertical distance at x between the graph of f and the tangent line to that graph

at x D a, as shown in Figure 4.64. Observe that if x is “near” a, then E.x/ is small

compared to the horizontal distance between x and a.
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Figure 4.64 f .x/ and its linearization

L.x/ about x D a. E.x/ is the error in the

approximation f .x/ � L.x/

y

x

f .x/

L.x/

f 0.a/.x � a/

f .a/

E.x/

y D f .x/

P

a x

The following theorem and its corollaries give us a way to estimate this error if we

know bounds for the second derivative of f:

T H E O R E M

11

An error formula for linearization

If f 00.t/ exists for all t in an interval containing a and x, then there exists some point s

between a and x such that the error E.x/ D f .x/� L.x/ in the linear approximation

f .x/ � L.x/ D f .a/C f 0.a/.x � a/ satisfies

E.x/ D
f 00.s/

2
.x � a/

2
:

PROOF Let us assume that x > a. (The proof for x < a is similar.) Since

E.t/ D f .t/� f .a/ � f
0
.a/.t � a/;

we have E 0.t/ D f 0.t/ � f 0.a/. We apply the Generalized Mean-Value Theorem

(Theorem 16 of Section 2.8) to the two functions E.t/ and .t � a/2 on Œa; x�. Noting

that E.a/ D 0, we obtain a number u in .a; x/ such that

E.x/

.x � a/2
D

E.x/� E.a/

.x � a/2 � .a � a/2
D

E 0.u/

2.u � a/
D

f 0.u/ � f 0.a/

2.u � a/
D

1

2
f

00
.s/

for some s in .a; u/; the latter expression is a consequence of applying the Mean-Value

Theorem again, this time to f 0 on Œa; u�. Thus,

E.x/ D
f 00.s/

2
.x � a/

2

as claimed.

The following three corollaries are immediate consequences of Theorem 11.
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Corollary A. If f 00.t/ has constant sign (i.e., is always positive or always negative)

between a and x, then the error E.x/ in the linear approximation f .x/ � L.x/ in the

Theorem has that same sign; if f 00.t/ > 0 between a and x, then f .x/ > L.x/; if

f 00.t/ < 0 between a and x, then f .x/ < L.x/.

Corollary B. If jf 00.t/j < K for all t between a and x (where K is a constant), then

jE.x/j < .K=2/.x � a/2.

Corollary C. If f 00
.t/ satisfiesM < f

00
.t/ < N for all t between a and x (where M

and N are constants), then

L.x/C
M

2
.x � a/

2
< f .x/ < L.x/C

N

2
.x � a/

2
:

If M and N have the same sign, a better approximation to f .x/ is given by the mid-

point of this interval containing f .x/:

f .x/ � L.x/C
M CN

4
.x � a/

2
:

For this approximation the error is less than half the length of the interval:

jErrorj <
N �M

4
.x � a/

2
:

E X A M P L E 4
Determine the sign and estimate the size of the error in the approx-

imation
p

26 � 5:1 obtained in Example 3. Use these to give a

small interval that you can be sure contains
p

26.

Solution For f .t/ D t1=2, we have

f
0
.t/ D

1

2
t
�1=2 and f

00
.t/ D �

1

4
t
�3=2

:

For 25 < t < 26, we have f 00
.t/ < 0, so

p

26 D f .26/ < L.26/ D 5:1. Also,

t
3=2

> 25
3=2
D 125, so jf 00

.t/j < .1=4/.1=125/ D 1=500 and

jE.26/j <
1

2
�

1

500
� .26 � 25/

2
D

1

1,000
D 0:001:

Therefore, f .26/ > L.26/ � 0:001 D 5:099, and
p

26 is in the interval .5:099; 5:1/.

Remark We can use Corollary C of Theorem 11 and the fact that
p

26 < 5:1 to

find a better (i.e., smaller) interval containing
p

26 as follows. If 25 < t < 26, then

125 D 253=2 < t3=2 < 263=2 < 5:13. Thus,

M D �
1

4 � 125
< f

00
.t/ < �

1

4 � 5:13
D N

p

26 � L.26/C
M CN

4
D 5:1 �

1

4

�

1

4 � 125
C

1

4 � 5:13

�

� 5:099 028 8

jErrorj <
N �M

4
D

1

16

�

�

1

5:13
C

1

125

�

� 0:000 028 8:

Thus,
p

26 lies in the interval .5:099 00; 5:099 06/.

E X A M P L E 5
Use a suitable linearization to find an approximate value for

cos 36ı
D cos.�=5/. Is the true value greater than or less than

your approximation? Estimate the size of the error, and give an interval that you can

be sure contains cos 36ı.

9780134154367_Calculus   292 05/12/16   3:17 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 272 October 15, 2016

272 CHAPTER 4 More Applications of Differentiation

Figure 4.64 f .x/ and its linearization

L.x/ about x D a. E.x/ is the error in the

approximation f .x/ � L.x/

y

x

f .x/

L.x/

f 0.a/.x � a/

f .a/

E.x/

y D f .x/

P

a x

The following theorem and its corollaries give us a way to estimate this error if we

know bounds for the second derivative of f:

T H E O R E M

11

An error formula for linearization

If f 00.t/ exists for all t in an interval containing a and x, then there exists some point s

between a and x such that the error E.x/ D f .x/� L.x/ in the linear approximation

f .x/ � L.x/ D f .a/C f 0.a/.x � a/ satisfies

E.x/ D
f 00.s/

2
.x � a/

2
:

PROOF Let us assume that x > a. (The proof for x < a is similar.) Since

E.t/ D f .t/� f .a/ � f
0
.a/.t � a/;

we have E 0.t/ D f 0.t/ � f 0.a/. We apply the Generalized Mean-Value Theorem

(Theorem 16 of Section 2.8) to the two functions E.t/ and .t � a/2 on Œa; x�. Noting

that E.a/ D 0, we obtain a number u in .a; x/ such that

E.x/

.x � a/2
D

E.x/� E.a/

.x � a/2 � .a � a/2
D

E 0.u/

2.u � a/
D

f 0.u/ � f 0.a/

2.u � a/
D

1

2
f

00
.s/

for some s in .a; u/; the latter expression is a consequence of applying the Mean-Value

Theorem again, this time to f 0 on Œa; u�. Thus,

E.x/ D
f 00.s/

2
.x � a/

2

as claimed.

The following three corollaries are immediate consequences of Theorem 11.
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Corollary A. If f 00.t/ has constant sign (i.e., is always positive or always negative)

between a and x, then the error E.x/ in the linear approximation f .x/ � L.x/ in the

Theorem has that same sign; if f 00.t/ > 0 between a and x, then f .x/ > L.x/; if

f 00.t/ < 0 between a and x, then f .x/ < L.x/.

Corollary B. If jf 00.t/j < K for all t between a and x (where K is a constant), then

jE.x/j < .K=2/.x � a/2.

Corollary C. If f 00
.t/ satisfiesM < f

00
.t/ < N for all t between a and x (where M

and N are constants), then

L.x/C
M

2
.x � a/

2
< f .x/ < L.x/C

N

2
.x � a/

2
:

If M and N have the same sign, a better approximation to f .x/ is given by the mid-

point of this interval containing f .x/:

f .x/ � L.x/C
M CN

4
.x � a/

2
:

For this approximation the error is less than half the length of the interval:

jErrorj <
N �M

4
.x � a/

2
:

E X A M P L E 4
Determine the sign and estimate the size of the error in the approx-

imation
p

26 � 5:1 obtained in Example 3. Use these to give a

small interval that you can be sure contains
p

26.

Solution For f .t/ D t1=2, we have

f
0
.t/ D

1

2
t
�1=2 and f

00
.t/ D �

1

4
t
�3=2

:

For 25 < t < 26, we have f 00
.t/ < 0, so

p

26 D f .26/ < L.26/ D 5:1. Also,

t
3=2

> 25
3=2
D 125, so jf 00

.t/j < .1=4/.1=125/ D 1=500 and

jE.26/j <
1

2
�

1

500
� .26 � 25/

2
D

1

1,000
D 0:001:

Therefore, f .26/ > L.26/ � 0:001 D 5:099, and
p

26 is in the interval .5:099; 5:1/.

Remark We can use Corollary C of Theorem 11 and the fact that
p

26 < 5:1 to

find a better (i.e., smaller) interval containing
p

26 as follows. If 25 < t < 26, then

125 D 253=2 < t3=2 < 263=2 < 5:13. Thus,

M D �
1

4 � 125
< f

00
.t/ < �

1

4 � 5:13
D N

p

26 � L.26/C
M CN

4
D 5:1 �

1

4

�

1

4 � 125
C

1

4 � 5:13

�

� 5:099 028 8

jErrorj <
N �M

4
D

1

16

�

�

1

5:13
C

1

125

�

� 0:000 028 8:

Thus,
p

26 lies in the interval .5:099 00; 5:099 06/.

E X A M P L E 5
Use a suitable linearization to find an approximate value for

cos 36ı
D cos.�=5/. Is the true value greater than or less than

your approximation? Estimate the size of the error, and give an interval that you can

be sure contains cos 36ı.
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Solution Let f .t/ D cos t , so that f 0.t/ D � sin t and f 00.t/ D � cos t . The

value of a nearest to 36ı for which we know cos a is a D 30
ı
D �=6, so we use the

linearization about that point:

L.x/ D cos
�

6
� sin

�

6

�

x �
�

6

�

D

p

3

2
�

1

2

�

x �
�

6

�

:

Since .�=5/ � .�=6/ D �=30, our approximation is

cos 36ı
D cos

�

5
� L

�

�

5

�

D

p

3

2
�

1

2

�

�

30

�

� 0:813 67:

If .�=6/ < t < .�=5/, then f 00.t/ < 0 and jf 00.t/j < cos.�=6/ D
p

3=2. Therefore,

cos 36ı < 0:813 67 and

jE.36ı/j <

p

3

4

�

�

30

�2

< 0:004 75:

Thus, 0:813 67 � 0:004 75 < cos 36ı < 0:813 67, so cos 36ı lies in the interval

.0:808 92; 0:813 67/.

Remark The error in the linearization of f .x/ about x D a can be interpreted in

terms of differentials (see Section 2.7 and the beginning of this section) as follows: if

�x D dx D x � a, then the change in f .x/ as we pass from x D a to x D a C�x

is f .aC�x/ � f .a/ D �y, and the corresponding change in the linearization L.x/

is f 0.a/.x � a/ D f 0.a/ dx, which is just the value at x D a of the differential

dy D f
0
.x/ dx. Thus,

E.x/ D �y � dy:

The errorE.x/ is small compared with�x as�x approaches 0, as seen in Figure 4.64.

In fact,

lim
�x!0

�y � dy

�x
D lim

�x!0

�

�y

�x
�

dy

dx

�

D

dy

dx
�

dy

dx
D 0:

If jf 00.t/j � K (constant) near t D a, a stronger assertion can be made:

ˇ

ˇ

ˇ

ˇ

�y � dy

.�x/2

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

E.x/

.�x/2

ˇ

ˇ

ˇ

ˇ

�

K

2
; so j�y � dyj �

K

2
.�x/

2
:

E X E R C I S E S 4.9

In Exercises 1–10, find the linearization of the given function

about the given point.

1. x2 about x D 3 2. x�3 about x D 2

3.
p

4 � x about x D 0 4.
p

3C x2 about x D 1

5. 1=.1C x/2 about x D 2 6. 1=
p

x about x D 4

7. sinx about x D � 8. cos.2x/ about x D �=3

9. sin2
x about x D �=6 10. tan x about x D �=4

11. By approximately how much does the area of a square

increase if its side length increases from 10 cm to 10.4 cm?

12. By about how much must the edge length of a cube decrease

from 20 cm to reduce the volume of the cube by 12 cm3?

13. A spacecraft orbits the earth at a distance of 4,100 miles from

the centre of the earth. By about how much will the circum-

ference of its orbit decrease if the radius decreases by 10

miles?

14. (Acceleration of gravity) The acceleration a of gravity at an

altitude of h miles above the surface of the earth is given by

a D g

�

R

RC h

�2

;
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where g � 32 ft/s2 is the acceleration at the surface of the

earth, and R � 3; 960 miles is the radius of the earth. By

about what percentage will a decrease if h increases from 0 to

10 miles?

In Exercises 15–22, use a suitable linearization to approximate the

indicated value. Determine the sign of the error and estimate its

size. Use this information to specify an interval you can be sure

contains the value.

15.
p

50 16.
p

47

17.
4
p

85 18.
1

2:003

19. cos 46ı 20. sin
�

5

21. sin.3:14/ 22. sin 33ı

Use Corollary C of Theorem 11 in the manner suggested in the

remark following Example 4 to find better intervals and better

approximations to the values in Exercises 23–26.

23.
p

50 as first approximated in Exercise 15.

24.
p

47 as first approximated in Exercise 16.

25. cos 36ı as first approximated in Example 5.

26. sin 33ı as first approximated in Exercise 22.

27. If f .2/ D 4, f 0
.2/ D �1, and 0 � f 00

.x/ � 1=x for x > 0,

find the smallest interval you can be sure contains f .3/.

28. If f .2/ D 4, f 0.2/ D �1, and
1

2x
� f

00
.x/ �

1

x
for

2 � x � 3, find the best approximation you can for f .3/.

29. If g.2/ D 1, g0
.2/ D 2, and jg00

.x/j < 1C .x � 2/
2 for all

x > 0, find the best approximation you can for g.1:8/. How

large can the error be?

30. Show that the linearization of sin � at � D 0 is L.�/ D � .

How large can the percentage error in the approximation

sin � � � be if j� j is less than 17ı?

31. A spherical balloon is inflated so that its radius increases from

20.00 cm to 20.20 cm in 1 min. By approximately how much

has its volume increased in that minute?

4.10 Taylor Polynomials

The linearization of a function f .x/ about x D a, namely, the linear function

P1.x/ D L.x/ D f .a/C f
0
.a/.x � a/;

describes the behaviour of f near a better than any other polynomial of degree 1

because both P1 and f have the same value and the same derivative at a:

P1.a/ D f .a/ and P
0
1.a/ D f

0
.a/:

(We are now using the symbol P1 instead of L to stress the fact that the linearization

is a polynomial of degree at most 1.)

We can obtain even better approximations to f .x/ by using quadratic or higher-

degree polynomials and matching more derivatives at x D a. For example, if f is

twice differentiable near a, then the polynomial

P2.x/ D f .a/C f
0
.a/.x � a/C

f 00.a/

2
.x � a/

2

satisfies P2.a/ D f .a/, P 0
2.a/ D f 0.a/, and P 00

2 .a/ D f 00.a/ and describes the

behaviour of f near a better than any other polynomial of degree at most 2.

In general, if f .n/.x/ exists in an open interval containing x D a, then the poly-

nomial

Pn.x/ D f .a/C
f 0.a/

1Š
.x � a/C

f 00.a/

2Š
.x � a/

2

C

f 000.a/

3Š
.x � a/

3
C � � � C

f .n/.a/

nŠ
.x � a/

n

matches f and its first n derivatives at x D a,

Pn.a/ D f .a/; P
0
n.a/ D f

0
.a/; : : : ; P

.n/
n .a/ D f

.n/
.a/;
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Solution Let f .t/ D cos t , so that f 0.t/ D � sin t and f 00.t/ D � cos t . The

value of a nearest to 36ı for which we know cos a is a D 30
ı
D �=6, so we use the

linearization about that point:

L.x/ D cos
�

6
� sin

�

6

�

x �
�

6

�

D

p

3

2
�

1

2

�

x �
�

6

�

:

Since .�=5/ � .�=6/ D �=30, our approximation is

cos 36ı
D cos

�

5
� L

�

�

5

�

D

p

3

2
�

1

2

�

�

30

�

� 0:813 67:

If .�=6/ < t < .�=5/, then f 00.t/ < 0 and jf 00.t/j < cos.�=6/ D
p

3=2. Therefore,

cos 36ı < 0:813 67 and

jE.36ı/j <

p

3

4

�

�

30

�2

< 0:004 75:

Thus, 0:813 67 � 0:004 75 < cos 36ı < 0:813 67, so cos 36ı lies in the interval

.0:808 92; 0:813 67/.

Remark The error in the linearization of f .x/ about x D a can be interpreted in

terms of differentials (see Section 2.7 and the beginning of this section) as follows: if

�x D dx D x � a, then the change in f .x/ as we pass from x D a to x D a C�x

is f .aC�x/ � f .a/ D �y, and the corresponding change in the linearization L.x/

is f 0.a/.x � a/ D f 0.a/ dx, which is just the value at x D a of the differential

dy D f
0
.x/ dx. Thus,

E.x/ D �y � dy:

The errorE.x/ is small compared with�x as�x approaches 0, as seen in Figure 4.64.

In fact,

lim
�x!0

�y � dy

�x
D lim

�x!0

�

�y

�x
�

dy

dx

�

D

dy

dx
�

dy

dx
D 0:

If jf 00.t/j � K (constant) near t D a, a stronger assertion can be made:

ˇ

ˇ

ˇ

ˇ

�y � dy

.�x/2

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

E.x/

.�x/2

ˇ

ˇ

ˇ

ˇ

�

K

2
; so j�y � dyj �

K

2
.�x/

2
:

E X E R C I S E S 4.9

In Exercises 1–10, find the linearization of the given function

about the given point.

1. x2 about x D 3 2. x�3 about x D 2

3.
p

4 � x about x D 0 4.
p

3C x2 about x D 1

5. 1=.1C x/2 about x D 2 6. 1=
p

x about x D 4

7. sinx about x D � 8. cos.2x/ about x D �=3

9. sin2
x about x D �=6 10. tan x about x D �=4

11. By approximately how much does the area of a square

increase if its side length increases from 10 cm to 10.4 cm?

12. By about how much must the edge length of a cube decrease

from 20 cm to reduce the volume of the cube by 12 cm3?

13. A spacecraft orbits the earth at a distance of 4,100 miles from

the centre of the earth. By about how much will the circum-

ference of its orbit decrease if the radius decreases by 10

miles?

14. (Acceleration of gravity) The acceleration a of gravity at an

altitude of h miles above the surface of the earth is given by

a D g

�

R

RC h

�2

;
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where g � 32 ft/s2 is the acceleration at the surface of the

earth, and R � 3; 960 miles is the radius of the earth. By

about what percentage will a decrease if h increases from 0 to

10 miles?

In Exercises 15–22, use a suitable linearization to approximate the

indicated value. Determine the sign of the error and estimate its

size. Use this information to specify an interval you can be sure

contains the value.

15.
p

50 16.
p

47

17.
4
p

85 18.
1

2:003

19. cos 46ı 20. sin
�

5

21. sin.3:14/ 22. sin 33ı

Use Corollary C of Theorem 11 in the manner suggested in the

remark following Example 4 to find better intervals and better

approximations to the values in Exercises 23–26.

23.
p

50 as first approximated in Exercise 15.

24.
p

47 as first approximated in Exercise 16.

25. cos 36ı as first approximated in Example 5.

26. sin 33ı as first approximated in Exercise 22.

27. If f .2/ D 4, f 0
.2/ D �1, and 0 � f 00

.x/ � 1=x for x > 0,

find the smallest interval you can be sure contains f .3/.

28. If f .2/ D 4, f 0.2/ D �1, and
1

2x
� f

00
.x/ �

1

x
for

2 � x � 3, find the best approximation you can for f .3/.

29. If g.2/ D 1, g0
.2/ D 2, and jg00

.x/j < 1C .x � 2/
2 for all

x > 0, find the best approximation you can for g.1:8/. How

large can the error be?

30. Show that the linearization of sin � at � D 0 is L.�/ D � .

How large can the percentage error in the approximation

sin � � � be if j� j is less than 17ı?

31. A spherical balloon is inflated so that its radius increases from

20.00 cm to 20.20 cm in 1 min. By approximately how much

has its volume increased in that minute?

4.10 Taylor Polynomials

The linearization of a function f .x/ about x D a, namely, the linear function

P1.x/ D L.x/ D f .a/C f
0
.a/.x � a/;

describes the behaviour of f near a better than any other polynomial of degree 1

because both P1 and f have the same value and the same derivative at a:

P1.a/ D f .a/ and P
0
1.a/ D f

0
.a/:

(We are now using the symbol P1 instead of L to stress the fact that the linearization

is a polynomial of degree at most 1.)

We can obtain even better approximations to f .x/ by using quadratic or higher-

degree polynomials and matching more derivatives at x D a. For example, if f is

twice differentiable near a, then the polynomial

P2.x/ D f .a/C f
0
.a/.x � a/C

f 00.a/

2
.x � a/

2

satisfies P2.a/ D f .a/, P 0
2.a/ D f 0.a/, and P 00

2 .a/ D f 00.a/ and describes the

behaviour of f near a better than any other polynomial of degree at most 2.

In general, if f .n/.x/ exists in an open interval containing x D a, then the poly-

nomial

Pn.x/ D f .a/C
f 0.a/

1Š
.x � a/C

f 00.a/

2Š
.x � a/

2

C

f 000.a/

3Š
.x � a/

3
C � � � C

f .n/.a/

nŠ
.x � a/

n

matches f and its first n derivatives at x D a,

Pn.a/ D f .a/; P
0
n.a/ D f

0
.a/; : : : ; P

.n/
n .a/ D f

.n/
.a/;
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and so describes f .x/ near x D a better than any other polynomial of degree at most

n. Pn is called the nth-order Taylor polynomial for f about a. (Taylor polynomials

about 0 are usually called Maclaurin polynomials.) The 0th-order Taylor polynomial

for f about a is just the constant function P0.x/ D f .a/. The nth-order Taylor poly-

nomial for f about a is sometimes called the nth-degree Taylor polynomial, but its

degree will actually be less than n if f .n/.a/ D 0.

E X A M P L E 1
Find the following Taylor polynomials:

(a) P2.x/ for f .x/ D
p

x about x D 25.

(b) P3.x/ for g.x/ D ln x about x D e.

Solution (a) f 0.x/ D .1=2/x�1=2, f 00.x/ D �.1=4/x�3=2. Thus,

P2.x/ D f .25/C f
0
.25/.x � 25/C

f 00.25/

2Š
.x � 25/

2

D 5C
1

10
.x � 25/ �

1

1;000
.x � 25/

2
:

(b) g0.x/ D
1

x
, g00.x/ D �

1

x2
, g000.x/ D

2

x3
. Thus,

P3.x/ D g.e/C g
0
.e/.x � e/C

g00.e/

2Š
.x � e/

2
C

g000.e/

3Š
.x � e/

3

D 1C
1

e
.x � e/ �

1

2e2
.x � e/

2
C

1

3e3
.x � e/

3
:

E X A M P L E 2
Find the nth-order Maclaurin polynomial Pn.x/ for ex . UseP0.1/,

P1.1/, P2.1/, : : : to calculate approximate values for e D e1. Stop

when you think you have 3 decimal places correct.

Solution Since every derivative of ex is ex and so is 1 at x D 0, the nth-order

Maclaurin polynomial for ex (i.e., Taylor polynomial at x D 0) is

Pn.x/ D 1C
x

1Š
C

x2

2Š
C

x3

3Š
C � � � C

xn

nŠ
:

Thus, we have for x D 1, adding one more term at each step:

P0.1/ D 1

P1.1/ D P0.1/C
1

1Š
D 1C 1 D 2

P2.1/ D P1.1/C
1

2Š
D 2C

1

2
D 2:5

P3.1/ D P2.1/C
1

3Š
D 2:5C

1

6
D 2:6666

P4.1/ D P3.1/C
1

4Š
D 2:6666C

1

24
D 2:7083

P5.1/ D P4.1/C
1

5Š
D 2:7083C

1

120
D 2:7166

P6.1/ D P5.1/C
1

6Š
D 2:7166C

1

720
D 2:7180

P7.1/ D P6.1/C
1

7Š
D 2:7180C

1

5;040
D 2:7182:

It appears that e � 2:718 to 3 decimal places. We will verify in Example 5 below

that P7.1/ does indeed give this much precision. The graphs of ex and its first four

Maclaurin polynomials are shown in Figure 4.65.
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Figure 4.65 Some Maclaurin

polynomials for ex

y

1

2

3

4

5

6

x�2 �1 1

y D P1.x/

y D P2.x/

y D P3.x/

y D ex

y D P0.x/

E X A M P L E 3
Find Maclaurin polynomials P1.x/, P2.x/, P3.x/, and P4.x/ for

f .x/ D sinx. Then write the general Maclaurin polynomials

P2n�1.x/ and P2n.x/ for that function.

Solution We have f 0
.x/ D cos x, f 00

.x/ D � sin x, f 000
.x/ D � cos x, and f .4/

.x/ D

sinx D f .x/, so the pattern repeats for higher derivatives. Since

f .0/ D 0;

f
0
.0/ D 1;

f
00
.0/ D 0;

f
000
.0/ D �1;

f
.4/
.0/ D 0;

f
.5/
.0/ D 1;

f
.6/
.0/ D 0; : : :

f
.7/
.0/ D �1; : : :

we have

P1.x/ D 0C x D x

P2.x/ D x C
0

2Š
x

2
D x D P1.x/

P3.x/ D x �
1

3Š
x

3
D x �

x3

3Š

P4.x/ D x �
1

3Š
x

3
C

0

4Š
x

4
D x �

x3

3Š
D P3.x/:

In general, f .2n�1/.0/ D .�1/n�1 and f .2n/.0/ D 0, so

P2n�1.x/ D P2n.x/ D x �
x3

3Š
C

x5

5Š
� � � � C .�1/

n�1 x2n�1

.2n � 1/Š
:

Taylor’s Formula
The following theorem provides a formula for the error in a Taylor approximation

f .x/ � Pn.x/ similar to that provided for linear approximation by Theorem 11.
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and so describes f .x/ near x D a better than any other polynomial of degree at most

n. Pn is called the nth-order Taylor polynomial for f about a. (Taylor polynomials

about 0 are usually called Maclaurin polynomials.) The 0th-order Taylor polynomial

for f about a is just the constant function P0.x/ D f .a/. The nth-order Taylor poly-

nomial for f about a is sometimes called the nth-degree Taylor polynomial, but its

degree will actually be less than n if f .n/.a/ D 0.

E X A M P L E 1
Find the following Taylor polynomials:

(a) P2.x/ for f .x/ D
p

x about x D 25.

(b) P3.x/ for g.x/ D ln x about x D e.

Solution (a) f 0.x/ D .1=2/x�1=2, f 00.x/ D �.1=4/x�3=2. Thus,

P2.x/ D f .25/C f
0
.25/.x � 25/C

f 00.25/

2Š
.x � 25/

2

D 5C
1

10
.x � 25/ �

1

1;000
.x � 25/

2
:

(b) g0.x/ D
1

x
, g00.x/ D �

1

x2
, g000.x/ D

2

x3
. Thus,

P3.x/ D g.e/C g
0
.e/.x � e/C

g00.e/

2Š
.x � e/

2
C

g000.e/

3Š
.x � e/

3

D 1C
1

e
.x � e/ �

1

2e2
.x � e/

2
C

1

3e3
.x � e/

3
:

E X A M P L E 2
Find the nth-order Maclaurin polynomial Pn.x/ for ex . UseP0.1/,

P1.1/, P2.1/, : : : to calculate approximate values for e D e1. Stop

when you think you have 3 decimal places correct.

Solution Since every derivative of ex is ex and so is 1 at x D 0, the nth-order

Maclaurin polynomial for ex (i.e., Taylor polynomial at x D 0) is

Pn.x/ D 1C
x

1Š
C

x2

2Š
C

x3

3Š
C � � � C

xn

nŠ
:

Thus, we have for x D 1, adding one more term at each step:

P0.1/ D 1

P1.1/ D P0.1/C
1

1Š
D 1C 1 D 2

P2.1/ D P1.1/C
1

2Š
D 2C

1

2
D 2:5

P3.1/ D P2.1/C
1

3Š
D 2:5C

1

6
D 2:6666

P4.1/ D P3.1/C
1

4Š
D 2:6666C

1

24
D 2:7083

P5.1/ D P4.1/C
1

5Š
D 2:7083C

1

120
D 2:7166

P6.1/ D P5.1/C
1

6Š
D 2:7166C

1

720
D 2:7180

P7.1/ D P6.1/C
1

7Š
D 2:7180C

1

5;040
D 2:7182:

It appears that e � 2:718 to 3 decimal places. We will verify in Example 5 below

that P7.1/ does indeed give this much precision. The graphs of ex and its first four

Maclaurin polynomials are shown in Figure 4.65.
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Figure 4.65 Some Maclaurin

polynomials for ex

y

1

2

3

4

5

6

x�2 �1 1

y D P1.x/

y D P2.x/

y D P3.x/

y D ex

y D P0.x/

E X A M P L E 3
Find Maclaurin polynomials P1.x/, P2.x/, P3.x/, and P4.x/ for

f .x/ D sinx. Then write the general Maclaurin polynomials

P2n�1.x/ and P2n.x/ for that function.

Solution We have f 0
.x/ D cos x, f 00

.x/ D � sin x, f 000
.x/ D � cos x, and f .4/

.x/ D

sinx D f .x/, so the pattern repeats for higher derivatives. Since

f .0/ D 0;

f
0
.0/ D 1;

f
00
.0/ D 0;

f
000
.0/ D �1;

f
.4/
.0/ D 0;

f
.5/
.0/ D 1;

f
.6/
.0/ D 0; : : :

f
.7/
.0/ D �1; : : :

we have

P1.x/ D 0C x D x

P2.x/ D x C
0

2Š
x

2
D x D P1.x/

P3.x/ D x �
1

3Š
x

3
D x �

x3

3Š

P4.x/ D x �
1

3Š
x

3
C

0

4Š
x

4
D x �

x3

3Š
D P3.x/:

In general, f .2n�1/.0/ D .�1/n�1 and f .2n/.0/ D 0, so

P2n�1.x/ D P2n.x/ D x �
x3

3Š
C

x5

5Š
� � � � C .�1/

n�1 x2n�1

.2n � 1/Š
:

Taylor’s Formula
The following theorem provides a formula for the error in a Taylor approximation

f .x/ � Pn.x/ similar to that provided for linear approximation by Theorem 11.
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T H E O R E M

12

Taylor’s Theorem

If the .nC 1/st-order derivative, f .nC1/.t/, exists for all t in an interval containing a

and x, and if Pn.x/ is the nth-order Taylor polynomial for f about a, that is,

Pn.x/ D f .a/C f
0
.a/.x � a/C

f 00.a/

2Š
.x � a/

2
C � � � C

f .n/.a/

nŠ
.x � a/

n
;

then the error En.x/ D f .x/ � Pn.x/ in the approximation f .x/ � Pn.x/ is given

by

Note that the error term

(Lagrange remainder) in Taylor’s

formula looks just like the next

term in the Taylor polynomial

would look if we continued the

Taylor polynomial to include one

more term (of degree nC 1)

EXCEPT that the derivative

f .nC1/ is not evaluated at a but

rather at some (generally

unknown) point s between a and

x. This makes it easy to

remember Taylor’s formula.

En.x/ D
f .nC1/.s/

.nC 1/Š
.x � a/

nC1
;

where s is some number between a and x. The resulting formula

f .x/ D f .a/C f
0
.a/.x � a/C

f 00.a/

2Š
.x � a/

2
C � � � C

f .n/.a/

nŠ
.x � a/

n

C

f .nC1/.s/

.nC 1/Š
.x � a/

nC1
; for some s between a and x,

is called Taylor’s formula with Lagrange remainder; the Lagrange remainder term

is the explicit formula given above for En.x/.

PROOF Observe that the case n D 0 of Taylor’s formula, namely,

f .x/ D P0.x/CE0.x/ D f .a/C
f 0.s/

1Š
.x � a/;

is just the Mean-Value Theorem

f .x/� f .a/

x � a
D f

0
.s/ for some s between a and x.

Also note that the case n D 1 is just the error formula for linearization given in

Theorem 11.

We will complete the proof for higher n using mathematical induction. (See the

proof of Theorem 2 in Section 2.3.) Suppose, therefore, that we have proved the case

n D k � 1, where k � 2 is an integer. Thus, we are assuming that if f is any function

whose kth derivative exists on an interval containing a and x, then

Ek�1.x/ D
f .k/.s/

kŠ
.x � a/

k
;

where s is some number between a and x. Let us consider the next higher case: n D k.

As in the proof of Theorem 11, we assume x > a (the case x < a is similar) and apply

the Generalized Mean-Value Theorem to the functions Ek.t/ and .t � a/kC1 on Œa; x�.

Since Ek.a/ D 0, we obtain a number u in .a; x/ such that

Ek.x/

.x � a/kC1
D

Ek.x/� Ek.a/

.x � a/kC1
� .a � a/kC1

D

E 0
k
.u/

.k C 1/.u � a/k
:

Now

E
0
k.u/ D

d

dt

�

f .t/� f .a/ � f
0
.a/ .t � a/ �

f 00.a/

2Š
.t � a/

2

� � � � �

f
.k/
.a/

kŠ
.t � a/

k

!ˇ

ˇ

ˇ

ˇ

ˇ

tDu

D f
0
.u/� f

0
.a/ � f

00
.a/ .u � a/ � � � � �

f .k/.a/

.k � 1/Š
.u � a/

k�1
:
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This last expression is just Ek�1.u/ for the function f 0 instead of f: By the induction

assumption it is equal to

.f 0/.k/.s/

kŠ
.u � a/

k
D

f .kC1/.s/

kŠ
.u � a/

k

for some s between a and u. Therefore,

Ek.x/ D
f .kC1/.s/

.k C 1/Š
.x � a/

kC1
:

We have shown that the case n D k of Taylor’s Theorem is true if the case n D k � 1

is true, and the inductive proof is complete.

Remark For any value of x for which limn!1En.x/ D 0, we can ensure that

the Taylor approximation f .x/ � Pn.x/ is as close as we want by choosing n large

enough.

E X A M P L E 4
Use the 2nd-order Taylor polynomial for

p

x about x D 25 found

in Example 1(a) to approximate
p

26. Estimate the size of the

error, and specify an interval that you can be sure contains
p

26.

Solution In Example 1(a) we calculated f 00.x/ D �.1=4/x�3=2 and obtained the

Taylor polynomial

P2.x/ D 5C
1

10
.x � 25/ �

1

1;000
.x � 25/

2
:

The required approximation is

p

26 D f .26/ � P2.26/ D 5C
1

10
.26 � 25/ �

1

1;000
.26 � 25/

2
D 5:099:

Now f 000.x/ D .3=8/x�5=2. For 25 < s < 26, we have

jf
000
.s/j �

3

8

1

255=2
D

3

8 � 3;125
D

3

25;000
:

Thus, the error in the approximation satisfies

jE2.26/j �
3

25;000 � 6
.26 � 25/

3
D

1

50;000
D 0:000 02:

Therefore,
p

26 lies in the interval .5:098 98; 5:099 02/.

E X A M P L E 5
Use Taylor’s Theorem to confirm that the Maclaurin polynomial

P7.x/ for ex is sufficient to give e correct to 3 decimal places as

claimed in Example 2.

Solution The error in the approximation ex
� Pn.x/ satisfies

En.x/ D
es

.nC 1/Š
x

nC1
; for some s between 0 and x.

If x D 1, then 0 < s < 1, so es
< e < 3 and 0 < En.1/ < 3=.n C 1/Š.

To get an approximation for e D e1 correct to 3 decimal places, we need to have

En.1/ < 0:0005. Since 3=.8Š/ D 3=40;320 � 0:000 074, but 3=.7Š/ D 3=5;040 �

0:000 59, we can be sure n D 7 will do, but we cannot be sure n D 6 will do:

e � 1C 1C
1

2Š
C

1

3Š
C

1

4Š
C

1

5Š
C

1

6Š
C

1

7Š
� 2:7183 � 2:718

to 3 decimal places.
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T H E O R E M

12

Taylor’s Theorem

If the .nC 1/st-order derivative, f .nC1/.t/, exists for all t in an interval containing a

and x, and if Pn.x/ is the nth-order Taylor polynomial for f about a, that is,

Pn.x/ D f .a/C f
0
.a/.x � a/C

f 00.a/

2Š
.x � a/

2
C � � � C

f .n/.a/

nŠ
.x � a/

n
;

then the error En.x/ D f .x/ � Pn.x/ in the approximation f .x/ � Pn.x/ is given

by

Note that the error term

(Lagrange remainder) in Taylor’s

formula looks just like the next

term in the Taylor polynomial

would look if we continued the

Taylor polynomial to include one

more term (of degree nC 1)

EXCEPT that the derivative

f .nC1/ is not evaluated at a but

rather at some (generally

unknown) point s between a and

x. This makes it easy to

remember Taylor’s formula.

En.x/ D
f .nC1/.s/

.nC 1/Š
.x � a/

nC1
;

where s is some number between a and x. The resulting formula

f .x/ D f .a/C f
0
.a/.x � a/C

f 00.a/

2Š
.x � a/

2
C � � � C

f .n/.a/

nŠ
.x � a/

n

C

f .nC1/.s/

.nC 1/Š
.x � a/

nC1
; for some s between a and x,

is called Taylor’s formula with Lagrange remainder; the Lagrange remainder term

is the explicit formula given above for En.x/.

PROOF Observe that the case n D 0 of Taylor’s formula, namely,

f .x/ D P0.x/CE0.x/ D f .a/C
f 0.s/

1Š
.x � a/;

is just the Mean-Value Theorem

f .x/� f .a/

x � a
D f

0
.s/ for some s between a and x.

Also note that the case n D 1 is just the error formula for linearization given in

Theorem 11.

We will complete the proof for higher n using mathematical induction. (See the

proof of Theorem 2 in Section 2.3.) Suppose, therefore, that we have proved the case

n D k � 1, where k � 2 is an integer. Thus, we are assuming that if f is any function

whose kth derivative exists on an interval containing a and x, then

Ek�1.x/ D
f .k/.s/

kŠ
.x � a/

k
;

where s is some number between a and x. Let us consider the next higher case: n D k.

As in the proof of Theorem 11, we assume x > a (the case x < a is similar) and apply

the Generalized Mean-Value Theorem to the functions Ek.t/ and .t � a/kC1 on Œa; x�.

Since Ek.a/ D 0, we obtain a number u in .a; x/ such that

Ek.x/

.x � a/kC1
D

Ek.x/� Ek.a/

.x � a/kC1
� .a � a/kC1

D

E 0
k
.u/

.k C 1/.u � a/k
:

Now

E
0
k.u/ D

d

dt

�

f .t/� f .a/ � f
0
.a/ .t � a/ �

f 00.a/

2Š
.t � a/

2

� � � � �

f
.k/
.a/

kŠ
.t � a/

k

!ˇ

ˇ

ˇ

ˇ

ˇ

tDu

D f
0
.u/� f

0
.a/ � f

00
.a/ .u � a/ � � � � �

f .k/.a/

.k � 1/Š
.u � a/

k�1
:
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This last expression is just Ek�1.u/ for the function f 0 instead of f: By the induction

assumption it is equal to

.f 0/.k/.s/

kŠ
.u � a/

k
D

f .kC1/.s/

kŠ
.u � a/

k

for some s between a and u. Therefore,

Ek.x/ D
f .kC1/.s/

.k C 1/Š
.x � a/

kC1
:

We have shown that the case n D k of Taylor’s Theorem is true if the case n D k � 1

is true, and the inductive proof is complete.

Remark For any value of x for which limn!1En.x/ D 0, we can ensure that

the Taylor approximation f .x/ � Pn.x/ is as close as we want by choosing n large

enough.

E X A M P L E 4
Use the 2nd-order Taylor polynomial for

p

x about x D 25 found

in Example 1(a) to approximate
p

26. Estimate the size of the

error, and specify an interval that you can be sure contains
p

26.

Solution In Example 1(a) we calculated f 00.x/ D �.1=4/x�3=2 and obtained the

Taylor polynomial

P2.x/ D 5C
1

10
.x � 25/ �

1

1;000
.x � 25/

2
:

The required approximation is

p

26 D f .26/ � P2.26/ D 5C
1

10
.26 � 25/ �

1

1;000
.26 � 25/

2
D 5:099:

Now f 000.x/ D .3=8/x�5=2. For 25 < s < 26, we have

jf
000
.s/j �

3

8

1

255=2
D

3

8 � 3;125
D

3

25;000
:

Thus, the error in the approximation satisfies

jE2.26/j �
3

25;000 � 6
.26 � 25/

3
D

1

50;000
D 0:000 02:

Therefore,
p

26 lies in the interval .5:098 98; 5:099 02/.

E X A M P L E 5
Use Taylor’s Theorem to confirm that the Maclaurin polynomial

P7.x/ for ex is sufficient to give e correct to 3 decimal places as

claimed in Example 2.

Solution The error in the approximation ex
� Pn.x/ satisfies

En.x/ D
es

.nC 1/Š
x

nC1
; for some s between 0 and x.

If x D 1, then 0 < s < 1, so es
< e < 3 and 0 < En.1/ < 3=.n C 1/Š.

To get an approximation for e D e1 correct to 3 decimal places, we need to have

En.1/ < 0:0005. Since 3=.8Š/ D 3=40;320 � 0:000 074, but 3=.7Š/ D 3=5;040 �

0:000 59, we can be sure n D 7 will do, but we cannot be sure n D 6 will do:

e � 1C 1C
1

2Š
C

1

3Š
C

1

4Š
C

1

5Š
C

1

6Š
C

1

7Š
� 2:7183 � 2:718

to 3 decimal places.
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Big-O Notation

D E F I N I T I O N

9

We write f .x/ D O
�

u.x/
�

as x ! a (read this “f .x/ is big-Oh of u.x/ as

x approaches a”) provided that

jf .x/j � Kju.x/j

holds for some constant K on some open interval containing x D a.

Similarly, f .x/ D g.x/CO
�

u.x/
�

as x ! a if f .x/� g.x/ D O
�

u.x/
�

as

x ! a, that is, if

jf .x/� g.x/j � Kju.x/j near a:

For example, sin x D O.x/ as x ! 0 because j sin xj � jxj near 0.

The following properties of big-O notation follow from the definition:

(i) If f .x/ D O
�

u.x/
�

as x ! a, then Cf .x/ D O
�

u.x/
�

as x ! a for any value

of the constant C .

(ii) If f .x/ D O
�

u.x/
�

as x ! a and g.x/ D O
�

u.x/
�

as x ! a, then

f .x/˙ g.x/ D O
�

u.x/
�

as x ! a.

(iii) If f .x/ D O
�

.x�a/ku.x/
�

as x ! a, then f .x/=.x�a/k D O
�

u.x/
�

as x ! a

for any constant k.

Taylor’s Theorem says that if f .nC1/.t/ exists on an interval containing a and x,

and if Pn is the nth-order Taylor polynomial for f at a, then, as x ! a,

f .x/ D Pn.x/CO
�

.x � a/
nC1

�

:

This is a statement about how rapidly the graph of the Taylor polynomial Pn.x/ ap-

proaches that of f .x/ as x ! a; the vertical distance between the graphs decreases as

fast as jx � ajnC1. The following theorem shows that the Taylor polynomial Pn.x/ is

the only polynomial of degree at most n whose graph approximates the graph of f .x/

that rapidly.

T H E O R E M

13

If f .x/ D Qn.x/CO
�

.x � a/
nC1

�

as x ! a, where Qn is a polynomial of degree at

most n, then Qn.x/ D Pn.x/, that is, Qn is the Taylor polynomial for f .x/ at x D a.

PROOF Let Pn be the Taylor polynomial, then properties (i) and (ii) of big-O imply

that Rn.x/ D Qn.x/ � Pn.x/ D O
�

.x � a/nC1
�

as x ! a. We want to show

that Rn.x/ is identically zero so that Qn.x/ D Pn.x/ for all x. By replacing x with

aC .x � a/ and expanding powers, we can write Rn.x/ in the form

Rn.x/ D c0 C c1.x � a/C c2.x � a/
2
C � � � C cn.x � a/

n
:

If Rn.x/ is not identically zero, then there is a smallest coefficient ck (k � n), such

that ck ¤ 0, but cj D 0 for 0 � j � k � 1. Thus,

Rn.x/ D .x � a/
k
�

ck C ckC1.x � a/C � � � C cn.x � a/
n�k

�

:

Therefore, limx!a Rn.x/=.x � a/
k
D ck ¤ 0. However, by property (iii) above

we have Rn.x/=.x � a/
k
D O

�

.x � a/nC1�k
�

. Since n C 1 � k > 0, this says

Rn.x/=.x � a/
k
! 0 as x ! a. This contradiction shows that Rn.x/ must be

identically zero. Therefore, Qn.x/ D Pn.x/ for all x.

Table 5 lists Taylor formulas about 0 (Maclaurin formulas) for some elementary func-

tions, with error terms expressed using big-O notation.
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Table 5. Some Maclaurin Formulas with Errors in Big-O Form

As x ! 0:

(a) ex
D 1C x C

x
2

2Š
C

x
3

3Š
C � � � C

x
n

nŠ
CO

�

x
nC1

�

(b) cos x D 1�
x

2

2Š
C

x4

4Š
� � � � C .�1/

n x2n

.2n/Š
CO

�

x
2nC2

�

(c) sin x D x �
x

3

3Š
C

x5

5Š
� � � � C .�1/

n x2nC1

.2nC 1/Š
CO

�

x
2nC3

�

(d)
1

1 � x
D 1C x C x

2
C x

3
C � � � C x

n
CO

�

x
nC1

�

(e) ln.1C x/ D x �
x

2

2
C

x3

3
� � � � C .�1/

n�1 x
n

n
CO

�

x
nC1

�

(f) tan�1 x D x �
x

3

3
C

x
5

5
� � � � C .�1/

n x
2nC1

2nC 1
CO

�

x
2nC3

�

It is worthwhile remembering these. The first three can be established easily by using

Taylor’s formula with Lagrange remainder; the other three would require much more

effort to verify for general n. In Section 9.6 we will return to the subject of Taylor and

Maclaurin polynomials in relation to Taylor and Maclaurin series. At that time we will

have access to much more powerful machinery to establish such results. The need to

calculate high-order derivatives can make the use of Taylor’s formula difficult for all

but the simplest functions.

The real importance of Theorem 13 is that it enables us to obtain Taylor

polynomials for new functions by combining others already known; as long as the er-

ror term is of higher degree than the order of the polynomial obtained, the polynomial

must be the Taylor polynomial. We illustrate this with a few examples.

E X A M P L E 6
Find the Maclaurin polynomial of order 2n for cosh x.

Solution Write the Taylor formula for ex at x D 0 (from Table 5) with n replaced by

2nC 1, and then rewrite that with x replaced by �x. We get

e
x
D 1C x C

x
2

2Š
C

x
3

3Š
C � � � C

x
2n

.2n/Š
C

x
2nC1

.2nC 1/Š
CO

�

x
2nC2

�

;

e
�x
D 1 � x C

x2

2Š
�

x3

3Š
C � � � C

x2n

.2n/Š
�

x2nC1

.2nC 1/Š
CO

�

x
2nC2

�

as x ! 0. Now average these two to get

cosh x D
ex
C e�x

2
D 1C

x2

2Š
C

x4

4Š
C � � � C

x2n

.2n/Š
CO

�

x
2nC2

�

as x ! 0. By Theorem 13 the Maclaurin polynomial P2n.x/ for cosh x is

P2n.x/ D 1C
x2

2Š
C

x4

4Š
C � � � C

x2n

.2n/Š
:

E X A M P L E 7
Obtain the Taylor polynomial of order 3 for e2x about x D 1 from

the corresponding Maclaurin polynomial for ex (from Table 5).

9780134154367_Calculus   300 05/12/16   3:17 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 280 October 15, 2016

280 CHAPTER 4 More Applications of Differentiation

Big-O Notation

D E F I N I T I O N

9

We write f .x/ D O
�

u.x/
�

as x ! a (read this “f .x/ is big-Oh of u.x/ as

x approaches a”) provided that

jf .x/j � Kju.x/j

holds for some constant K on some open interval containing x D a.

Similarly, f .x/ D g.x/CO
�

u.x/
�

as x ! a if f .x/� g.x/ D O
�

u.x/
�

as

x ! a, that is, if

jf .x/� g.x/j � Kju.x/j near a:

For example, sin x D O.x/ as x ! 0 because j sin xj � jxj near 0.

The following properties of big-O notation follow from the definition:

(i) If f .x/ D O
�

u.x/
�

as x ! a, then Cf .x/ D O
�

u.x/
�

as x ! a for any value

of the constant C .

(ii) If f .x/ D O
�

u.x/
�

as x ! a and g.x/ D O
�

u.x/
�

as x ! a, then

f .x/˙ g.x/ D O
�

u.x/
�

as x ! a.

(iii) If f .x/ D O
�

.x�a/ku.x/
�

as x ! a, then f .x/=.x�a/k D O
�

u.x/
�

as x ! a

for any constant k.

Taylor’s Theorem says that if f .nC1/.t/ exists on an interval containing a and x,

and if Pn is the nth-order Taylor polynomial for f at a, then, as x ! a,

f .x/ D Pn.x/CO
�

.x � a/
nC1

�

:

This is a statement about how rapidly the graph of the Taylor polynomial Pn.x/ ap-

proaches that of f .x/ as x ! a; the vertical distance between the graphs decreases as

fast as jx � ajnC1. The following theorem shows that the Taylor polynomial Pn.x/ is

the only polynomial of degree at most n whose graph approximates the graph of f .x/

that rapidly.

T H E O R E M

13

If f .x/ D Qn.x/CO
�

.x � a/
nC1

�

as x ! a, where Qn is a polynomial of degree at

most n, then Qn.x/ D Pn.x/, that is, Qn is the Taylor polynomial for f .x/ at x D a.

PROOF Let Pn be the Taylor polynomial, then properties (i) and (ii) of big-O imply

that Rn.x/ D Qn.x/ � Pn.x/ D O
�

.x � a/nC1
�

as x ! a. We want to show

that Rn.x/ is identically zero so that Qn.x/ D Pn.x/ for all x. By replacing x with

aC .x � a/ and expanding powers, we can write Rn.x/ in the form

Rn.x/ D c0 C c1.x � a/C c2.x � a/
2
C � � � C cn.x � a/

n
:

If Rn.x/ is not identically zero, then there is a smallest coefficient ck (k � n), such

that ck ¤ 0, but cj D 0 for 0 � j � k � 1. Thus,

Rn.x/ D .x � a/
k
�

ck C ckC1.x � a/C � � � C cn.x � a/
n�k

�

:

Therefore, limx!a Rn.x/=.x � a/
k
D ck ¤ 0. However, by property (iii) above

we have Rn.x/=.x � a/
k
D O

�

.x � a/nC1�k
�

. Since n C 1 � k > 0, this says

Rn.x/=.x � a/
k
! 0 as x ! a. This contradiction shows that Rn.x/ must be

identically zero. Therefore, Qn.x/ D Pn.x/ for all x.

Table 5 lists Taylor formulas about 0 (Maclaurin formulas) for some elementary func-

tions, with error terms expressed using big-O notation.
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Table 5. Some Maclaurin Formulas with Errors in Big-O Form

As x ! 0:

(a) ex
D 1C x C

x
2

2Š
C

x
3

3Š
C � � � C

x
n

nŠ
CO

�

x
nC1

�

(b) cos x D 1�
x

2

2Š
C

x4

4Š
� � � � C .�1/

n x2n

.2n/Š
CO

�

x
2nC2

�

(c) sin x D x �
x

3

3Š
C

x5

5Š
� � � � C .�1/

n x2nC1

.2nC 1/Š
CO

�

x
2nC3

�

(d)
1

1 � x
D 1C x C x

2
C x

3
C � � � C x

n
CO

�

x
nC1

�

(e) ln.1C x/ D x �
x

2

2
C

x3

3
� � � � C .�1/

n�1 x
n

n
CO

�

x
nC1

�

(f) tan�1 x D x �
x

3

3
C

x
5

5
� � � � C .�1/

n x
2nC1

2nC 1
CO

�

x
2nC3

�

It is worthwhile remembering these. The first three can be established easily by using

Taylor’s formula with Lagrange remainder; the other three would require much more

effort to verify for general n. In Section 9.6 we will return to the subject of Taylor and

Maclaurin polynomials in relation to Taylor and Maclaurin series. At that time we will

have access to much more powerful machinery to establish such results. The need to

calculate high-order derivatives can make the use of Taylor’s formula difficult for all

but the simplest functions.

The real importance of Theorem 13 is that it enables us to obtain Taylor

polynomials for new functions by combining others already known; as long as the er-

ror term is of higher degree than the order of the polynomial obtained, the polynomial

must be the Taylor polynomial. We illustrate this with a few examples.

E X A M P L E 6
Find the Maclaurin polynomial of order 2n for cosh x.

Solution Write the Taylor formula for ex at x D 0 (from Table 5) with n replaced by

2nC 1, and then rewrite that with x replaced by �x. We get

e
x
D 1C x C

x
2

2Š
C

x
3

3Š
C � � � C

x
2n

.2n/Š
C

x
2nC1

.2nC 1/Š
CO

�

x
2nC2

�

;

e
�x
D 1 � x C

x2

2Š
�

x3

3Š
C � � � C

x2n

.2n/Š
�

x2nC1

.2nC 1/Š
CO

�

x
2nC2

�

as x ! 0. Now average these two to get

cosh x D
ex
C e�x

2
D 1C

x2

2Š
C

x4

4Š
C � � � C

x2n

.2n/Š
CO

�

x
2nC2

�

as x ! 0. By Theorem 13 the Maclaurin polynomial P2n.x/ for cosh x is

P2n.x/ D 1C
x2

2Š
C

x4

4Š
C � � � C

x2n

.2n/Š
:

E X A M P L E 7
Obtain the Taylor polynomial of order 3 for e2x about x D 1 from

the corresponding Maclaurin polynomial for ex (from Table 5).
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Solution Writing x D 1C .x � 1/, we have

e
2x
D e

2C2.x�1/
D e

2
e

2.x�1/

D e
2

�

1C 2.x � 1/C
22.x � 1/2

2Š
C

23.x � 1/3

3Š
CO

�

.x � 1/
4
�

�

as x ! 1. By Theorem 13 the Taylor polynomial P3.x/ for e2x at x D 1 must be

P3.x/ D e
2
C 2e

2
.x � 1/C 2e

2
.x � 1/

2
C

4e2

3
.x � 1/

3
:

E X A M P L E 8
Use the Taylor formula for ln.1 C x/ (from Table 5) to find the

Taylor polynomial P3.x/ for lnx about x D e. (This provides an

alternative to using the definition of Taylor polynomial as was done to solve the same

problem in Example 1(b).)

Solution We have x D e C .x � e/ D e.1C t/ where t D .x � e/=e. As x ! e we

have t ! 0, so

ln x D ln e C ln.1C t/ D ln e C t �
t2

2
C

t3

3
CO.t

4
/

D 1C
x � e

e
�

1

2

�

x � e

e

�2

C

1

3

�

x � e

e

�3

CO
�

.x � e/
4
�

:

Therefore, by Theorem 13,

P3.x/ D 1C
x � e

e
�

1

2

�

x � e

e

�2

C

1

3

�

x � e

e

�3

:

Evaluating Limits of Indeterminate Forms
Taylor and Maclaurin polynomials provide us with another method for evaluating lim-

its of indeterminate forms of type Œ0=0�. For some such limits this method can be

considerably easier than using l’Hôpital’s Rule.

E X A M P L E 9 Evaluate lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

.

Solution Both the numerator and denominator approach 0 as x ! 0. Let us replace

the trigonometric and exponential functions with their degree-3 Maclaurin polynomi-

als plus error terms written in big-O notation:

lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

D lim
x!0

2

�

x �
x

3

3Š
CO.x

5
/

�

�

�

2x �
2

3
x

3

3Š
CO.x

5
/

�

2

�

1C x C
x2

2Š
C

x3

3Š
CO.x

4
/

�

� 2 � 2x � x2

D lim
x!0

�

x3

3
C

4x3

3
CO.x

5
/

x3

3
CO.x

4
/

D lim
x!0

1CO.x2/

1

3
CO.x/

D

1

1

3

D 3:

Observe how we used the properties of big-O as listed in this section. We needed to use

Maclaurin polynomials of degree at least 3 because all lower degree terms cancelled

out in the numerator and the denominator.
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E X A M P L E 10 Evaluate lim
x!1

ln x

x2
� 1

.

Solution This is also of type Œ0=0�. We begin by substituting x D 1C t . Note that

x ! 1 corresponds to t ! 0. We can use a known Maclaurin polynomial for ln.1Ct/.

For this limit even the degree 1 polynomial P1.t/ D t with error O.t2/ will do.

lim
x!1

lnx

x2
� 1
D lim

t!0

ln.1C t/

.1C t/2 � 1
D lim

t!0

ln.1C t/

2t C t2

D lim
t!0

t CO.t2/

2t C t2
D lim

t!0

1CO.t/

2C t
D

1

2
:

E X E R C I S E S 4.10

Find the indicated Taylor polynomials for the functions in

Exercises 1–8 by using the definition of Taylor polynomial.

1. for e�x about x D 0, order 4.

2. for cos x about x D �=4, order 3.

3. for ln x about x D 2, order 4.

4. for sec x about x D 0, order 3.

5. for
p

x about x D 4, order 3.

6. for 1=.1 � x/ about x D 0, order n.

7. for 1=.2C x/ about x D 1, order n.

8. for sin.2x/ about x D �=2, order 2n � 1.

In Exercises 9–14, use second order Taylor polynomials P2.x/ for

the given function about the point specified to approximate the

indicated value. Estimate the error, and write the smallest interval

you can be sure contains the value.

9. f .x/ D x1=3 about 8; approximate 91=3.

10. f .x/ D
p

x about 64; approximate
p

61.

11. f .x/ D
1

x
about 1; approximate

1

1:02
.

12. f .x/ D tan�1 x about 1; approximate tan�1.0:97/.

13. f .x/ D ex about 0; approximate e�0:5.

14. f .x/ D sinx about �=4; approximate sin.47ı/.

In Exercises 15–20, write the indicated case of Taylor’s formula for

the given function. What is the Lagrange remainder in each case?

15. f .x/ D sinx; a D 0; n D 7

16. f .x/ D cosx; a D 0; n D 6

17. f .x/ D sinx; a D �=4; n D 4

18. f .x/ D
1

1 � x
; a D 0; n D 6

19. f .x/ D lnx; a D 1; n D 6

20. f .x/ D tanx; a D 0; n D 3

Find the requested Taylor polynomials in Exercises 21–26 by using

known Taylor or Maclaurin polynomials and changing variables as

in Examples 6–8.

21. P3.x/ for e3x about x D �1.

22. P8.x/ for e�x2
about x D 0.

23. P4.x/ for sin2
x about x D 0. Hint: sin2

x D
1 � cos.2x/

2
.

24. P5.x/ for sinx about x D � .

25. P6.x/ for 1=.1C 2x2
/ about x D 0

26. P8.x/ for cos.3x � �/ about x D 0.

27. Find all Maclaurin polynomials Pn.x/ for f .x/ D x3.

28. Find all Taylor polynomials Pn.x/ for f .x/ D x3 at x D 1.

29. Find the Maclaurin polynomial P2nC1.x/ for sinhx by

suitably combining polynomials for ex and e�x .

30. By suitably combining Maclaurin polynomials for ln.1C x/

and ln.1 � x/, find the Maclaurin polynomial of order 2nC 1

for tanh�1
.x/ D

1

2
ln

�

1C x

1 � x

�

.

31. Write Taylor’s formula for f .x/ D e�x with a D 0, and use it

to calculate 1=e to 5 decimal places. (You may use a

calculator but not the ex function on it.)

32.I Write the general form of Taylor’s formula for f .x/ D sinx at

x D 0 with Lagrange remainder. How large need n be taken to

ensure that the corresponding Taylor polynomial approxi-

mation will give the sine of 1 radian correct to 5 decimal

places?

33. What is the best order 2 approximation to the function

f .x/ D .x � 1/2 at x D 0? What is the error in this

approximation? Now answer the same questions for

g.x/ D x3
C 2x2

C 3x C 4. Can the constant 1=6 D 1=3Š, in

the error formula for the degree 2 approximation, be improved

(i.e., made smaller)?

34. By factoring 1 � xnC1 (or by long division), show that

1

1 � x
D 1C x C x

2
C x

3
C � � � C x

n
C

xnC1

1 � x
: .�/

Next, show that if jxj � K < 1, then

ˇ

ˇ

ˇ

ˇ

xnC1

1 � x

ˇ

ˇ

ˇ

ˇ

�

1

1 �K
jx

nC1
j:

This implies that xnC1=.1 � x/ D O.xnC1/ as x ! 0 and

confirms formula (d) of Table 5. What does Theorem 13 then

say about the nth-order Maclaurin polynomial for 1=.1� x/?
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Solution Writing x D 1C .x � 1/, we have

e
2x
D e

2C2.x�1/
D e

2
e

2.x�1/

D e
2

�

1C 2.x � 1/C
22.x � 1/2

2Š
C

23.x � 1/3

3Š
CO

�

.x � 1/
4
�

�

as x ! 1. By Theorem 13 the Taylor polynomial P3.x/ for e2x at x D 1 must be

P3.x/ D e
2
C 2e

2
.x � 1/C 2e

2
.x � 1/

2
C

4e2

3
.x � 1/

3
:

E X A M P L E 8
Use the Taylor formula for ln.1 C x/ (from Table 5) to find the

Taylor polynomial P3.x/ for lnx about x D e. (This provides an

alternative to using the definition of Taylor polynomial as was done to solve the same

problem in Example 1(b).)

Solution We have x D e C .x � e/ D e.1C t/ where t D .x � e/=e. As x ! e we

have t ! 0, so

ln x D ln e C ln.1C t/ D ln e C t �
t2

2
C

t3

3
CO.t

4
/

D 1C
x � e

e
�

1

2

�

x � e

e

�2

C

1

3

�

x � e

e

�3

CO
�

.x � e/
4
�

:

Therefore, by Theorem 13,

P3.x/ D 1C
x � e

e
�

1

2

�

x � e

e

�2

C

1

3

�

x � e

e

�3

:

Evaluating Limits of Indeterminate Forms
Taylor and Maclaurin polynomials provide us with another method for evaluating lim-

its of indeterminate forms of type Œ0=0�. For some such limits this method can be

considerably easier than using l’Hôpital’s Rule.

E X A M P L E 9 Evaluate lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

.

Solution Both the numerator and denominator approach 0 as x ! 0. Let us replace

the trigonometric and exponential functions with their degree-3 Maclaurin polynomi-

als plus error terms written in big-O notation:

lim
x!0

2 sin x � sin.2x/

2ex
� 2 � 2x � x2

D lim
x!0

2

�

x �
x

3

3Š
CO.x

5
/

�

�

�

2x �
2

3
x

3

3Š
CO.x

5
/

�

2

�

1C x C
x2

2Š
C

x3

3Š
CO.x

4
/

�

� 2 � 2x � x2

D lim
x!0

�

x3

3
C

4x3

3
CO.x

5
/

x3

3
CO.x

4
/

D lim
x!0

1CO.x2/

1

3
CO.x/

D

1

1

3

D 3:

Observe how we used the properties of big-O as listed in this section. We needed to use

Maclaurin polynomials of degree at least 3 because all lower degree terms cancelled

out in the numerator and the denominator.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 4 – page 283 October 15, 2016

SECTION 4.10: Taylor Polynomials 283

E X A M P L E 10 Evaluate lim
x!1

ln x

x2
� 1

.

Solution This is also of type Œ0=0�. We begin by substituting x D 1C t . Note that

x ! 1 corresponds to t ! 0. We can use a known Maclaurin polynomial for ln.1Ct/.

For this limit even the degree 1 polynomial P1.t/ D t with error O.t2/ will do.

lim
x!1

lnx

x2
� 1
D lim

t!0

ln.1C t/

.1C t/2 � 1
D lim

t!0

ln.1C t/

2t C t2

D lim
t!0

t CO.t2/

2t C t2
D lim

t!0

1CO.t/

2C t
D

1

2
:

E X E R C I S E S 4.10

Find the indicated Taylor polynomials for the functions in

Exercises 1–8 by using the definition of Taylor polynomial.

1. for e�x about x D 0, order 4.

2. for cos x about x D �=4, order 3.

3. for ln x about x D 2, order 4.

4. for sec x about x D 0, order 3.

5. for
p

x about x D 4, order 3.

6. for 1=.1 � x/ about x D 0, order n.

7. for 1=.2C x/ about x D 1, order n.

8. for sin.2x/ about x D �=2, order 2n � 1.

In Exercises 9–14, use second order Taylor polynomials P2.x/ for

the given function about the point specified to approximate the

indicated value. Estimate the error, and write the smallest interval

you can be sure contains the value.

9. f .x/ D x1=3 about 8; approximate 91=3.

10. f .x/ D
p

x about 64; approximate
p

61.

11. f .x/ D
1

x
about 1; approximate

1

1:02
.

12. f .x/ D tan�1 x about 1; approximate tan�1.0:97/.

13. f .x/ D ex about 0; approximate e�0:5.

14. f .x/ D sinx about �=4; approximate sin.47ı/.

In Exercises 15–20, write the indicated case of Taylor’s formula for

the given function. What is the Lagrange remainder in each case?

15. f .x/ D sinx; a D 0; n D 7

16. f .x/ D cosx; a D 0; n D 6

17. f .x/ D sinx; a D �=4; n D 4

18. f .x/ D
1

1 � x
; a D 0; n D 6

19. f .x/ D lnx; a D 1; n D 6

20. f .x/ D tanx; a D 0; n D 3

Find the requested Taylor polynomials in Exercises 21–26 by using

known Taylor or Maclaurin polynomials and changing variables as

in Examples 6–8.

21. P3.x/ for e3x about x D �1.

22. P8.x/ for e�x2
about x D 0.

23. P4.x/ for sin2
x about x D 0. Hint: sin2

x D
1 � cos.2x/

2
.

24. P5.x/ for sinx about x D � .

25. P6.x/ for 1=.1C 2x2
/ about x D 0

26. P8.x/ for cos.3x � �/ about x D 0.

27. Find all Maclaurin polynomials Pn.x/ for f .x/ D x3.

28. Find all Taylor polynomials Pn.x/ for f .x/ D x3 at x D 1.

29. Find the Maclaurin polynomial P2nC1.x/ for sinhx by

suitably combining polynomials for ex and e�x .

30. By suitably combining Maclaurin polynomials for ln.1C x/

and ln.1 � x/, find the Maclaurin polynomial of order 2nC 1

for tanh�1
.x/ D

1

2
ln

�

1C x

1 � x

�

.

31. Write Taylor’s formula for f .x/ D e�x with a D 0, and use it

to calculate 1=e to 5 decimal places. (You may use a

calculator but not the ex function on it.)

32.I Write the general form of Taylor’s formula for f .x/ D sinx at

x D 0 with Lagrange remainder. How large need n be taken to

ensure that the corresponding Taylor polynomial approxi-

mation will give the sine of 1 radian correct to 5 decimal

places?

33. What is the best order 2 approximation to the function

f .x/ D .x � 1/2 at x D 0? What is the error in this

approximation? Now answer the same questions for

g.x/ D x3
C 2x2

C 3x C 4. Can the constant 1=6 D 1=3Š, in

the error formula for the degree 2 approximation, be improved

(i.e., made smaller)?

34. By factoring 1 � xnC1 (or by long division), show that

1

1 � x
D 1C x C x

2
C x

3
C � � � C x

n
C

xnC1

1 � x
: .�/

Next, show that if jxj � K < 1, then

ˇ

ˇ

ˇ

ˇ

xnC1

1 � x

ˇ

ˇ

ˇ

ˇ

�

1

1 �K
jx

nC1
j:

This implies that xnC1=.1 � x/ D O.xnC1/ as x ! 0 and

confirms formula (d) of Table 5. What does Theorem 13 then

say about the nth-order Maclaurin polynomial for 1=.1� x/?
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35.I By differentiating identity (*) in Exercise 34 and then

replacing n with nC 1, show that

1

.1 � x/2
D 1C 2x C 3x

2
C � � � C .nC 1/x

n

C

nC 2 � .nC 1/x

.1 � x/2
x

nC1
:

Then use Theorem 13 to determine the nth-order Maclaurin

polynomial for 1=.1� x/2.

4.11 Roundoff Error, Truncation Error, and Computers

In Section 4.7 we introduced the idea of roundoff error, while in Sections 4.9 and

4.10 we discussed the result of approximating a function by its Taylor polynomials.

The resulting error here is known as truncation error. This conventional terminology

may be a bit confusing at first because rounding off is itself a kind of truncation of

the digital representation of a number. However in numerical analysis “truncation”

is reserved for discarding higher order terms, typically represented by big-O , often

leaving a Taylor polynomial.

Truncation error is a crucial source of error in using computers to do mathematical

operations. In computation with computers, many of the mathematical functions and

structures being investigated are approximated by polynomials in order to make it pos-

sible for computers to manipulate them. However, the other source of error, roundoff,

is ubiquitous, so it is inevitable that mathematics on computers has to involve consider-

ation of both sources of error. These sources can sometimes be treated independently,

but in other circumstances they can interact with each other in fascinating ways. In this

section we look at some of these fascinating interactions in the form of numerical mon-

sters using Maple. Of course, as stated previously, the issues concern all calculation

on computers and not Maple in particular.

Taylor Polynomials in Maple
In much of the following discussion we will be examining the function sin x. Let us

begin by defining the Maple expression s := sin(x)to denote this function. The

Maple input

> u := taylor(s, x=0, 5);

produces the Taylor polynomial of degree 4 about x D 0 (i.e., a Maclaurin polynomial)

for sin.x/ together with a big-O term of order x5:

u WD x �
1

6
x

3
CO.x

5
/

The presence of the big-O term means that u is an actual representation of sin x; there

is no error involved. If we want to get an actual Taylor polynomial, we need to convert

the expression for u to drop off the big-O term. Since the coefficient of x4 is zero, let

us call the resulting polynomial P3:

> P3 := convert(u, polynom);

P3 WD x �
1

6
x

3

Unlike u, P3 is not an exact representation of sin x; it is only an approximation. The

discarded term O.x5/ D s � P3 D u � P3 is the error in this approximation. On

the basis of the discussion in the previous section, this truncation error can be ex-

pected to be quite small for x close to 0, a fact that is confirmed by the Maple plot

in Figure 4.66(a). The behaviour is much as expected. sin x behaves like the cubic

polynomial near 0 (so the difference is nearly 0), while farther from 0 the cubic term

dominates the expression.
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> plot(s-P3, x=-1..1, style=point,

symbol=point, numpoints=1000);

Figure 4.66 The error sinx � P3.x/ over

(a) the interval Œ�1; 1�, and (b) the interval

Œ�4:2 � 10�4; 4:2 � 10�4�

–0.008
–0.006
–0.004
–0.002

0.002
0.004
0.006
0.008

–1 –0.6 –0.2 0.2 0.6 1x

–1e–19
–5e–20

5e–20
1e–19

–0.0004 0.0004x

(a) (b)

K The limiting behaviour near 0 can be explored by changing the plot window. If the

Maple plot instruction is revised to

> plot(s-P3, x=-0.42e-3..0.42e-3, style=point,

symbol=point, numpoints=1000);

the plot in Figure 4.66(b) results. What is this structure? Clearly the distances from

the x-axis are very small, and one can see the cubic-like behaviour. But why are the

points not distributed along a single curve, filling out a jagged arrow-like structure

instead? This is another numerical monster connected to roundoff error, as we can see

if we plot sin.x/�P3.x/ together with the functions˙.�=2/ sin.x/ and˙.�=4/ sin x,

where � D 2�52 is machine epsilon, as calculated in Section 4.7.

> eps := evalf(2^(-52)):

> plot([s-P3, -eps*s/2, eps*s/2, -eps*s/4, eps*s/4],

x=-0.1e-3,0.1e-3, colour=[magenta,grey,grey,black,black],

style=point, symbol=point, numpoints=1000);

The result is in Figure 4.67. The black and grey envelope curves (which appear

–1e–20

–5e–21

5e–21

1e–20

–0.0001 0.0001x

Figure 4.67 Examining the structure of

the Maple plot of sinx � P3.x/ for x in

Œ�0:0001; 0:0001�. Note the relationship to

the envelope curves y D ˙.�=4/ sinx

(black), and y D ˙.�=2/ sinx (grey)

like straight lines since the plot window is so close to the origin) link the structure of

the plot to machine epsilon; the seemingly random points are not as random as they

first seemed.

Moreover, this structure is distinctive to Maple. Other software packages, such as

Matlab, produce a somewhat different, but still spurious, structure for the same plotting

window. Try some others. If different software produces different behaviour under

the same instructions, it is certain that some type of computational error is involved.

Software-dependent behaviour is one sure sign of computational error.

A distinctive aspect of this monster is that for a large plot window, the trunca-

tion error dominates, while near zero, where the truncation error approaches zero, the

roundoff error dominates. This is a common relationship between truncation error

and roundoff error. However, the roundoff error shows up for plot windows near zero,

while the truncation error is dominant over wide ranges of plot windows. Is this always

true for truncation error? No—as the next monster shows.

Persistent Roundoff Error
The trade-off between truncation error and roundoff error is distinctive, but one should

not get the impression that roundoff error only matters in extreme limiting cases in

certain plot windows. Consider, for example, the function f .x/ D x2
� 2xC 1� .x�

1/
2. It is identically 0, not just 0 in the limiting case x D 0. However, the computer

evaluates the two mathematically equivalent parts of the function f differently, leaving

different errors from rounding off the true values of the numbers inserted into the

expression. The difference of the result is then not exactly 0. A plot of f .x/ on the
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35.I By differentiating identity (*) in Exercise 34 and then

replacing n with nC 1, show that

1

.1 � x/2
D 1C 2x C 3x

2
C � � � C .nC 1/x

n

C

nC 2 � .nC 1/x

.1 � x/2
x

nC1
:

Then use Theorem 13 to determine the nth-order Maclaurin

polynomial for 1=.1� x/2.

4.11 Roundoff Error, Truncation Error, and Computers

In Section 4.7 we introduced the idea of roundoff error, while in Sections 4.9 and

4.10 we discussed the result of approximating a function by its Taylor polynomials.

The resulting error here is known as truncation error. This conventional terminology

may be a bit confusing at first because rounding off is itself a kind of truncation of

the digital representation of a number. However in numerical analysis “truncation”

is reserved for discarding higher order terms, typically represented by big-O , often

leaving a Taylor polynomial.

Truncation error is a crucial source of error in using computers to do mathematical

operations. In computation with computers, many of the mathematical functions and

structures being investigated are approximated by polynomials in order to make it pos-

sible for computers to manipulate them. However, the other source of error, roundoff,

is ubiquitous, so it is inevitable that mathematics on computers has to involve consider-

ation of both sources of error. These sources can sometimes be treated independently,

but in other circumstances they can interact with each other in fascinating ways. In this

section we look at some of these fascinating interactions in the form of numerical mon-

sters using Maple. Of course, as stated previously, the issues concern all calculation

on computers and not Maple in particular.

Taylor Polynomials in Maple
In much of the following discussion we will be examining the function sin x. Let us

begin by defining the Maple expression s := sin(x)to denote this function. The

Maple input

> u := taylor(s, x=0, 5);

produces the Taylor polynomial of degree 4 about x D 0 (i.e., a Maclaurin polynomial)

for sin.x/ together with a big-O term of order x5:

u WD x �
1

6
x

3
CO.x

5
/

The presence of the big-O term means that u is an actual representation of sin x; there

is no error involved. If we want to get an actual Taylor polynomial, we need to convert

the expression for u to drop off the big-O term. Since the coefficient of x4 is zero, let

us call the resulting polynomial P3:

> P3 := convert(u, polynom);

P3 WD x �
1

6
x

3

Unlike u, P3 is not an exact representation of sin x; it is only an approximation. The

discarded term O.x5/ D s � P3 D u � P3 is the error in this approximation. On

the basis of the discussion in the previous section, this truncation error can be ex-

pected to be quite small for x close to 0, a fact that is confirmed by the Maple plot

in Figure 4.66(a). The behaviour is much as expected. sin x behaves like the cubic

polynomial near 0 (so the difference is nearly 0), while farther from 0 the cubic term

dominates the expression.
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> plot(s-P3, x=-1..1, style=point,

symbol=point, numpoints=1000);

Figure 4.66 The error sinx � P3.x/ over

(a) the interval Œ�1; 1�, and (b) the interval

Œ�4:2 � 10�4; 4:2 � 10�4�

–0.008
–0.006
–0.004
–0.002

0.002
0.004
0.006
0.008

–1 –0.6 –0.2 0.2 0.6 1x

–1e–19
–5e–20

5e–20
1e–19

–0.0004 0.0004x

(a) (b)

K The limiting behaviour near 0 can be explored by changing the plot window. If the

Maple plot instruction is revised to

> plot(s-P3, x=-0.42e-3..0.42e-3, style=point,

symbol=point, numpoints=1000);

the plot in Figure 4.66(b) results. What is this structure? Clearly the distances from

the x-axis are very small, and one can see the cubic-like behaviour. But why are the

points not distributed along a single curve, filling out a jagged arrow-like structure

instead? This is another numerical monster connected to roundoff error, as we can see

if we plot sin.x/�P3.x/ together with the functions˙.�=2/ sin.x/ and˙.�=4/ sin x,

where � D 2�52 is machine epsilon, as calculated in Section 4.7.

> eps := evalf(2^(-52)):

> plot([s-P3, -eps*s/2, eps*s/2, -eps*s/4, eps*s/4],

x=-0.1e-3,0.1e-3, colour=[magenta,grey,grey,black,black],

style=point, symbol=point, numpoints=1000);

The result is in Figure 4.67. The black and grey envelope curves (which appear

–1e–20

–5e–21

5e–21

1e–20

–0.0001 0.0001x

Figure 4.67 Examining the structure of

the Maple plot of sinx � P3.x/ for x in

Œ�0:0001; 0:0001�. Note the relationship to

the envelope curves y D ˙.�=4/ sinx

(black), and y D ˙.�=2/ sinx (grey)

like straight lines since the plot window is so close to the origin) link the structure of

the plot to machine epsilon; the seemingly random points are not as random as they

first seemed.

Moreover, this structure is distinctive to Maple. Other software packages, such as

Matlab, produce a somewhat different, but still spurious, structure for the same plotting

window. Try some others. If different software produces different behaviour under

the same instructions, it is certain that some type of computational error is involved.

Software-dependent behaviour is one sure sign of computational error.

A distinctive aspect of this monster is that for a large plot window, the trunca-

tion error dominates, while near zero, where the truncation error approaches zero, the

roundoff error dominates. This is a common relationship between truncation error

and roundoff error. However, the roundoff error shows up for plot windows near zero,

while the truncation error is dominant over wide ranges of plot windows. Is this always

true for truncation error? No—as the next monster shows.

Persistent Roundoff Error
The trade-off between truncation error and roundoff error is distinctive, but one should

not get the impression that roundoff error only matters in extreme limiting cases in

certain plot windows. Consider, for example, the function f .x/ D x2
� 2xC 1� .x�

1/
2. It is identically 0, not just 0 in the limiting case x D 0. However, the computer

evaluates the two mathematically equivalent parts of the function f differently, leaving

different errors from rounding off the true values of the numbers inserted into the

expression. The difference of the result is then not exactly 0. A plot of f .x/ on the
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interval Œ�108; 108� is produced by the Maple command

> plot([eps*(x-1)^2,eps*(x-1)^2/2,-eps*(x-1)^2,

-eps*(x-1)^2/2,(x^2-2*x+1)-(x-1)^2],

x=-1e8..1e8,numpoints=1500,style=point,symbol=point,

color=[black,grey,black,grey,magenta],

tickmarks=[[-1e8,-5e7,5e7,1e8],[-2,-1,1,2]]);

Figure 4.68 The values of

x2
� 2x C 1 � .x � 1/2 (colour) lie

between the parabolas ˙�.x � 1/2 (black)

and ˙�.x � 1/2=2 (grey) for

(a) �108
� x � 108, and

(b) �100 � x � 100

–2
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1

2

–1e+08–5e+07 5e+07 1e+08x

–2e–12

–1e–12

1e–12

2e–12

–100 –50 50 100x

(a) (b)

K It is shown in Figure 4.68(a). The spurious values of f .x/ seem like rungs on a ladder.

Note that these false nonzero values of f .x/ (colour) are not small compared to 1.

This is because the window is so wide. But the error is clearly due to roundoff as

the grey and black envelope curves are proportional to machine epsilon. This plot is

largely independent of the width of the window chosen. Figure 4.68(b) is the same

plot with a window one million times narrower. Except for a change of scale, it is

virtually identical to the plot in Figure 4.68(a). This behaviour is quite different from

the numerical monster involving Taylor polynomials encountered above.

Truncation, Roundoff, and Computer Algebra
One of the more modern developments in computer mathematics is the computer’s

ability to deal with mathematics symbolically. This important capability is known as

“computer algebra.” For example, Maple can generate Taylor expansions of very high

order. This might appear to make the issue of error less important. If one can generate

exact Taylor polynomials of very high order, how could error remain an issue?

K To see how the finiteness of computers intrudes on our calculations in this case

too, let us consider the Taylor (Maclaurin) polynomial of degree 99 for sinx:

> v := taylor(s, x=0, 100): P99 := convert(v, polynom):

It is good to suppress the output here; each command produces screensfull of output.

Figure 4.69 shows the result of the Maple plot command

> plot([P99,s],x=35..39,y=-3..3,colour=[magenta,black],

style=point,symbol=point,numpoints=500,

xtickmarks=[36,37,38,39]);

The black curve is the graph of the sine function, and the colour tornado-like cloud is

the plot of P99.x/ that Maple produces. For plotting, the polynomial must be evaluated

at specific values of x. The algorithm cannot employ the large rational expressions for

coefficients and high powers of input values. In order to place the result into an actual

pixel on the computer screen, the value of the polynomial must be converted to a

floating-point number. Then, with the adding and subtracting of 100 terms involving

rounded powers, roundoff error returns despite the exact polynomial that we began

with.

–3

–2

–1

0

1

2

3

y

36 37 38 39x

Figure 4.69 The coloured cloud results

from Maple’s attempt to evaluate the

polynomial P99.x/ at 500 values of x

between 35 and 39

Of course, there are often tactics to fix these types of problems, but the only way

to know what the problems are that need fixing is to understand the mathematics in the
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first place. But this also means that careful calculations on computers constitute a full

field of modern research, requiring considerable mathematical knowledge.

E X E R C I S E S 4.11

1. Use Maple to repeat the plots of Figure 4.68, except using the

mathematically equivalent function .x � 1/2 � .x2
� 2x C 1/.

Does the result look the same? Is the result surprising?

2. Use Maple to graph f � P4.x/ where f .x/ D cosx and

P4.x/ is the 4th degree Taylor polynomial of f about x D 0.

Use the interval Œ�10�3=2; 10�3=2� for the plot and plot 1000

points. On the same plot, graph ˙�f=2 and ˙�f=4, where �

is machine epsilon. How does the result differ from what is

expected mathematically?

3.I If a real number x is represented on a computer, it is replaced

by a floating-point number F.x/; x is said to be “floated” by

the function F . Show that the relative error in floating for a

base-two machine satisfies

jerrorj D jx � F.x/j � �jxj;

where � D 2�t and t is the number of base-two digits (bits) in

the floating-point number.

4.I Consider two different but mathematically equivalent

expressions, having the value C after evaluation. On a

computer, with each step in the evaluation of each of the

expressions, roundoff error is introduced as digits are

discarded and rounded according to various rules. In

subsequent steps, resulting error is added or subtracted

according to the details of the expression producing a final

error that depends in detail on the expression, the particular

software package, the operating system, and the machine

hardware. Computer errors are not equivalent for the two

expressions, even when the expressions are mathematically

equivalent.

(a) If we suppose that the computer satisfactorily evaluates

the expressions for many input values within an interval,

all to within machine precision, why might we expect the

difference of these expressions on a computer to have an

error contained within an interval Œ��C; �C �?

(b) Is it possible for exceptional values of the error to lie

outside that interval in some cases? Why?

(c) Is it possible for the error to be much smaller than the

interval indicates? Why?

C H A P T E R R E V I E W

Key Ideas

� What do the following words, phrases, and statements mean?

˘ critical point of f ˘ singular point of f

˘ inflection point of f

˘ f has absolute maximum valueM

˘ f has a local minimum value at x D c

˘ vertical asymptote ˘ horizontal asymptote

˘ oblique asymptote ˘ machine epsilon

˘ the linearization of f .x/ about x D a

˘ the Taylor polynomial of degree n of f .x/ about x D a

˘ Taylor’s formula with Lagrange remainder

˘ f .x/ D O

�

.x � a/n
�

as x ! a

˘ a root of f .x/ D 0 ˘ a fixed point of f .x/

˘ an indeterminate form ˘ l’Hôpital’s Rules

� Describe how to estimate the error in a linear (tangent line)

approximation to the value of a function.

� Describe how to find a root of an equation f .x/ D 0 by using

Newton’s Method. When will this method work well?

Review Exercises

1. If the radius r of a ball is increasing at a rate of 2 percent per

minute, how fast is the volume V of the ball increasing?

2. (Gravitational attraction) The gravitational attraction of the

earth on a mass m at distance r from the centre of the earth is

a continuous function of r for r � 0, given by

F D

(

mgR2

r2
if r � R

mkr if 0 � r < R,

whereR is the radius of the earth, and g is the acceleration due

to gravity at the surface of the earth.

(a) Find the constant k in terms of g and R.

(b) F decreases as m moves away from the surface of the

earth, either upward or downward. Show that F decreases

as r increases from R at twice the rate at which F de-

creases as r decreases from R.

3. (Resistors in parallel) Two variable resistors R1 and R2 are

connected in parallel so that their combined resistance R is

given by

1

R
D

1

R1
C

1

R2
:

At an instant when R1 D 250 ohms and R2 D 1; 000 ohms,

R1 is increasing at a rate of 100 ohms/min. How fast must R2

be changing at that moment (a) to keep R constant? and (b) to

enable R to increase at a rate of 10 ohms/min?
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interval Œ�108; 108� is produced by the Maple command

> plot([eps*(x-1)^2,eps*(x-1)^2/2,-eps*(x-1)^2,

-eps*(x-1)^2/2,(x^2-2*x+1)-(x-1)^2],

x=-1e8..1e8,numpoints=1500,style=point,symbol=point,

color=[black,grey,black,grey,magenta],

tickmarks=[[-1e8,-5e7,5e7,1e8],[-2,-1,1,2]]);

Figure 4.68 The values of

x2
� 2x C 1 � .x � 1/2 (colour) lie

between the parabolas ˙�.x � 1/2 (black)

and ˙�.x � 1/2=2 (grey) for

(a) �108
� x � 108, and

(b) �100 � x � 100
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–1e+08–5e+07 5e+07 1e+08x

–2e–12

–1e–12

1e–12

2e–12

–100 –50 50 100x

(a) (b)

K It is shown in Figure 4.68(a). The spurious values of f .x/ seem like rungs on a ladder.

Note that these false nonzero values of f .x/ (colour) are not small compared to 1.

This is because the window is so wide. But the error is clearly due to roundoff as

the grey and black envelope curves are proportional to machine epsilon. This plot is

largely independent of the width of the window chosen. Figure 4.68(b) is the same

plot with a window one million times narrower. Except for a change of scale, it is

virtually identical to the plot in Figure 4.68(a). This behaviour is quite different from

the numerical monster involving Taylor polynomials encountered above.

Truncation, Roundoff, and Computer Algebra
One of the more modern developments in computer mathematics is the computer’s

ability to deal with mathematics symbolically. This important capability is known as

“computer algebra.” For example, Maple can generate Taylor expansions of very high

order. This might appear to make the issue of error less important. If one can generate

exact Taylor polynomials of very high order, how could error remain an issue?

K To see how the finiteness of computers intrudes on our calculations in this case

too, let us consider the Taylor (Maclaurin) polynomial of degree 99 for sinx:

> v := taylor(s, x=0, 100): P99 := convert(v, polynom):

It is good to suppress the output here; each command produces screensfull of output.

Figure 4.69 shows the result of the Maple plot command

> plot([P99,s],x=35..39,y=-3..3,colour=[magenta,black],

style=point,symbol=point,numpoints=500,

xtickmarks=[36,37,38,39]);

The black curve is the graph of the sine function, and the colour tornado-like cloud is

the plot of P99.x/ that Maple produces. For plotting, the polynomial must be evaluated

at specific values of x. The algorithm cannot employ the large rational expressions for

coefficients and high powers of input values. In order to place the result into an actual

pixel on the computer screen, the value of the polynomial must be converted to a

floating-point number. Then, with the adding and subtracting of 100 terms involving

rounded powers, roundoff error returns despite the exact polynomial that we began

with.

–3

–2

–1

0

1

2

3

y

36 37 38 39x

Figure 4.69 The coloured cloud results

from Maple’s attempt to evaluate the

polynomial P99.x/ at 500 values of x

between 35 and 39

Of course, there are often tactics to fix these types of problems, but the only way

to know what the problems are that need fixing is to understand the mathematics in the
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first place. But this also means that careful calculations on computers constitute a full

field of modern research, requiring considerable mathematical knowledge.

E X E R C I S E S 4.11

1. Use Maple to repeat the plots of Figure 4.68, except using the

mathematically equivalent function .x � 1/2 � .x2
� 2x C 1/.

Does the result look the same? Is the result surprising?

2. Use Maple to graph f � P4.x/ where f .x/ D cosx and

P4.x/ is the 4th degree Taylor polynomial of f about x D 0.

Use the interval Œ�10�3=2; 10�3=2� for the plot and plot 1000

points. On the same plot, graph ˙�f=2 and ˙�f=4, where �

is machine epsilon. How does the result differ from what is

expected mathematically?

3.I If a real number x is represented on a computer, it is replaced

by a floating-point number F.x/; x is said to be “floated” by

the function F . Show that the relative error in floating for a

base-two machine satisfies

jerrorj D jx � F.x/j � �jxj;

where � D 2�t and t is the number of base-two digits (bits) in

the floating-point number.

4.I Consider two different but mathematically equivalent

expressions, having the value C after evaluation. On a

computer, with each step in the evaluation of each of the

expressions, roundoff error is introduced as digits are

discarded and rounded according to various rules. In

subsequent steps, resulting error is added or subtracted

according to the details of the expression producing a final

error that depends in detail on the expression, the particular

software package, the operating system, and the machine

hardware. Computer errors are not equivalent for the two

expressions, even when the expressions are mathematically

equivalent.

(a) If we suppose that the computer satisfactorily evaluates

the expressions for many input values within an interval,

all to within machine precision, why might we expect the

difference of these expressions on a computer to have an

error contained within an interval Œ��C; �C �?

(b) Is it possible for exceptional values of the error to lie

outside that interval in some cases? Why?

(c) Is it possible for the error to be much smaller than the

interval indicates? Why?

C H A P T E R R E V I E W

Key Ideas

� What do the following words, phrases, and statements mean?

˘ critical point of f ˘ singular point of f

˘ inflection point of f

˘ f has absolute maximum valueM

˘ f has a local minimum value at x D c

˘ vertical asymptote ˘ horizontal asymptote

˘ oblique asymptote ˘ machine epsilon

˘ the linearization of f .x/ about x D a

˘ the Taylor polynomial of degree n of f .x/ about x D a

˘ Taylor’s formula with Lagrange remainder

˘ f .x/ D O

�

.x � a/n
�

as x ! a

˘ a root of f .x/ D 0 ˘ a fixed point of f .x/

˘ an indeterminate form ˘ l’Hôpital’s Rules

� Describe how to estimate the error in a linear (tangent line)

approximation to the value of a function.

� Describe how to find a root of an equation f .x/ D 0 by using

Newton’s Method. When will this method work well?

Review Exercises

1. If the radius r of a ball is increasing at a rate of 2 percent per

minute, how fast is the volume V of the ball increasing?

2. (Gravitational attraction) The gravitational attraction of the

earth on a mass m at distance r from the centre of the earth is

a continuous function of r for r � 0, given by

F D

(

mgR2

r2
if r � R

mkr if 0 � r < R,

whereR is the radius of the earth, and g is the acceleration due

to gravity at the surface of the earth.

(a) Find the constant k in terms of g and R.

(b) F decreases as m moves away from the surface of the

earth, either upward or downward. Show that F decreases

as r increases from R at twice the rate at which F de-

creases as r decreases from R.

3. (Resistors in parallel) Two variable resistors R1 and R2 are

connected in parallel so that their combined resistance R is

given by

1

R
D

1

R1
C

1

R2
:

At an instant when R1 D 250 ohms and R2 D 1; 000 ohms,

R1 is increasing at a rate of 100 ohms/min. How fast must R2

be changing at that moment (a) to keep R constant? and (b) to

enable R to increase at a rate of 10 ohms/min?
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4. (Gas law) The volume V (in m3), pressure P (in kilopascals,

kPa), and temperature T (in kelvin, K) for a sample of a certain

gas satisfy the equation pV D 5:0T .

(a) How rapidly does the pressure increase if the temperature

is 400 K and increasing at 4 K/min while the gas is kept

confined in a volume of 2.0 m3?

(b) How rapidly does the pressure decrease if the volume is

2 m3 and increases at 0.05 m3/min while the temperature

is kept constant at 400 K?

5. (The size of a print run) It costs a publisher $10,000 to set

up the presses for a print run of a book and $8 to cover the

material costs for each book printed. In addition, machinery

servicing, labour, and warehousing add another $6:25�10�7
x

2

to the cost of each book if x copies are manufactured during the

printing. How many copies should the publisher print in order

to minimize the average cost per book?

6. (Maximizing profit) A bicycle wholesaler must pay the manu-

facturer $75 for each bicycle. Market research tells the whole-

saler that if she charges her customers $x per bicycle, she can

expect to sell N.x/ D 4:5 � 106=x2 of them. What price

should she charge to maximize her profit, and how many bicy-

cles should she order from the manufacturer?

7. Find the largest possible volume of a right-circular cone that

can be inscribed in a sphere of radius R.

8. (Minimizing production costs) The cost $C.x/ of production

in a factory varies with the amount x of product manufactured.

The cost may rise sharply with x when x is small, and more

slowly for larger values of x because of economies of scale.

However, if x becomes too large, the resources of the factory

can be overtaxed, and the cost can begin to rise quickly again.

Figure 4.70 shows the graph of a typical such cost function

C.x/.

C

x

.x; C.x//

slope =
C.x/

x
= average cost

Figure 4.70

If x units are manufactured, the average cost per unit is

$C.x/=x, which is the slope of the line from the origin to the

point .x; C.x// on the graph.

(a) If it is desired to choose x to minimize this average cost

per unit (as would be the case if all units produced could

be sold for the same price), show that x should be chosen

to make the average cost equal to the marginal cost:

C.x/

x
D C

0
.x/:

(b) Interpret the conclusion of (a) geometrically in the figure.

(c) If the average cost equals the marginal cost for some x,

does x necessarily minimize the average cost?

9. (Box design) Four squares are cut out of a rectangle of card-

board 50 cm by 80 cm, as shown in Figure 4.71, and the re-

maining piece is folded into a closed, rectangular box, with

two extra flaps tucked in. What is the largest possible volume

for such a box?

side bottom side top

flapside

side flap

80 cm

50 cm

Figure 4.71

10. (Yield from an orchard) A certain orchard has 60 trees and

produces an average of 800 apples per tree per year. If the

density of trees is increased, the yield per tree drops; for each

additional tree planted, the average yield per tree is reduced by

10 apples per year. How many more trees should be planted to

maximize the total annual yield of apples from the orchard?

11. (Rotation of a tracking antenna) What is the maximum rate

at which the antenna in Exercise 41 of Section 4.1 must be able

to turn in order to track the rocket during its entire vertical as-

cent?

12. An oval table has its outer edge in the shape of the curve

x
2
C y

4
D 1=8, where x and y are measured in metres. What

is the width of the narrowest hallway in which the table can be

turned horizontally through 180ı?

C 13. A hollow iron ball whose shell is 2 cm thick weighs half as

much as it would if it were solid iron throughout. What is the

radius of the ball?

C 14. (Range of a cannon fired from a hill) A cannon ball is fired

with a speed of 200 ft/s at an angle of 45ı above the horizontal

from the top of a hill whose height at a horizontal distance x ft

from the top is y D 1;000=.1C .x=500/2/ ft above sea level.

How far does the cannon ball travel horizontally before striking

the ground?

C 15. (Linear approximation for a pendulum) Because sin � � �

for small values of j� j, the nonlinear equation of motion of a

simple pendulum

d2�

dt2
D �

g

L
sin �;

which determines the displacement angle �.t/ away from the

vertical at time t for a simple pendulum, is frequently approxi-

mated by the simpler linear equation

d2�

dt2
D �

g

L
�

when the maximum displacement of the pendulum is not large.

What is the percentage error in the right side of the equation if

j� j does not exceed 20ı?

16. Find the Taylor polynomial of degree 6 for sin2
x about x D 0

and use it to help you evaluate

lim
x!0

3 sin2
x � 3x2

C x4

x6
:
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17. Use a second-order Taylor polynomial for tan�1 x about x D 1

to find an approximate value for tan�1.1:1/. Estimate the size

of the error by using Taylor’s formula.

18. The line 2y D 10x�19 is tangent to y D f .x/ at x D 2. If an

initial approximation x0 D 2 is made for a root of f .x/ D 0

and Newton’s Method is applied once, what will be the new

approximation that results?

C 19. Find all solutions of the equation cosx D .x � 1/2 to 10 deci-

mal places.

C 20. Find the shortest distance from the point .2; 0/ to the curve

y D lnx.

C 21. A car is travelling at night along a level, curved road whose

equation is y D ex . At a certain instant its headlights illumi-

nate a signpost located at the point .1; 1/. Where is the car at

that instant?

Challenging Problems

1. (Growth of a crystal) A single cubical salt crystal is growing

in a beaker of salt solution. The crystal’s volume V increases

at a rate proportional to its surface area and to the amount by

which its volume is less than a limiting volume V0:

dV

dt
D kx

2
.V0 � V /;

where x is the edge length of the crystal at time t .

(a) Using V D x
3, transform the equation above to one that

gives the rate of change dx=dt of the edge length x in

terms of x.

(b) Show that the growth rate of the edge of the crystal de-

creases with time but remains positive as long as

x < x0 D V
1=3

0 .

(c) Find the volume of the crystal when its edge length is

growing at half the rate it was initially.

2.I (A review of calculus!) You are in a tank (the military variety)

moving down the y-axis toward the origin. At time t D 0 you

are 4 km from the origin, and 10 min later you are 2 km from

the origin. Your speed is decreasing; it is proportional to your

distance from the origin. You know that an enemy tank is wait-

ing somewhere on the positive x-axis, but there is a high wall

along the curve xy D 1 (all distances in kilometres) preventing

you from seeing just where it is. How fast must your gun turret

be capable of turning to maximize your chances of surviving

the encounter?

C 3. (The economics of blood testing) Suppose that it is necessary

to perform a blood test on a large number N of individuals to

detect the presence of a virus. If each test costs $C; then the

total cost of the testing program is $NC: If the proportion of

people in the population who have the virus is not large, this

cost can be greatly reduced by adopting the following strategy.

Divide the N samples of blood into N=x groups of x samples

each. Pool the blood in each group to make a single sample

for that group and test it. If it tests negative, no further testing

is necessary for individuals in that group. If the group sample

tests positive, test all the individuals in that group.

Suppose that the fraction of individuals in the population in-

fected with the virus is p, so the fraction uninfected is q D

1 � p. The probability that a given individual is unaffected is

q, so the probability that all x individuals in a group are un-

affected is qx . Therefore, the probability that a pooled sample

is infected is 1 � qx . Each group requires one test, and the in-

fected groups require an extra x tests. Therefore, the expected

total number of tests to be performed is

T D
N

x
C

N

x
.1 � q

x
/x D N

�

1

x
C 1 � q

x

�

:

For example, if p D 0:01, so that q D 0:99 and x D 20,

then the expected number of tests required is T D 0:23N , a

reduction of over 75%. But maybe we can do better by making

a different choice for x.

(a) For q D 0:99, find the number x of samples in a group

that minimizes T (i.e., solve dT=dx D 0). Show that the

minimizing value of x satisfies

x D
.0:99/�x=2

p

� ln.0:99/
:

(b) Use the technique of fixed-point iteration (see Section 4.2)

to solve the equation in (a) for x. Start with x D 20, say.

4. (Measuring variations in g) The period P of a pendulum of

length L is given by

P D 2�
p

L=g;

where g is the acceleration of gravity.

(a) Assuming that L remains fixed, show that a 1% increase

in g results in approximately a 0.5% decrease in the

period P: (Variations in the period of a pendulum can be

used to detect small variations in g from place to place on

the earth’s surface.)

(b) For fixed g, what percentage change in L will produce a

1% increase in P ?

5. (Torricelli’s Law) The rate at which a tank drains is propor-

tional to the square root of the depth of liquid in the tank above

the level of the drain: if V.t/ is the volume of liquid in the

tank at time t , and y.t/ is the height of the surface of the liquid

above the drain, then dV=dt D �k
p

y, where k is a constant

depending on the size of the drain. For a cylindrical tank with

constant cross-sectional area A with drain at the bottom:

(a) Verify that the depth y.t/ of liquid in the tank at time t

satisfies dy=dt D �.k=A/
p

y.

(b) Verify that if the depth of liquid in the tank at t D 0 is

y0, then the depth at subsequent times during the draining

process is y D

�

p

y0 �
kt

2A

�2

.

(c) If the tank drains completely in time T; express the depth

y.t/ at time t in terms of y0 and T:

(d) In terms of T; how long does it take for half the liquid in

the tank to drain out?

6. If a conical tank with top radius R and depth H drains accord-

ing to Torricelli’s Law and empties in time T; show that the

depth of liquid in the tank at time t (0 < t < T ) is

y D y0

�

1�
t

T

�2=5

;

where y0 is the depth at t D 0.
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4. (Gas law) The volume V (in m3), pressure P (in kilopascals,

kPa), and temperature T (in kelvin, K) for a sample of a certain

gas satisfy the equation pV D 5:0T .

(a) How rapidly does the pressure increase if the temperature

is 400 K and increasing at 4 K/min while the gas is kept

confined in a volume of 2.0 m3?

(b) How rapidly does the pressure decrease if the volume is

2 m3 and increases at 0.05 m3/min while the temperature

is kept constant at 400 K?

5. (The size of a print run) It costs a publisher $10,000 to set

up the presses for a print run of a book and $8 to cover the

material costs for each book printed. In addition, machinery

servicing, labour, and warehousing add another $6:25�10�7
x

2

to the cost of each book if x copies are manufactured during the

printing. How many copies should the publisher print in order

to minimize the average cost per book?

6. (Maximizing profit) A bicycle wholesaler must pay the manu-

facturer $75 for each bicycle. Market research tells the whole-

saler that if she charges her customers $x per bicycle, she can

expect to sell N.x/ D 4:5 � 106=x2 of them. What price

should she charge to maximize her profit, and how many bicy-

cles should she order from the manufacturer?

7. Find the largest possible volume of a right-circular cone that

can be inscribed in a sphere of radius R.

8. (Minimizing production costs) The cost $C.x/ of production

in a factory varies with the amount x of product manufactured.

The cost may rise sharply with x when x is small, and more

slowly for larger values of x because of economies of scale.

However, if x becomes too large, the resources of the factory

can be overtaxed, and the cost can begin to rise quickly again.

Figure 4.70 shows the graph of a typical such cost function

C.x/.

C

x

.x; C.x//

slope =
C.x/

x
= average cost

Figure 4.70

If x units are manufactured, the average cost per unit is

$C.x/=x, which is the slope of the line from the origin to the

point .x; C.x// on the graph.

(a) If it is desired to choose x to minimize this average cost

per unit (as would be the case if all units produced could

be sold for the same price), show that x should be chosen

to make the average cost equal to the marginal cost:

C.x/

x
D C

0
.x/:

(b) Interpret the conclusion of (a) geometrically in the figure.

(c) If the average cost equals the marginal cost for some x,

does x necessarily minimize the average cost?

9. (Box design) Four squares are cut out of a rectangle of card-

board 50 cm by 80 cm, as shown in Figure 4.71, and the re-

maining piece is folded into a closed, rectangular box, with

two extra flaps tucked in. What is the largest possible volume

for such a box?

side bottom side top

flapside

side flap

80 cm

50 cm

Figure 4.71

10. (Yield from an orchard) A certain orchard has 60 trees and

produces an average of 800 apples per tree per year. If the

density of trees is increased, the yield per tree drops; for each

additional tree planted, the average yield per tree is reduced by

10 apples per year. How many more trees should be planted to

maximize the total annual yield of apples from the orchard?

11. (Rotation of a tracking antenna) What is the maximum rate

at which the antenna in Exercise 41 of Section 4.1 must be able

to turn in order to track the rocket during its entire vertical as-

cent?

12. An oval table has its outer edge in the shape of the curve

x
2
C y

4
D 1=8, where x and y are measured in metres. What

is the width of the narrowest hallway in which the table can be

turned horizontally through 180ı?

C 13. A hollow iron ball whose shell is 2 cm thick weighs half as

much as it would if it were solid iron throughout. What is the

radius of the ball?

C 14. (Range of a cannon fired from a hill) A cannon ball is fired

with a speed of 200 ft/s at an angle of 45ı above the horizontal

from the top of a hill whose height at a horizontal distance x ft

from the top is y D 1;000=.1C .x=500/2/ ft above sea level.

How far does the cannon ball travel horizontally before striking

the ground?

C 15. (Linear approximation for a pendulum) Because sin � � �

for small values of j� j, the nonlinear equation of motion of a

simple pendulum

d2�

dt2
D �

g

L
sin �;

which determines the displacement angle �.t/ away from the

vertical at time t for a simple pendulum, is frequently approxi-

mated by the simpler linear equation

d2�

dt2
D �

g

L
�

when the maximum displacement of the pendulum is not large.

What is the percentage error in the right side of the equation if

j� j does not exceed 20ı?

16. Find the Taylor polynomial of degree 6 for sin2
x about x D 0

and use it to help you evaluate

lim
x!0

3 sin2
x � 3x2

C x4

x6
:
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17. Use a second-order Taylor polynomial for tan�1 x about x D 1

to find an approximate value for tan�1.1:1/. Estimate the size

of the error by using Taylor’s formula.

18. The line 2y D 10x�19 is tangent to y D f .x/ at x D 2. If an

initial approximation x0 D 2 is made for a root of f .x/ D 0

and Newton’s Method is applied once, what will be the new

approximation that results?

C 19. Find all solutions of the equation cosx D .x � 1/2 to 10 deci-

mal places.

C 20. Find the shortest distance from the point .2; 0/ to the curve

y D lnx.

C 21. A car is travelling at night along a level, curved road whose

equation is y D ex . At a certain instant its headlights illumi-

nate a signpost located at the point .1; 1/. Where is the car at

that instant?

Challenging Problems

1. (Growth of a crystal) A single cubical salt crystal is growing

in a beaker of salt solution. The crystal’s volume V increases

at a rate proportional to its surface area and to the amount by

which its volume is less than a limiting volume V0:

dV

dt
D kx

2
.V0 � V /;

where x is the edge length of the crystal at time t .

(a) Using V D x
3, transform the equation above to one that

gives the rate of change dx=dt of the edge length x in

terms of x.

(b) Show that the growth rate of the edge of the crystal de-

creases with time but remains positive as long as

x < x0 D V
1=3

0 .

(c) Find the volume of the crystal when its edge length is

growing at half the rate it was initially.

2.I (A review of calculus!) You are in a tank (the military variety)

moving down the y-axis toward the origin. At time t D 0 you

are 4 km from the origin, and 10 min later you are 2 km from

the origin. Your speed is decreasing; it is proportional to your

distance from the origin. You know that an enemy tank is wait-

ing somewhere on the positive x-axis, but there is a high wall

along the curve xy D 1 (all distances in kilometres) preventing

you from seeing just where it is. How fast must your gun turret

be capable of turning to maximize your chances of surviving

the encounter?

C 3. (The economics of blood testing) Suppose that it is necessary

to perform a blood test on a large number N of individuals to

detect the presence of a virus. If each test costs $C; then the

total cost of the testing program is $NC: If the proportion of

people in the population who have the virus is not large, this

cost can be greatly reduced by adopting the following strategy.

Divide the N samples of blood into N=x groups of x samples

each. Pool the blood in each group to make a single sample

for that group and test it. If it tests negative, no further testing

is necessary for individuals in that group. If the group sample

tests positive, test all the individuals in that group.

Suppose that the fraction of individuals in the population in-

fected with the virus is p, so the fraction uninfected is q D

1 � p. The probability that a given individual is unaffected is

q, so the probability that all x individuals in a group are un-

affected is qx . Therefore, the probability that a pooled sample

is infected is 1 � qx . Each group requires one test, and the in-

fected groups require an extra x tests. Therefore, the expected

total number of tests to be performed is

T D
N

x
C

N

x
.1 � q

x
/x D N

�

1

x
C 1 � q

x

�

:

For example, if p D 0:01, so that q D 0:99 and x D 20,

then the expected number of tests required is T D 0:23N , a

reduction of over 75%. But maybe we can do better by making

a different choice for x.

(a) For q D 0:99, find the number x of samples in a group

that minimizes T (i.e., solve dT=dx D 0). Show that the

minimizing value of x satisfies

x D
.0:99/�x=2

p

� ln.0:99/
:

(b) Use the technique of fixed-point iteration (see Section 4.2)

to solve the equation in (a) for x. Start with x D 20, say.

4. (Measuring variations in g) The period P of a pendulum of

length L is given by

P D 2�
p

L=g;

where g is the acceleration of gravity.

(a) Assuming that L remains fixed, show that a 1% increase

in g results in approximately a 0.5% decrease in the

period P: (Variations in the period of a pendulum can be

used to detect small variations in g from place to place on

the earth’s surface.)

(b) For fixed g, what percentage change in L will produce a

1% increase in P ?

5. (Torricelli’s Law) The rate at which a tank drains is propor-

tional to the square root of the depth of liquid in the tank above

the level of the drain: if V.t/ is the volume of liquid in the

tank at time t , and y.t/ is the height of the surface of the liquid

above the drain, then dV=dt D �k
p

y, where k is a constant

depending on the size of the drain. For a cylindrical tank with

constant cross-sectional area A with drain at the bottom:

(a) Verify that the depth y.t/ of liquid in the tank at time t

satisfies dy=dt D �.k=A/
p

y.

(b) Verify that if the depth of liquid in the tank at t D 0 is

y0, then the depth at subsequent times during the draining

process is y D

�

p

y0 �
kt

2A

�2

.

(c) If the tank drains completely in time T; express the depth

y.t/ at time t in terms of y0 and T:

(d) In terms of T; how long does it take for half the liquid in

the tank to drain out?

6. If a conical tank with top radius R and depth H drains accord-

ing to Torricelli’s Law and empties in time T; show that the

depth of liquid in the tank at time t (0 < t < T ) is

y D y0

�

1�
t

T

�2=5

;

where y0 is the depth at t D 0.
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7. Find the largest possible area of a right-angled triangle whose

perimeter is P:

8. Find a tangent to the graph of y D x3
C ax2

C bx C c that is

not parallel to any other tangent.

9. (Branching angles for electric wires and pipes)

(a) The resistance offered by a wire to the flow of electric cur-

rent through it is proportional to its length and inversely

proportional to its cross-sectional area. Thus, the resis-

tance R of a wire of length L and radius r is R D kL=r2,

where k is a positive constant. A long straight wire of

length L and radius r1 extends from A to B: A second

straight wire of smaller radius r2 is to be connected be-

tween a point P on AB and a point C at distance h from

B such thatCB is perpendicular toAB: (See Figure 4.72.)

Find the value of the angle � D †BPC that minimizes the

total resistance of the path APC; that is, the resistance of

AP plus the resistance of PC .

B

C

h

P

�
A

Figure 4.72

(b) The resistance of a pipe (e.g., a blood vessel) to the flow

of liquid through it is, by Poiseuille’s Law, proportional to

its length and inversely proportional to the fourth power

of its radius: R D kL=r4. If the situation in part (a)

represents pipes instead of wires, find the value of � that

minimizes the total resistance of the pathAPC . How does

your answer relate to the answer for part (a)? Could you

have predicted this relationship?

10.I (The range of a spurt) A cylindrical water tank sitting on a

horizontal table has a small hole located on its vertical wall at

height h above the bottom of the tank. Water escapes from the

tank horizontally through the hole and then curves down under

the influence of gravity to strike the table at a distance R from

the base of the tank, as shown in Figure 4.73. (We ignore air

resistance.) Torricelli’s Law implies that the speed v at which

water escapes through the hole is proportional to the square

root of the depth of the hole below the surface of the water:

if the depth of water in the tank at time t is y.t/ > h, then

v D k
p

y � h, where the constant k depends on the size of the

hole.

(a) Find the range R in terms of v and h.

(b) For a given depth y of water in the tank, how high should

the hole be to maximize R?

(c) Suppose that the depth of water in the tank at time t D 0

is y0, that the range R of the spurt is R0 at that time, and

that the water level drops to the height h of the hole in T

minutes. Find, as a function of t , the range R of the water

that escaped through the hole at time t .

R

h

y

Figure 4.73

M 11. (Designing a dustpan) Equal squares are cut out of two adja-

cent corners of a square of sheet metal having sides of length

25 cm. The three resulting flaps are bent up, as shown in

Figure 4.74, to form the sides of a dustpan. Find the maximum

volume of a dustpan made in this way.

25 cm

25 cm

Figure 4.74
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C H A P T E R 5

Integration

“
There are in this world optimists who feel that any symbol that starts

off with an integral sign must necessarily denote something that will

have every property that they should like an integral to possess. This

of course is quite annoying to us rigorous mathematicians; what is

even more annoying is that by doing so they often come up with the

right answer.

”E. J. McShane

Bulletin of the American Mathematical Society, v. 69, p. 611, 1963

Introduction The second fundamental problem addressed by calculus

is the problem of areas, that is, the problem of determin-

ing the area of a region of the plane bounded by various curves. Like the problem

of tangents considered in Chapter 2, many practical problems in various disciplines

require the evaluation of areas for their solution, and the solution of the problem of

areas necessarily involves the notion of limits. On the surface the problem of areas ap-

pears unrelated to the problem of tangents. However, we will see that the two problems

are very closely related; one is the inverse of the other. Finding an area is equivalent

to finding an antiderivative or, as we prefer to say, finding an integral. The relation-

ship between areas and antiderivatives is called the Fundamental Theorem of Calculus.

When we have proved it, we will be able to find areas at will, provided only that we

can integrate (i.e., antidifferentiate) the various functions we encounter.

We would like to have at our disposal a set of integration rules similar to the differ-

entiation rules developed in Chapter 2. We can find the derivative of any differentiable

function using those differentiation rules. Unfortunately, integration is generally more

difficult; indeed, some fairly simple functions are not themselves derivatives of simple

functions. For example, ex2
is not the derivative of any finite combination of elemen-

tary functions. Nevertheless, we will expend some effort in Section 5.6 and Sections

6.1–6.4 to develop techniques for integrating as many functions as possible. Later, in

Chapter 6, we will examine how to approximate areas bounded by graphs of functions

that we cannot antidifferentiate.

5.1 Sums and Sigma Notation

When we begin calculating areas in the next section, we will often encounter sums

of values of functions. We need to have a convenient notation for representing sums

of arbitrary (possibly large) numbers of terms, and we need to develop techniques for

evaluating some such sums.

We use the symbol
P

to represent a sum; it is an enlarged Greek capital letter S

called sigma.
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